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Abstract: In recent years, air pollution in Xinjiang, the core region of the Silk Road Economic Belt,
has become increasingly severe, posing a more significant threat to human health. This paper
selects the tropospheric ozone, nitrogen dioxide, and formaldehyde datasets under OMI remote-
sensing monitoring and the PM; 5 dataset in China High Air Pollutants (CHAP) for 2018-2021. The
spatial and temporal distribution of multi-pollutants, the spatial autocorrelation of Moran’s I index
pollutants, and the correlation between pollutants in the warm period were studied in southern
Xinjiang. Meanwhile, the geographical and temporal weighted regression (GTWR) model was used
for influencing factor analysis, and the BenMap-CE model was used for health benefit analysis. The
results showed that the spatial distribution of ozone concentration values in southern Xinjiang shows
a decreasing distribution pattern from the east—central region to the western and southern regions.
The spatial distribution of formaldehyde concentration values is opposite to that of ozone. There
is a clear high-value area in the ozone concentration value in April-September. The NO, column
concentration values were in the range of 0.55~1.09 x 10'® molec/cm? in most parts of southern
Xinjiang. The area of high concentration values is located in the northeast of the study area; PM; 5
concentration values are higher in the middle area of southern Xinjiang. The spatial autocorrelation
characteristics showed that the spatial aggregation of O3 and NO, displayed a slow increasing trend
year by year. The spatial aggregation of HCHO and PM, 5 fluctuated slightly in four years. The
overall trend of HCHO is slowly decreasing, while PM, 5 is fluctuating and increasing. In the GTWR
model analysis, overall, the atmospheric pressure has a strong influence on all pollutants. The effect
of NO, on O3 was higher than that of HCHO among the four pollutants. The correlation between O3
and PM; 5 was as high as —0.7872. The BenMap-CE health benefits assessment concluded that the
number of premature deaths caused by ozone pollution was much higher than that of premature
deaths caused by PM, 5. The highest number of premature deaths for both pollutants occurred
in Kashgar.

Keywords: O3; PM; 5; GTWR; BenMap-CE; Moran’s I index; oasis

1. Introduction

With the rapid development of China’s economic situation and the acceleration of
industrialization and urbanization in recent years, China has become one of the countries
with the most severe air pollution globally. Ozone and PM; 5 have gradually become
the two most important air pollutants affecting air quality [1], and the rapid increase in
energy consumption and automobile ownership has led to the gradual transformation
of air pollution from a single pollutant to a complex one [2,3]. The spatial and temporal
air quality characteristics in 366 cities in China in 2016-2017 show that particulate matter
pollution is predominant in China. It is characterised by two indicators, PM; 5 and PM,
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and is also strongly influenced by anthropogenic economic activities, dust pollution, etc. [4].
By analysing the air quality data of 86 key cities in China from 2005 to 2015, it was found
that southern Xinjiang is in the high value area of the air quality change range, indicating
that this region has belonged to the heavy pollution aggregation area for a longer period
of time [5]. From the analysis of atmospheric pollutants in four cities in Xinjiang from
2015 to 2017, it was determined that the concentration of contaminants was higher in
the heating period than in the non-heating period [6]. Some studies found that ozone
pollution tended to increase gradually in the summer and autumn [7]. The Hotan region
as a whole shows a significant negative correlation between dusty weather and its annual
mean temperature, significantly positively correlated with wind speed and relatively
less affected by precipitation and atmospheric relative humidity [8]. The geographically
weighted regression (GWR) model was used to explore the influencing factors of NO,
pollution. It was found that the urbanisation rate, forest cover, secondary industry share,
and per capita electricity consumption contribute significantly [9]. Some studies have
found that tropospheric ozone has an effect on vegetation, reduced carbon sequestration,
and higher crop yields. Elevated values of O3 concentration lead to increased plant cell gap
and chloroplast damage, including cystoid swelling and membrane rupture. Prolonged
exposure to O3 causes stomatal closure, reduced conductance of CO, diffusion, and a
reduction in photosynthetically active leaf area, leading to reduced carbon uptake. The
percentage of crop losses due to increased O3 pollution was 5.3% for potatoes, 8.9% for
barley, 9.7% for wheat, 17.5% for rice, 19% for beans, and 7.7% for soya. Ozone is likely to
be a threat to food security [10].

The increasing problem of air pollution is seriously threatening the health of the pop-
ulation [11]. Numerous epidemiological studies have shown that PM; 5 pollution affects
the mortality and hospitalisation rates of patients with respiratory diseases, cardiovascular
diseases, and lung cancer [12,13]. Short-term exposure to high ozone concentrations can
increase respiratory morbidity, while long-term exposure can cause respiratory disease
exacerbation and premature death [14-17]. The 2015 Global Burden of Disease study pub-
lished by the prestigious journal “Lancet” showed that 4.2 million people died prematurely
due to PMj 5 in 2015, with China accounting for about 1.1 million. China also had the
highest mortality rate of chronic obstructive pulmonary disease (COPD) due to ozone, with
254,000 deaths caused by exposure to ozone [18]. A report on the health effects of long-term
exposure to PM; 5 on residents of 31 provincial capital cities and municipalities across the
country showed that elevated PM; 5 mass concentrations can cause 257,000 non-accidental
deaths [19]. In 2015, the number of fatalities in Beijing—Tianjin—Hebei cities due to PM; 5
pollution was about 307,000, accounting for 28.6% of the total deaths [20]. It was found
that for every 10 pg/m? increase in PM, 5 concentration, the risk of circulatory disease
emergencies increased by 0.99%. The combined effect of O3 and PM; 5 would result in
a 0.15% increase in the number of same-day outpatient visits for childhood respiratory
illnesses [21,22].

Xinjiang is the core region of the Silk Road Economic Belt, which has importance to the
economic construction of the “Belt and Road” programme [23]. The unique geographical
conditions of the southern border cause the atmosphere have different pollution charac-
teristics and sources as well as different spatial structures and time changes [24]. In the
hinterland of southern Xinjiang lies is the Taklamakan Desert, which is greatly affected
by sand and dust. In the southern fringe of the desert and in the Hotan region, sand and
dust storms are frequent in spring and summer [25-27]. Due to the unique characteris-
tics of Xinjiang’s geographic conditions, atmospheric pollution characteristics, residents’
lifestyles, heating methods, and other reasons [28], the atmospheric environment has been
damaged to a certain extent, directly or indirectly affecting Xinjiang’s development and its
residents’ physical and mental health [29,30]. The region is less well-studied in terms of
the characteristics of the spatial and temporal distribution of atmospheric PM; 5 and Os
concentrations in relation to typical precursors and particulate matter [31,32]. Therefore,
this paper analyses and discusses five major aspects of the four air pollutants” high-value
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areas and change characteristics, spatial autocorrelation, influencing factors, correlation
between pollutants in the warm period, and impacts caused by air pollutants on human
health in southern Xinjiang from 2018 to 2021 with a view towards providing a reference for
future multi-pollutant synergistic studies, air pollution management, and the development
of pollution control measures.

