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Abstract: Cloud and cloud shadow detection in remote sensing images is an important preprocessing
technique for quantitative analysis and large-scale mapping. To solve the problems of cloud and
cloud shadow detection based on Convolutional Neural Network models, such as rough edges
and insufficient overall accuracy, cloud and cloud shadow segmentation based on Swin-UNet was
studied in the wide field of view (WFV) images of GaoFen-1 (GF-1). The Swin Transformer blocks
help the model capture long-distance features and obtain deeper feature information in the network.
This study selects a public GF1_WHU cloud and cloud shadow detection dataset for preprocessing
and data optimization and conducts comparative experiments in different models. The results
show that the algorithm performs well on vegetation, water, buildings, barren and other types.
The average accuracy of cloud detection is 98.01%, the recall is 96.84% and the F1-score is 95.48%.
The corresponding results of cloud shadow detection are 84.64%, 83.12% and 97.55%. In general,
compared to U-Net, PSPNet and DeepLabV3+, this model performs better in cloud and cloud shadow
detection, with clearer detection boundaries and a higher accuracy in complex surface conditions.
This proves that Swin-UNet has great feature extraction capability in moderate and high-resolution
remote sensing images.

Keywords: GF-1; cloud and cloud shadow detection; Swin-UNet; Swin Transformer

1. Introduction

The rapid development of satellites has provided greater space for the application
and research of remote sensing technology. With its advantages of a wide range, a short
cycle and abundant information, remote sensing technology has become an important tool
in fields such as land use and change monitoring [1–5]. Moderate- and high-resolution
satellites like MODIS, Landsat, Sentinel and GaoFen have yielded substantial observational
datasets across diverse domains [6–9], encompassing surface information captured at
varying spatiotemporal resolutions. Owing to the influence of natural climate phenomena,
including atmospheric circulation, the Earth’s surface remains perpetually shrouded by a
substantial cloud cover throughout the year. Global cloud coverage data, as reported by the
International Satellite Cloud Climate Program (ISCCP), indicate that cloud coverage reaches
nearly 66% [10–12]. Seasonal variations in cloud coverage over land exhibit substantial
fluctuations, thereby imposing severe constraints on the observational capacity of optical
remote sensing satellites. High-resolution satellites, in particular, are notably affected by
this phenomenon, resulting in the omission of crucial geospatial data [13]. Abundant cloud
cover obstructs the transmission of visible light, while varying degrees of cloud shadows
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diminish the sensor’s capacity to capture surface information under well-lit conditions.
When obtaining land surface information through remote sensing methods, the distribution
of clouds and their shadows hinders the effective utilization of data [14]. These factors
impose constraints on the precise derivation of surface quantitative parameters and the
attainment of spatially continuous products. This has had a negative impact on the research
tasks of remote sensing images, especially in the fields of recognition and classification,
object detection and tracking. Also, it has caused a significant waste of resources [15].
Therefore, it is necessary to accurately detect clouds and cloud shadows in medium- to
high-resolution optical satellite images.