2. Overview of the Study Area

As shown in Figure 1, South Xinjiang is located in northwestern China. It lies south of
the Tianshan Mountains and north of the Kunlun Mountains, roughly between latitudes
36° and 42° north and longitudes 73° and 86° east. In this paper, southern Xinjiang is
divided into five regions according to administrative divisions: the Kizilsu Kirgiz, the
Kashgar, the Aksu, the Hotan, and the Bayin’guoleng Mongol Autonomous Prefecture.
The southern Xinjiang region has a typical temperate continental climate and the arid belt
climate of Central Asia. Winters are long and cold, and summers are hot and dry. The
average annual precipitation is lower than 50 mm, with abundant sunshine and large
temperature differences. Southern Xinjiang accounts for 70% of the region’s forest and fruit
cultivation. The Tarim Basin is China’s largest inland basin, occupying about 530,000 square
kilometres. Its central part, the Taklamakan Desert, is the second-largest mobile desert
in the world. This desert is also surrounded by oases such as the Tarim Oasis, the Celle
Oasis (about 5333.3 km?), and the Andir Oasis (about 1187.3 km?), which are important
ecosystems of irreplaceable significance to the local ecosystems and the lives of people [33].
The region is rich in coal and non-ferrous metals. The exploitation of mineral resources, the
burning of coal and the full-scale promotion of new industrialisation have led to the destruc-
tion of the atmospheric environment while posing a serious threat to human health and
the ecosystem.
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Figure 1. Overview of the southern Xinjiang research area superimposed by a digital elevation model.

3. Data Sources

The daily ozone tropospheric column concentration data, formaldehyde tropospheric
column concentration data, and nitrogen dioxide tropospheric column concentration data
used in this study were all obtained from the OMI (0zone monitoring instrument) on board
the EOS-Aura satellite launched by NASA in the United States. The correlation between
OMI satellite data and ground data has reached more than 0.82 [34,35]. The detector has a



Atmosphere 2023, 14, 1681

4 0f 23

spatial resolution of 0.25° x 0.25°, a trajectory altitude of 705 km, and a wavelength range
between 270 and 500 nm [36].

The PM; 5 data are derived from the PM; 5 dataset in the China High-Resolution
High-Quality Near-Surface Air Pollutants (China High Air Pollutants, CHAP) dataset.
The dataset uses artificial intelligence techniques to fill in the spatially missing values
of the satellite MODIS MAIAC AOD product using modeled information. It combines
ground-based observations, atmospheric reanalyses, and emission inventories with big
data to obtain seamless national near-surface PM; 5 data for the period from 2000 to 2021.
The main scope is the entire region of China with a spatial resolution of 1 km and units
of ng/m3.

Ground station O3 and PM; 5 data were provided by the National Urban Air Qual-
ity Real-Time Distribution Platform from the China Environmental Testing General Sta-
tion, which is used to analyze the assessment of the health benefits of air pollutants on
human beings.

Meteorological data were obtained from a dataset jointly provided by the National
Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric
Research (NCAR) from the United States of America, which contains data from 1948 to
the present.

4. Research Methodology and Data Processing

After obtaining the remote sensing data of daily ozone, formaldehyde, and nitrogen
dioxide column concentrations in the study area from 2018-2021 and obtaining the data
stored in the HDFEOS strip (swath) data format, the data were batch processed using
VISANS and python programs. First, Python software was used to extract the latitude,
longitude, pollutant column concentration, and cloudiness data; then, anomalies were
excluded, and neighboring strip data were merged. PM; 5 data were stored in the NC data
format and were then converted to TIF in ArcGIS. Data files were formatted in ArcGIS.
All pollutant data were re-sampled in ArcGIS and then converted into a format. Kriging
spatial interpolation, averaging, and mask extraction were completed in order to obtain the
spatial distribution map of pollutant concentration data in the southern Xinjiang region
with an accuracy of 0.01 image elements.

4.1. Spatial Autocorrelation Analysis

Moran’s index is a classical method for calculating spatial autocorrelation [37] which
is generally divided into two types: global spatial autocorrelation and local spatial au-
tocorrelation [38]. The function of the global Moran’s I value is to describe the overall
distributional aggregation of a phenomenon, and the formula for the global Moran’s I is as
follows:

. nyi g L Wij(xi — %) (xj — )
Ty Dy Wy (i — )

n represents the total number of samples, x; is the observation of the variable at spatial
unit i, and Wj; is the spatial neighbourhood weight matrix with ¥ as its average. The
Moran’s I index has a range of values between [—1, 1], with less than 0 indicating a negative
correlation (a more spatially dispersed distribution). A value greater than 0 indicates a
positive correlation (more aggregated spatial distribution). Equal to 0 indicates that the
spatial object units are randomly distributed and spatially uncorrelated [39,40].

The local type Moran’s 1 is a spatial autocorrelation test statistic used to identify the
location of spatial clusters and spatial outliers, and it is calculated as follows:

(i #J) 1)

I = ()
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4.2. Geo-Temporally Weighted Regression Model (GTWR)

The geographically and temporally weighted regression (GTWR) model used in this
paper was composed by Huang et al. [41] based on the spatial geographic weighted
regression model and incorporates temporal characteristics into the model. It can com-
prehensively reflect the effects of the spatial location characteristics and temporal factors
of the model. The GTWR model is a local linear regression model that takes into account
spatio-temporal non-stationarity and represents a series of observations (Y1, Y, ..., Y;) at
the spatial location of (u;, v;) with the expression:

P

y=Bo(upvi,ti) + Y Bluj, v t)xp+e i=1,23...,n 3)
k=1

wherei=1,2, ...,k Y; denotes the predicted concentration of each pollutant in the study
area; By denotes the intercept, B; . are the regression coefficients of the sample points
(ui, v;, t;), and ¢; denotes the residuals of the sample points (u;, v;, t;). The final simulated
values of the final model were plotted using the spline function method [42,43].

4.3. Pearson Correlation Analysis

In analyzing the spatial relationship between ozone, formaldehyde, and nitrogen diox-
ide concentrations and their relationship with natural factors (precipitation, temperature,
and NDVI), this paper adopts Pearson correlation analysis. The correlation coefficient »
reflects the positive or negative correlation between the variables and the strength of the
correlation [44].

Lital(xi —%)(yi —7)]

xy =
Vi (s~ TP (- )

where: x and y represent two variables, ryy is the correlation coefficient between the x and y
variables, and i is the year number.

(4)

4.4. Spearman Correlation Analysis

In many studies, many data, whether natural factors, social factors, or pollutant
concentrations, show non-linear trends. However, Spearman’s correlation can reflect the
correlation between the trends of two non-linear elements. It is not necessary to ask
whether the two elements are linear or not or whether they satisfy a normal distribution.
Meanwhile spearman performs well in air pollutant correlation studies [45], so this paper
uses spearman correlation to test the correlation of pollutant data. The calculation formula
is as follows:

_ 6y d
rs=1- n(n2-1) ®)

di = rg(X;) —rg(Y;) 6)

where 7 is the number of data and d; is the difference between two data orders.

4.5. Ben MAP-CE Model

The environmental benefit assessment model (BenMAP) is a geographic information
system (GIS)-based model that estimates the health benefits associated with changes in air
quality by creating population exposure surfaces in order to estimate changes in a range of
health outcomes associated with air pollution [46]. BenMAP analyses the health effects of
air pollution using a health impact function (HIF), which is shown below:

AY = Yo(l - e*ﬂAX) x Pop @)

where AY is the estimated health effect of the change in pollutant concentration, Yy is the
baseline incidence of health endpoints (i.e., mortality or morbidity), Pop is the population
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affected by the change in air quality, AX is the change in air quality, and f is the coefficient
of the relationship between the pollution concentration and the health effect (i.e., the
coefficient of the exposure-response relationship) [47].

5. Results and Discussion
5.1. Characteristics of the Spatial Distribution of Multiple Pollutants

This paper processes and analyses O3, NO,, and HCHO column concentration data
in the troposphere at 10-12 km altitudes and PM; 5 concentration data at 1 km near the
ground level in the South Xinjiang region for 2018-2021. The overall spatial distribution
of the four-year annual mean values for the four pollutants was derived (Figure 2). Each
indicator in the study area was classified into one of five classes according to the range of
concentration values, from low to high values (blue to red bands), in order from the first to
the fifth class.
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Figure 2. Spatial distribution of mean tropospheric O3, tropospheric NO,, and tropospheric HCHO
column concentrations and near-surface 1 km mean PM, 5 concentrations at the southern border from
2018 to 2021.

As can be seen in Figure 2, the overall ozone concentration values show a decreasing
distribution pattern from the southeast to the west and south of the country, with rela-
tively low concentration values in the south of southern Xinjiang. Concentration values
are at a high level overall, with high-value areas accounting for 62.8% of the southern
Xinjiang area. They are mainly located in the eastern part of Kashgar, the southern part
of Aksu, the northern part of Hotan, and the central part of the Bayin’guoleng Mongol
Autonomous Prefecture.
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The overall spatial distribution of the HCHO tropospheric column concentration is
opposite to that of the ozone tropospheric column concentration. Its distribution is lower
in the centre and increases step by step from the central desert area to the outside. The area
with concentration values in the range of 8.5~11.5 x 10'® molec/cm? accounted for 65.8% of
the study area. The high-value areas were distributed in the southern part of the Hotan area,
the southern part of the Bayin’guoleng Mongol Autonomous Prefecture, and the northern
region of southern Xinjiang. Since isoprene emitted by plants is the main component of
VOCs, the contribution to the HCHO concentration was particularly prominent. Vegetation
cover was significantly and positively correlated with HCHO concentrations [48], so the
HCHO concentration values were higher in the northern part of southern Xinjiang than in
the central and southern regions.

The distribution pattern of NO; tropospheric column concentrations shows a clear
characteristic of latitudinal variation. Concentration values increased with increasing
latitude, and the high-value areas were mainly distributed in the northeastern part of
southern Xinjiang. The southeastern part of the Hotan area and the southern part of the
Bayin’guoleng Mongol Autonomous Prefecture have lower concentration values, floating
between 0.55~0.82 x 10 molec/cm?, which account for 33% of the area of southern
Xinjiang. During China’s 13th Five-Year Plan economic policy development period, the
centre of gravity of pollution in the cities of southern Xinjiang has continuously shifted from
the northern part of the Hotan region to the Aksu region in the north-west direction [23].
Therefore, the area with high NO; concentration is concentrated in the northern part of
southern Xinjiang.

The PM; 5 concentration values as a whole show regular decreasing distribution
characteristics. The high values are mainly concentrated in the central part of Hotan. Low-
value areas are distributed at the border of the southern Xinjiang region and other regions.
The hinterland of southern Xinjiang is the Tarim Basin, which contains the Taklamakan
Desert, with high temperatures and little rainfall all year round. Sand and dust pollution
is the main force of air pollution in southern Xinjiang, and the contribution of desert dust
to PM, 5 is quite obvious. Due to the special geographical conditions, pollutants are very
difficult to spread. The prolonged wandering and accumulation in the basin results in
higher PM, 5 concentrations here than in other areas.

5.2. Characteristics of Monthly Variations in Multi-Pollutant Concentrations

In order to analyse the characteristics of monthly changes in pollutants in the southern
border area, monthly average concentration level stacking charts and monthly average
time change line charts of four pollutants were made.

5.2.1. Characteristics of Monthly Changes in Tropospheric Ozone Column Concentrations

Figure 3 shows the monthly average rank stacking and time variation of ozone over
four years with the monthly average stacking divided into five classes (Class 1: 17~26 DU,
Class 2: 26~35 DU, Class 3: 35~44 DU, Class 4: 44~53 DU, and Class 5: 53~62 DU). As
shown in the figure, the tropospheric ozone column concentration in the southern Xinjiang
region shows a unimodal cyclic pattern of change. The obvious high value area from April
to September is the warm period. During the warm period, the 0zone column concentration
peaked (47.43 DU), and the maximum value rose by 4.089 DU in the month. Fitting the
mean values of all the months, a fitted line was obtained, and the slope of the fit was
—0.0189. This indicates a slight downward trend in ozone concentrations. The four-year
concentration maximum and minimum values appeared in June 2019 and February 2021,
with concentration values of 65.36 DU and 15.43 DU, respectively.
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Figure 3. Month-by-month temporal variation of tropospheric ozone column concentration (a) and
the spatial distribution share of monthly average column concentration classes in the southern border
in 2018-2021 (b).

5.2.2. Characteristics of Monthly Changes in Tropospheric Formaldehyde
Column Concentrations

As shown in Figure 4, the HCHO concentration values in the southern Xinjiang region
were comparable to those in the Yangtze River Delta region [49]. The stacked graph of the
four-year monthly average HCHO column concentrations was classified into five classes
(Class 1: 6.8 x 10'°~8.9 x 10'® molec/cm?, Class 2: 8.9 x 10°~11 x 10'® molec/cm?, Class
3: 11 x 10°~13.1 x 10" molec/cm?, Class 4: 13.1 x 10"°~15.2 x 10'> molec/cm?, and
Class 5: 15.2 x 10°~17.3 x 10'® molec/cm?). In the stacking diagram, the monthly
average concentration values showed a significant decreasing trend in March (decreas-
ing rate of 14.36%) with a slight increase in June, but they were overall mainly in Class
1-2 in the following six months (accounting for 48.78~85.47% of the overall area).The
highest value occurred in February with 12.2 x 10> molec/cm? and the lowest in April
with 9.6 x 10'® molec/cm?. The difference between the maximum and minimum val-
ues was 4.28 x 10" molec/cm? over the four years. Fitting the mean values for all
of the months revealed a slow decreasing trend, with the slope of the fitted line being
—0.0086 with slow downward trend. The mean values of the tropospheric HCHO column
concentrations over the monthly time variations were 10.97 x 10'®> molec/cm? up and
down. Overall, monthly average HCHO concentration values showed a double-trough
pattern of change, reaching the size of the trough in April and September, with a range
of 0.195 x 10'°~0.735 x 10'> molec/cm?.
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Figure 4. Month-by-month temporal variation of tropospheric HCHO column concentration (a) and
the share of spatial distribution of monthly mean column concentration classes in the troposphere of
the southern border in 2018-2021 (b).
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5.2.3. Characteristics of Monthly Variations in Column Concentrations of Nitrogen Dioxide
in the Troposphere