Currently, cloud and cloud shadow detection algorithms for remote sensing images
are usually divided into two categories based on the number of images used. They are
Single-date-based algorithms and Multi-date-based algorithms. Among them, the Single-
date-based approach has gained prominence due to its reduced demand for intricate input
data, making it a widely adopted and user-friendly detection technique. Since the 1980s,
the technology for detecting clouds and cloud shadows in single-scene images has been in
continuous evolution. Detection methods based on physical features of images often use
one or more of the spectral, texture and geometric features of the image. On the basis of the
single threshold method [16], Zhu et al. proposed the Fmask method [17], while Li et al.
proposed the MFC method [18]. Fisher introduced morphological feature extraction based
on spectral features [19]. The comprehensive application of multiple features has indeed
gradually improved the accuracy of cloud and cloud shadow detection. Nevertheless,
due to the influence of mixed pixels on the image, achieving high-precision recognition
of slender and fragmented clouds remains challenging with the threshold method. With
the advent of machine learning’s popularity, Kang et al. employed unsupervised cloud
detection through support vector machine (SVM) methodologies along with guided filtering
techniques [20]. Fu et al. attained a heightened detection accuracy and execution efficiency
by employing random forest (RF) technology [21]. Hughes and Hayes combined spectral
and spatial texture features to construct a neural network and tried to use it for cloud and
cloud shadow detection in Landsat [22]. Deep learning methods are renowned for their
intricate multi-layered neural network architecture and enhanced capacity for intricate
feature extraction. Deep learning models, exemplified by Convolutional Neural Networks
(CNNs) like VGG [23], AlexNet [24] and ResNet [25], have gained extensive adoption
in the classification of remote sensing imagery [26]. Wu et al., focusing on GF-1 WFV
imagery, acquired high-precision probability maps of clouds by amalgamating low-level
and high-level features extracted through CNNs [27]. On the basis of fully considering
the model structure, Yan et al. improved the detection performance by incorporating an
improved residual model and pyramid pool module [28]. However, even if people use
the improved methods of model fusion and module modification, the convolution-based
method still has the inherent limitation that it can only obtain the features of a small
range of neighborhoods. It is hard to capture global information and long-term feature
dependence. Consequently, accurately monitoring high- and moderate-resolution satellite
imagery, particularly thin and fragmented clouds against bright surfaces and shadows
in low-reflectivity backgrounds, becomes arduous. These challenges increase the risk of
losing critical edge details. Ultimately, it leads to a decrease in the accuracy of cloud and
cloud shadow detection.

In addition to the development and evolution of CNN-based models, Transformer
architecture models are also becoming increasingly mature. Transformer’s achievements in
natural language processing and computer vision tasks related to image classification have
received great praise [29,30]. It can utilize the advantages of structure to capture abundant
feature information, achieving advanced performance in segmentation tasks [31,32]. In
order to simultaneously obtain local- and global-scale feature information in the image,
this model innovates a hierarchical window mechanism. Furthermore, it enhances the
model’s processing efficiency through the application of the shifted-windows technique.
Simultaneously, under the influence of traditional CNN-based models, Cao et al. enhanced
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the U-Net model, introducing an entirely Transformer-based architecture known as Swin-
UNet [33].

It can be seen that in the semantic segmentation of remote sensing images, any irreg-
ular and unclear spectral feature target recognition is challenging. Therefore, the main
motivation of each cloud and cloud shadow detection method is to effectively optimize
the model structure and refine feature thresholds during the algorithm iteration. The
Swin-UNet in this study compensates for the inability of the original CNN to capture
long-distance features by adding Swin Transformer blocks, while preserving the original
compact structure. It can better extract the local and global semantic features of large-scale
complex features in high-resolution and medium-resolution images and demonstrates
better performance [34]. Especially when facing high-resolution images with complex
features, this model has been proven to be a great choice for detection tasks in different
kinds of target recognition.

This paper introduces a methodology for cloud and cloud shadow detection using
the Swin-UNet model, tailored for four-channel GF-1 WFV multi-spectral remote sensing
imagery. Specifically, this study contrasts the detection outcomes of various models by
employing preprocessing, data filtering and enhancement techniques and manipulating
sample proportions. This study evaluates the feasibility of using the Swin-UNet model to
detect clouds and cloud shadows in GF-1 WFV data through various parameter indicators.
Additionally, the accuracy and robustness of this model in remote sensing image recog-
nition and segmentation tasks are also the focus of our analysis. This endeavor aimed to
address challenges like inadequate precision in cloud and cloud shadow detection and com-
plexities related to boundary segmentation within moderate- and high-resolution imagery.
This novel research field attempts to effectively combine machine learning and swarm
intelligence methods [35,36] and has been proven to achieve outstanding results in different
fields. In conclusion, a summary and outlook were made on the existing problems.

Section 2 introduces the materials and methods. Section 3 presents the experimental
results. The discussion and conclusions are given in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Datasets and Preprocessing

This study selected GF-1 WFV multi-spectral images, specifically using the publicly
available GF1_WHU cloud and cloud shadow detection dataset [18] for related research. As
the first major satellite of the civilian High-Definition Earth Observation Satellite (HDEOS)
program, the GF-1 satellite was successfully launched by the Long March 2 carrier rocket
in 2013. There are four WFV cameras installed on GF-1, capable of capturing multispectral
images at a spatial resolution of 16 m. It comprises four spectral bands: blue (0.45–0.52 µm),
green (0.52–0.59 µm), red (0.63–0.69 µm) and near-infrared (NIR) (0.77–0.89 µm). Further-
more, the satellite features four WFV sensors that concurrently cover a swath width of up
to 800 km. Impressively, it offers a revisit period of merely 4 days, facilitating large-scale,
short-term surface observation and monitoring capabilities [37].