Figure 5 shows the four-year monthly average rank pile-up and time variation of nitrogen
dioxide, which was classified into five levels (Level 1: 0.37 x 10°~0.81 x 10 molec/cm?, Level
2: 0.81 x 10'°~1.25 x 10 molec/cm?, Level 3: 1.25 x 10°~1.69 x 10" molec/cm?, Level
4:1.69 x 10'°~2.13 x 10'® molec/cm?, and Level 5: 2.13 x 10°~2.57 x 10 molec/cm?).
According to the monthly average stacking map, the overall nitrogen dioxide concentra-
tion was low without obvious extreme pollution, dominated by Levels 1 and 2, which
accounted for 69.36~97.74% of the total area. The monthly mean concentration value was
highest in July at 1.14 x 10> molec/cm? and lowest in February at 0.74 x 10'®> molec/cm?.
In the month-by-month time-varying graph, the overall trend showed a double-peak
pattern, with a maximum peak in July and a smaller peak in November, with a maximum-—
minimum difference of 0.23 x 10'® molec/cm?. Fitting the monthly average concentration
values reveals that the nitrogen dioxide concentration values have slowly increased in
recent years.
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Figure 5. Month-by-month temporal variation of tropospheric NO; column concentration (a) and
spatial distribution share of monthly mean column concentration classes in the southern border in
2018-2021 (b).

5.2.4. Characteristics of Monthly Changes in PM; 5 Concentrations

The four-year monthly average rank stacking map and time variation of PM; 5 are
shown in Figure 6, which divides the monthly average stacking map into five classes (Class
1: 10~48 ug/m?, Class 2: 48~86 ug/m?, Class 3: 86~124 ng/m?3, Class 4: 124~162 ug/m?,
and Class 5: 162~200 ng/ m3). From Figure 6, it can be seen that the PM; 5 concentration
was significantly higher in March-May than in other months, with Class 3-5 accounting for
40.3~51.5% of the overall area. Dusty weather is active from March to August, with May
to August being the most severe period. The average number of dusty days per month is
nearly 15, exceeding the annual average by 30%. March is the month when the maximum
PM, 5 concentration is more concentrated. The maximum and minimum difference is
45.37 pg/m3. The monthly time changes show that in 2018 and 2020, there is a double-peak
trend, with more significant peaks in March and April and smaller peaks in September.
Concentration values fluctuated significantly in 2019 and 2021, with a maximum difference
of 60.08 g/ m3 between peaks. The overall trend of concentration values during the study
period was slowly decreasing, with a fitted slope of —0.2569.
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Figure 6. Month-by-month temporal variation of near-surface 1 km PM;5 concentrations (a)
and spatial distribution share of monthly average concentration classes in the southern border,
2018-2021 (b).

5.3. Spatial Autocorrelation Characteristics of Multiple Pollutants

The global spatial autocorrelation characteristics of O3, NO,, HCHO, and PMj, 5 con-
centrations in the southern Xinjiang region from 2018 to 2021 were analyzed using ArcGIS
spatial statistical tools based on Moran’s I index. The spatial relationship conceptualization
was adopted as INVERSE_DISTANCE to test whether there is any aggregation of the
concentrations of each pollutant in the southern Xinjiang region.

In this subsection, spatial autocorrelation and local autocorrelation were studied for
each of the four pollutants, and Moran’s I index reflects whether there is spatial correlation
for the four pollutants as well as the positive and negative correlation. The Z value is the
standard deviation multiplier, which is used to reflect the degree of dispersion of the distri-
bution of pollutant concentration values, and it shows an aggregated distribution when
Z > 1.65. In the local autocorrelation, H-H clusters represent areas of high concentration and
high values in the surrounding area, while L-L clusters represent areas of low concentration
both in the region and in the surrounding area.

The analysis of the spatial autocorrelation of the concentration of each pollutant during
the four years found that the p-values generated by the four pollutants were less than the
significant level of 0.01, with a confidence level of 99%; in Table 1, the Z scores exceeded
the critical value of 2.58, and the values of each pollutant’s I-value were all greater than
0.5, indicating that the distribution of each pollutant’s spatial concentration in the southern
border region presents a significant agglomeration effect. Changes in Z scores and I values
indicate that there is some volatility in the magnitude of spatial agglomeration. From the
I value and Z score of each pollutant across four years, O3 and NO, aggregation both
showed a slow increasing trend, with an average annual increase of 0.068% and 0.134%,
respectively. HCHO continues to decline after a small rebound in 2019. The average annual
decline is 0.034%. PM, 5 changes inversely with HCHO aggregation. It shows an upward
trend after a small decrease in 2019, with an average annual increase of 0.068%. From the
above, it can be seen that the aggregation of O3, NO,, and PM; 5 shows an upward trend
in the region. This indicates that the spatial aggregation effect is increasing year by year,
and there is a small decrease in the level of air quality. The decrease in the aggregation of
HCHO also reflects that the vegetation in the southern border area has been damaged to a
certain extent, and the ecological quality of the vegetation has declined.

Since there are no significant fluctuations in the I value and Z score of each pollutant
in four years, the annual average values of 2018-2021 are used to analyze the local spa-
tial autocorrelation of the concentration of each pollutant. Figure 7 shows that the L-L
concentration of the four-year annual mean Oj concentration in the southern Xinjiang
region mainly occurs in the southern part of the southern Xinjiang region, while the H-H
concentration mainly occurs in the northeastern part of the Hotan region, the southeastern
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part of the Aksu region, and the central part of the Bayin’guoleng Mongol Autonomous
Prefecture, which shows a spatial positive correlation characteristic with significant spatial
dependence; the H-H concentration also exists in a small part of the northeastern area of
the Kashgar region. The spatial dependence of annual mean HCHO concentrations was
significantly positively correlated in the area bordering the northern part of the southern
border with the southern part of northern Xinjiang, the southern part of Hotan, and the
southern part of the Bayin’guoleng Mongol Autonomous Prefecture. The L-L concentration
area overlaps with the H-H concentration area of O3 located in southern Xinjiang’s central
area. The L-L concentration of the annual mean concentration of NO, mainly occurs in
the southeastern region of the southern border since the industrial zones are concentrated
in the northern part of the Aksu and Yuliu counties—the northern region—while H-H
aggregation occurs in the northern region of southern Xinjiang. The H-H aggregation of
annual mean PM; 5 concentration occurs in the hinterland region of southern Xinjiang, i.e.,
near the Tarim Basin. Wind, as one of the main driving forces of air pollution, may be due
to the formation of a cyclonic flow field in the basin as a result of the topography, which
creates a “stagnation zone” within the southern hinterland [50]. The L-L agglomeration
area is located around the border in southern Xinjiang.

Table 1. Moran’s I values and Z scores for year-by-year and four-year average concentrations of four
pollutants, 2018-2021.

0; NO, HCHO PMy5
Time I 4 I V4 I 4 I V4
2018 0.975 140.966 0.993 143.292 0.987 142.708 0.984 142.266
2019 0.976 141.026 0.994 143.549 0.988 142.740 0.983 142.113
2020 0.976 141.079 0.995 143.594 0.987 142.702 0.985 142.392
2021 0.977 141.207 0.997 143.986 0.986 142.265 0.986 142.629
4 year average 0.976 141.067 0.995 143.614 0.987 142.432 0.985 142.416
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Figure 7. Localized spatial autocorrelation of four pollutant concentrations in the southern border
region, 2018-2021.
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5.4. Analysis of Influencing Factors Based on the GTWR Model

Geographical and temporal weighted regression (GTWR) can effectively solve the
issue of spatial and temporal non-stationarity of spatial data [51,52], which can take into
account the effects of time and location. In this paper, the five influencing factors and the
four-year month-by-month average concentration values of each pollutant were selected.
The GTWR model was used to test the spatio-temporal heterogeneity between the two (data
were not de-seasonalised). At the same time, there is a multilinear regression relationship
between the pollutants and the influencing factors. In this paper, the selected data have
been standardised in order to remove the effect of multicollinearity on the analysis results.
In most studies, people mainly choose temperature, precipitable water, and air pressure
to analyse the influence of natural factors on air pollutants. Since the hinterland area of
southern Xinjiang is the Taklamakan Desert, and the regional boundaries of the distribution
of vegetation cover are more obvious, this paper adds the influence of NDVI on the
four pollutants.

In this paper, PER (precipitable water, the total amount of water vapour contained in
the atmospheric column per unit area), TEM (temperature), PS (atmospheric pressure), RH
(relative humidity), and NDVI (normalized vegetation index) were selected to analyze the
regression coefficients of influencing factors with the four pollutants, respectively.

As can be seen from Table 2, the R? of each indicator in the GTWR model for 2018-2021
is more significant than 0.6, with a good fit. As can be seen from the analysis in Table 2
and Figure 8, air temperature, precipitable water, and relative humidity were positively
correlated with O3. Air temperature has the strongest positive correlation, with a mean
regression coefficient of 0.835. The negative correlation between atmospheric pressure
and Og is high. The regression coefficient reached —0.89. In the northeastern part of the
Aksu region, the central-eastern part of the Hotan region, and the southwestern part of the
Bayin’guoleng Mongol Autonomous Prefecture, the precipitable amount of precipitation
showed a strong positive correlation with ozone. The correlation coefficients ranged from
0.49 to 1.77. As the mid-latitude westerly wind belt controls the southern Xinjiang region,
its geographical latitude, topographic height, and atmospheric circulation result in higher
atmospheric precipitable water in the basin area. When the Central Asian low vortex occurs,
the atmospheric precipitable water in the Tarim Basin is higher than in the areas distributed
along the mountain ranges [53,54]. The areas of positive temperature and ozone correlation
are located in the westernmost and southernmost parts of southern Xinjiang. The ozone
concentration values in this region are low. As the region is located at the southern edge of
the Tarim Basin, it is a special topography surrounded by mountains on three sides and
open to the east. The resultant centres of low-temperature values are also mainly located
in the southern part of southern Xinjiang [23]. Atmospheric pressure was predominantly
negatively correlated with ozone in southern Xinjiang’s northwestern and eastern parts. It
has a greater impact on the easternmost part of the Bayin’guoleng Mongol Autonomous
Prefecture, with correlation coefficients fluctuating from 3.04 to 5.85.

There is a significant correlation between airborne NOx content and the duration of
presence and temperature [48]. All five influencing factors showed predominantly positive
correlations with NO, concentrations. Among them, atmospheric pressure has a stronger
influence, followed by air temperature. The positively correlated areas accounted for
58.17% and 85.22% of the overall area, respectively. In the southwestern and northeast-
ern parts of southern Xinjiang, the correlation coefficients between atmospheric pressure
and NO, concentration were as high as 5.92-10.62. The area of the positive correlation
region gradually decreased towards the central part of southern Xinjiang. Temperature
has a greater effect on NO; concentrations in the northern and southwestern parts of
southern Xinjiang.
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Table 2. Regression coefficients and R? of pollutants and influencing factors in geographic and

temporal weighted regression models, 2018-2021.

Variables R? Min. Max. Average Standard Deviation
O;-PER —2.654 3.056 0.457 0.62
O3-TEM -9.2 8.445 0.835 1.63
03-PS 0.860 —11.737 6.966 —0.89 1.81
O;3-RH —2.275 2.882 0.154 0.62
O3-NDVI —2.962 2.449 —0.036 0.38
NO,-PER —1.83 2.84 0.141 0.53
NO,-TEM —3.669 6.679 0.54 1.06
NO,-PS 0.856 —5.837 14.279 0.691 1.96
NO,-RH —2.611 2.855 0.182 0.57
NO,-NDVI —3.213 3.931 0.29 0.45
HCHO-PER —3.062 4.165 —0.149 1.04
HCHO-TEM —74 7.777 —0.631 1.74
HCHO-PS 0.638 —6.323 21.6 1.34 3.37
HCHO-RH —2.764 4514 0.241 0.75
HCHO-NDVI -39 7.322 0.305 0.61
PM,; 5-PER —4.595 3.9 0.19 1.05
PM, 5-TEM —7.576 7.904 —0.01 1.96
PM, 5-PS 0.678 —28.889 12.353 —0.626 475
PM,5-RH —4.994 3.404 0.009 0.77
PM, 5-NDVI —5.22 5.935 —0.422 0.86
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Figure 8. Spatial distribution of the regression coefficients of geographic and temporal weighted

regression for four pollutant impact factors, 2018-2021.
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The influences with strong correlation with HCHO were temperature, atmospheric
pressure, and NDVI. Their correlation coefficients were —0.631, 1.34, and 0.305, respectively.
The area of negative correlation between temperature and HCHO concentration accounts
for 98.94% of the overall area. The northern and southwestern regions of the southern
Xinjiang had a greater effect of temperature on HCHO concentration. The temperature in
southern Xinjiang is high compared to northern Xinjiang. The Taklamakan Desert is located
in the hinterland of southern Xinjiang, with high temperatures and little rainfall all year
round. Excessively high temperatures lead to reduced mycorrhizal activity in the roots
of vegetation, closure of stomatal channels, and inhibition of isoprene production, thus
shortening the survival time of HCHO [49]. Atmospheric pressure has a strong positive
correlation with HCHO in the northern part of southern Xinjiang. The strongest correlations
between NDVI and HCHO concentrations were found in the northwestern and eastern
parts of the Kizilsu Kirgiz Autonomous Prefecture and the southeastern part of the Hotan
region. The Hotan region has a high forest cover of 6.8% and a grass cover of 30.3%. This
indicates that the region is under conditions favourable for formaldehyde release all year
round, so the positive correlation is strong [49].

The factors that were more strongly correlated with PM, 5 were atmospheric pressure
and NDVI, and both were negatively correlated. Atmospheric pressure has a stronger
negative correlation compared to NDVI. It is distributed in the southwestern and south-
eastern parts of the study area, accounting for 79.48% of the overall area. The area of
negative correlation between NDVI and PM; 5 is mainly distributed in the southern
and northwestern parts of southern Xinjiang, with correlation coefficients ranging from
—1.19 to —0.12. Although vegetation’s blocking and absorbing effect has a positive im-
pact on the removal of atmospheric particulate matter PM; 5, the retention of too much
atmospheric particulate matter can have a negative effect on plant growth [55].

5.5. Warm Period Multi-Pollutant Correlation Analyses

Many studies have looked more at the relationship between pollutants and natural
and social factors, and fewer at the interactions between pollutants. Pollutant monitoring
in China divides atmospheric pollutants into six major pollutants that are monitored
individually. Although some of these pollutants are correlated (e.g., NO, and Ogz) there is
little research on this topic in the Chinese region. At the same time, the southern border
region has special geographical conditions and is more affected by sand and dust. The
interactions between pollutants and the magnitude of their contributions to each other are
different from those in other regions. Therefore, conducting two-by-two correlation studies
and partial correlation analyses of pollutants in multi-pollutant studies in this paper for
the southern Xinjiang region is necessary. In turn, the extent to which they are affected by
other pollutants is explored in a comparative manner.

From the above study, it can be determined that the ozone concentration values from
April to September (warm period) appear as a significantly high-value area throughout the
year. As ozone precursors, the contribution of NO, and HCHO to ozone should be explored
separately for this period. There are small peaks in PMj; 5 concentration changes during
the warm period. Changes in the concentration of dust particles in the desert can impact
vegetation, which in turn alters the production of HCHO and Og3. Therefore, this paper
also explores the impact and relevance of changes in the concentration of dust particulate
matter (represented by PM;5) on other air pollutants. In order to provide a reference
for inter-pollutant correlation studies and atmospheric management in the more severe
dusty areas.

5.5.1. Interrelationships between Pollutants in the Southern Border Region

The monthly mean concentration values of Oz, NO,, HCHO, and PM; 5 from April
to September 2018-2021 (warm period) were tested for normal distribution among each
other. Pearson’s correlation analysis was conducted among the concentration values that
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satisfied the normal distribution. Spearman’s correlation analysis was carried out among
the concentration values that did not satisfy the normal distribution.

Figure 9 shows the spatial distribution of Pearson correlation between pollutants,
and the results show that 99.8% of the area between O3 and NO; is positively correlated.
The mean value of the correlation coefficient is 0.746. Negative correlation areas are
distributed in the north and southwest of southern Xinjiang. Industry (coal industry, etc.)
is mainly concentrated in the northern part of southern Xinjiang. The combustion of coal
produces large amounts of NO. NO is exposed to the air and then converted to NO,, which
accumulates in the air [48]. O3 showed positive correlation with HCHO. The mean value of
the correlation coefficient was 0.436, and the positive correlation area accounted for 98.7%
of the total study area. The negative correlation areas are concentrated in the northern
and central parts of the Bayin’guoleng Mongol Autonomous Prefecture. NO, and HCHO
are precursors of ozone. The mean value of the correlation coefficient between the two
was 0.431. Positive correlations were shown in the Kizilsu Kirgiz Autonomous Prefecture,
the Kashgar Region, the north-central part of the Hotan Region, and the western and
far-eastern parts of the Bayin’guoleng Mongol Autonomous Prefecture. The relationship
between ozone and the photochemical reaction concentrations of NOx and VOCs is not
a simple linear dependence but rather a nonlinear dependence [56], which affects the
photochemical production of ozone when the concentration ratio of NOx and VOCs is
relatively moderate [57,58]. From the above analyses, it can be seen that NO, contributes
more to O3 production than HCHO. Both complement each other and synergistically
influence the change in O3 concentration.
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Figure 9. Spatial distribution of Pearson correlations between O3 and NO,, O3 and HCHO, and NO,
and HCHO during warm periods, 2018-2021.

Figure 10 shows the spatial distribution of Spearman’s correlation among pollutants
and the areas where the correlation between O3 and PM; 5, NO, and PM; 5, and HCHO
and PMj; 5 passed the 95% confidence test, which accounted for 34.42%, 44.24%, and 31.67%,
respectively, of the total study area. The areas where the correlation between O3 and PM; 5
passed the confidence test were concentrated in the Kizilsu Kirgiz Autonomous Prefecture,
northern Kashgar, north-central Aksu, and northern Bayin’guoleng Mongol Autonomous
Prefecture, with a significant negative correlation and a correlation coefficient as high as
—0.7872. The areas where the correlation between NO, and PMj 5 passed the confidence test
are located in the eastern part of the Aksu region and east-central Bayin’guoleng Mongol
Autonomous Prefecture, with 99.97% of the areas having a high negative correlation and
a correlation coefficient as high as —0.5427. The correlation between HCHO and PMj; 5
is mainly negative. The positive correlation area only accounts for 10.22% of the tested
area, and the distribution is very scattered. The mean value of the correlation coefficient
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of the tested area is —0.4194. Hostile correlation areas are concentrated in the areas with
low values of HCHO concentration: the northeastern part of Kashgar, the southern part
of Aksu, the southern part of Hotan, and the central part of the Bayin’guoleng Mongol
Autonomous Prefecture. From the correlation analysis, it can be seen that O; is strongly
influenced by PM; 5, and PM; 5 contributes relatively little to the production of HCHO
and NO,.
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Figure 10. Spatial distribution of Spearman correlations between O3 and PM; 5, NO, and PM; 5,
HCHO and PM; 5 during the warm period, 2018-2021.

5.5.2. Partial Correlation between Multi-Pollutants in the Southern Border Region

From the above correlation analysis, it can be seen that Oj is strongly correlated
with NO, and HCHO, respectively, and NO; is strongly correlated with PM; 5. In order
to exclude the interference of other pollutants on their correlations, a partial correlation
analysis was carried out between the above pollutants, as shown in Figure 11. When
the influence of HCHO is excluded, the correlation coefficients between O3 and NO, are
between (—0.219~0.875). The correlation coefficient decreased by 0.2063 compared to that
in the Pearson correlation analysis. The positive correlation area accounted for 97.57% of
the study area, and the correlation was more pronounced in the eastern and south-central
regions of the Bayin’guoleng Mongol Autonomous Prefecture. Low negative correlations
were found in the southeastern Kizilsu Kirgiz Autonomous Prefecture and a small area of
the western part of the Kashgar region. When NO, is excluded, the correlation between O3
and HCHO changed from a moderate positive correlation to a low positive correlation. The
mean value of the correlation coefficient decreased by 0.3234. In the central region, where
ozone is higher, a low-to-moderate negative correlation dominates. Many coal enterprises
are concentrated in the southern Xinjiang region, emitting NOx and PM; 5. NOx affects
the concentration of O3 under certain conditions, so the effect of Oj is excluded in order
to explore the correlation between NO, and PM; 5. Among them, 85.04% of the regions
were negatively correlated. The central and eastern regions of the Bayin’guoleng Mongol
Autonomous Prefecture were moderately negatively correlated. The areas of positive
correlation are all low positive correlation and are more dispersed in distribution.

In summary, there is a stronger correlation between O3 and NO, compared to HCHO.
The correlation between O3 and HCHO is more affected by NO, in the southern part of the
Aksu region and the northern part of the Hotan region. The mean value of the correlation
coefficient between NO, and PM; 5 increased by 0.3765 after excluding the effect of O3. The
correlation changed from a medium-high negative correlation to a low negative correlation.
The southeastern part of the Hotan region is more affected by Oj3. It is concluded that when
O3 is affected by both HCHO and NO,, NO, interferes more with the correlation between
O3 and HCHO. At the same time, the various pollutants interact and reinforce each other.
One pollutant is transformed into a precursor of another pollutant under certain conditions,
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causing its concentration value in the atmosphere to fluctuate accordingly. This ultimately
leads to changes in air quality.
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Figure 11. Partial correlations between O3 and NO,, O3 and HCHO, and NO; and PM,; 5 with
exclusion of other pollutants for the warm period 2018-2021.

5.6. Assessment of Health Benefits from Pollutant Exposure

Air quality is inextricably linked to human health, and air pollution, especially PM, 5
and O3 pollution, has brought huge health impacts and economic losses to China. Therefore,
this paper selects the above two pollutants to evaluate their health benefits.

The pollutant data for the health effects assessment in this paper are taken from
pollutant ground station data based on data from the Xinjiang Regional Statistical Yearbook.
Only the health effects due to O3 and PM; 5 pollution are explored here for 2018-2020 in four
regions. This paper analyses the effects of three diseases on premature human mortality
aggregated across regional spatial scales. The health effects in different regions, shaped by
differences in the spatial distribution of pollutant concentrations and population sizes, are
explored. For each health assessment outcome, random sampling was performed from the
probability distribution of each exposure-response coefficient using the BenMap-CE model,
and then the incidence rate was calculated based on the selected values [59-61] and the air
quality standards [16,62] were used to calculate the incidence rates. The exposure-response
coefficients for each health endpoint in the above four regions are shown in Table 3. O3
and PM; 5 are more polluted in the Hotan and Aksu regions. This study also compared the
changing relationship between the two air pollutants and the number of premature deaths
in these two regions, as shown in Table 4.

Table 3. Range of exposure-response coefficients 3 for O3, PM; 5 exposure leading to all-cause
premature death, premature death from cardiovascular disease, and premature death from respiratory

disease.
Pollutant Health Impact Max-3 Mean-f3 Min-3
All-cause premature death 0.0035 0.0024 0.0013
O3 Premature death from cardiovascular disease 0.0044 0.0027 0.001
Premature death from respiratory disease 0.0097 0.0073 0.0049
All-cause premature death 0.00504 0.00296 0.000896
PM, 5 Premature death from cardiovascular disease 0.00093 0.00068 0.00053

Premature death from respiratory disease 0.00221 0.00109 0.00143
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Table 4. Rates of change in pollutant concentrations and premature deaths in the Hotan and Aksu
regions, 2018-2020.

Rate of Change of Rate of Change in Rate of Change in g::;z{ile‘?eg;}i\:
Pollutant Region Year Pollutant All-Cause Premature Premature Deaths from from Respirato
Concentration Values Deaths Cardiovascular Disease Di P Ty
1seases
H 2018-2019 +2.55% +4.24% +4.3% —0.276%
o ofan - 2019-2020 +9.85% +22.46% +25.83% +1.39%
3 Ak 2018-2019 —2.92% —7.14% —6.95% —10.52%
1 2019-2020 —4.04% +1.23% +3.99% —14.41%
H 2018-2019 —10.03% —20.79% —20.77% —23.86%
PM ofan - 2019-2020 +35.92% +76.8% +83.56% +47.76%
25 Ak 2018-2019 —24.68% —49.78% —50% —52.27%
su 2019-2020 +13.47% +95.61% +102.86% +66.67%
5.6.1. Health Benefits Assessment of Ozone Pollution
Table 5 shows the number of premature deaths from different diseases due to O3
pollution in the four regions in 2018-2020. The number of premature deaths showed an
overall decreasing trend year by year in the Kizilsu Kirgiz Autonomous Prefecture and the
Kashgar region. The number of premature deaths in the Aksu region showed a decreasing
trend in 2018-2019 and a slight increase in 2020. The number of premature deaths due to
all-cause premature deaths and cardiovascular diseases in the Hotan region has been on the
rise for three years. The number of premature deaths due to respiratory diseases showed a
decreasing and then an increasing trend. Overall, the number of premature deaths due to
O3 pollution was highest in the Kashgar region followed by the Aksu and Hotan regions.
The number of premature deaths from cardiovascular diseases was higher than that from
respiratory diseases.
Table 5. Range and mean value of the number of people whose health is affected under the O3
exposure scenario, 2018-2020 (10,000 people).
Year District All-Cause Premature Death Pren.lature Death.from Prema.ture Deat.h from
Cardiovascular Disease Respiratory Disease
Kizilsu Kirgiz 478 (267~677) 277 (107~433) 157 (112~197)
2018 Aksu 1484 (821~2117) 863 (330~1360) 504 (354~639)
Hotan 1038 (571~1492) 605 (229~963) 362 (251~466)
Kashgar 2810 (1557~4006) 1633 (627~2571) 949 (669~1203)
Kizilsu Kirgiz 392 (217~558) 228 (88~359) 126 (89~160)
2019 Aksu 1378 (761~1969) 803 (307~1270) 451 (316~575)
Hotan 1082 (595~1553) 631 (240~1004) 361 (251~464)
Kashgar 2685 (1486~3832) 1565 (599~2467) 874 (614~1109)
Kizilsu Kirgiz 334 (184~477) 200 (76~316) 92 (64~117)
2020 Aksu 1395 (770~1996) 835 (319~1323) 386 (270~494)
Hotan 1325 (732~1896) 794 (303~1256) 366 (256~467)
Kashgar 2437 (1346~3484) 1459 (557~2306) 672 (471~856)

In 2020 compared to 2018, the Kizilsu Kirgiz Autonomous Prefecture had the largest
decrease in premature deaths due to respiratory diseases, at 41.4%. The Aksu region showed
the smallest decline in the number of premature deaths from cardiovascular diseases, at
3.24%. Unlike the remaining three regions, the number of premature deaths from the three
diseases in Hotan is on the rise. As can be seen from Tables 4 and 5, the trends in the
number of premature deaths from the three diseases in 2018-2020 are basically consistent
with the trends in ozone concentration. This shows that there is a direct impact of ozone
pollution on human health.
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5.6.2. Health Benefits Assessment of PM, 5 Pollution

Table 6 shows the number of premature deaths from different diseases due to PM; 5
pollution in four regions in 2018-2020. The highest number of premature deaths in 2018
and 2019 was in Kashgar, followed by Hotan, Aksu, and the Kizilsu Kirgiz Autonomous
Prefecture. The number of premature deaths in 2020 was higher in Hotan than in Kashgar.
The lowest number of premature deaths in the Aksu, Hotan, and Kashgar regions occurred
in 2019. The number of premature deaths in the Kizilsu Kirgiz Autonomous Prefectures
shows a decreasing trend from year to year.

Table 6. Range and mean value of the number of people whose health was affected under the PM; 5
exposure scenario, 2018-2020 (10,000 people).

Premature Death from Premature Death from

Year District All-Cause Premature Death Cardiovascular Disease Respiratory Disease
Kizilsu Kirgiz 122 (0~257) 38 (11~64) 24 (14~33)
Aksu 227 (0~483) 70 (19~118) 44 (26~62)
2018 Hotan 914 (0~1900) 284 (80~477) 176 (105~242)
Kashgar 1300 (0~2720) 403 (112~677) 251 (149~346)
Kizilsu Kirgiz 101 (0~214) 31 (9~53) 19 (11~26)
Aksu 114 (0~245) 35 (10~60) 21 (13~30)
2013 Hotan 724 (0~1510) 225 (63~378) 134 (79~185)
Kashgar 888 (0~1880) 275 (77~465) 165 (98~229)
Kizilsu Kirgiz 90 (0~192) 29 (8~49) 14 (8~20)
2020 Aksu 223 (0~476) 71 (20~120) 35 (21~49)
Hotan 1280 (0~2630) 413 (116~690) 198 (119~270)
Kashgar 1230 (0~2580) 392 (109~660) 192 (113~265)

The unique atmospheric and geographic conditions of Hotan have resulted in overall
high levels of atmospheric particulate matter in the city [63], which has significantly
impacted the physical and mental health of residents in the Hotan region [64]. For the
Hotan area, which is more seriously polluted by PM; 5, all three years show a trend of first
decreasing and then increasing. As shown in Tables 4 and 6, the PM; 5 concentration in
the region decreased by 10.03%, and the number of premature deaths decreased by 20.79%.
The PM; 5 concentration showed an increasing trend, and the number of premature deaths
increased. As can be seen, the correlation between the two shows strong consistency. The
number of premature deaths due to cardiovascular diseases was highest in 2020 in Aksu.
The highest number of premature deaths due to all-cause premature deaths and premature
deaths due to respiratory diseases both occurred in 2018. In summary, it can be concluded
that the changes in O3 and PMj; 5 concentration values are significantly correlated with the
number of premature deaths in the Hotan and Aksu regions. Therefore, the region needs to
take measures to strengthen the synergistic management and control of atmospheric O3
and PM2_5.

6. Conclusions

It can be seen from the characteristics of the spatial and temporal distribution of
pollutants that the ozone column concentration in the southern border region shows a
distribution pattern of decreasing step by step from the central and eastern regions to
the west and south. The monthly variation shows a clear high-value area from April to
September, which is called the warm period. The overall spatial distribution of HCHO
column concentrations is characteristically opposite to that of ozone columns, with low
concentration values. The spatial distribution of NO, column concentration values increases
with increasing latitude. High values are concentrated in the northern part of southern
Xinjiang. The PM; 5 concentration values were higher in the hinterland area of the Tarim
Basin, and the concentration values from March to May were significantly higher than
those of other months, with the highest value being 88.57 pg/m?3.
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Spatial autocorrelation characterisation of pollutants based on Moran’s I index yielded
an overall slow increasing trend in the spatial aggregation of O3, NO;, and PM, 5, with
HCHO changing in the opposite direction to the above trend. This indicates a decrease in
air quality and vegetation quality. The H-H clustering regions of O3 and the L-L clustering
regions of HCHO overlap well and are located in the central part of southern Xinjiang.
A high concentration of NO; occurs in the northern part of southern Xinjiang. The H-H
concentration of the annual average PM, 5 concentration is located near the Tarim Basin,
where a “stagnation zone” is formed, probably due to the area’s topography.

The GTWR model examined the spatial and temporal heterogeneity of the relation-
ships between the influencing factors and pollutants. According to the mean values of the
correlation coefficients, temperature, precipitable water, and atmospheric pressure strongly
correlate with O3, and the first two are positively correlated. The influencing factors all
showed positive correlations with NO,. Atmospheric pressure showed the strongest corre-
lation with a coefficient of 0.691, followed by temperature. The strongest correlations with
HCHO are temperature, atmospheric pressure, and NDVI. The factors that have a greater
influence on PMj, 5 are atmospheric pressure and NDVI, which are all negatively correlated.

Correlation analyses between pollutants revealed stronger correlations between O3
and NO, compared to HCHO. At the same time, when O3 was affected by both HCHO and
NO,, NO; interfered more with the correlation between O3z and HCHO. As the hinterland
of southern Xinjiang is the Taklamakan Desert, desert dust has a significant impact on
air pollution in the whole study area. In this paper, PM, 5 was used as a representative
study, and it was found that the dust particles inhibited the three air pollutants, O3, NO,,
and HCHO, to varying degrees. Among them, O3 has the strongest inhibitory effect.
The correlation between dust particles and NO, changed from a medium-high negative
correlation to a low negative correlation after excluding the effect of O3. This indicates that
NO; concentration is less affected by dust particles.

In the health benefit assessment of BenMap-CE model, O3 concentrations exceeding
60 ug/ cm® and PM, 5 concentrations exceeding 75 ug/ m3 pose a threat to human health.
The highest number of premature deaths due to O3 pollution was found in the Kashgar
region, with a three-year annual average of 24.66 million all-cause premature deaths. The
number of premature deaths caused by the three diseases in Hotan has increased by
27.65%, 31.24%, and 1.1%, respectively. Under the influence of PM; 5 pollution, in 2020,
the number of all-cause premature deaths in the Hotan region rose by 3.66 million and
5.56 million, respectively, compared with the previous two years, and it is higher than about
500,000 people in the Kashgar region. The correlation between the level of dust particulate
matter (PM; 5) pollution and the number of premature deaths was significant in the Aksu
and Hotan regions. The number of premature deaths was higher for cardiovascular diseases
than for respiratory diseases. Therefore, it is suggested that synergistic treatment of O3
and PM; 5 dust particles can be carried out in the southern Xinjiang region to improve the
atmospheric environment and reduce the harm of pollutants to human beings.
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