The GF1_WHU dataset, released by the SENDIMAGE Laboratory at Wuhan University,
provides 108 cloud and shadow cover validation images and its reference masks. It is
important to note that the provided images are GF-1 WFV level-2A products, and these
images were acquired across diverse global regions spanning the period from May 2013 to
August 2016. They encompass a wide array of land cover categories, such as forests, bare
land, ice and snow, rivers, urban areas and more. The diversity in scene types contributes
to enhancing the model’s training generalization and robustness. The dataset needs to
be allocated according to certain principles to achieve the best effect of model training.
Notably, within the training set, 10% of the data were allocated for validation purposes.
The dataset’s distribution is illustrated in Figure 1.

Moreover, preprocessing of the dataset is essential, including converting the Digital
Number (DN) of remote sensing images into Top of Atmosphere Reflectance (TOA). This
step aimed to retain the influence of clouds on reflectance in the calculation process. Given
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the inherent regularity in data processing for deep learning models, images and labels
require unified cropping and filtering. This involved discarding slices containing irrelevant
background values, resulting in the creation of 58,267 slices, each sized at 512 × 512 pixels.
Simultaneously, it was imperative to recalibrate the DN values of the labeled data within
the GF1_WHU dataset, aligning them with the values suitable for training the deep learn-
ing model. Within this study, the cloud and cloud shadow detection of the Swin-UNet
is considered as multiple binary classification problems. Following the adjustment of
DN values in the label data, separate datasets were created for cloud detection and cloud
shadow detection. Concretely, the underlying surface and cloud, as well as the under-
lying surface and cloud shadow, are assigned values separately. The reference masks in
the dataset are crafted through a manual process, involving the manual delineation of
cloud and cloud shadow boundaries following visual assessment by experienced users.
Despite its high accuracy, the manual drawing approach is not immune to occasional
errors and biases. Consequently, this study conducted a more comprehensive investigation
and dataset refinement. While maintaining sample diversity, the dataset excluded scenes
containing glaring errors or those posing challenges in terms of differentiation. Figure 2
shows some scene examples, including misjudgment areas in different situations. Ulti-
mately, a total of 1772 slices were discarded. Following the filtration process, owing to the
distinctive brightness exhibited by clouds in the imagery, flipping operations are used to
enhance existing datasets. This augmentation enhances the robustness of model training to
some degree.
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Figure 2. Partial error labels in the original GF1_WHU dataset under different surface types. (The
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of each scene, the type of misjudgment area is given. The bottom presents the main misjudgment
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2.2. Technical Route and Swin-UNet

Figure 3 shows the technical methods used in this study. Data and preprocessing
details are presented in the preceding section, with the current section dedicated to elucidat-
ing the employed models. The processed dataset is fed into the model, which subsequently
undergoes a multi-layer training process to establish a robust and precise network structure
for predictive purposes.
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Swin-UNet adopts a Transformer architecture, preserving the U-shaped network struc-
ture in U-Net, while replacing convolutional operations with the Swin Transformer block.
In order to gain a clearer understanding of the Swin-UNet network structure and the Swin
Transformer block, this paper provides corresponding schematic diagrams. Simultaneously,
Swin-UNet proficiently addresses two persistent challenges: the inability of CNNs to capture
long-distance features and the inherent difficulty in training Transformers. Swin, alternatively
referred to as “Shifted Windows”, offers a hierarchical interaction approach and the capability
to extract local features, rendering it apt for handling extensive image datasets. This enables
it to maintain commendable accuracy and efficiency. Swin Transformer solves the intensive
prediction tasks that traditional architectures struggle to handle with sliding windows. The
shifted window mechanism breaks the inherent limitations of local windows, and flexible
connectivity ensures the effective operation of cross window methods.

Figure 4 reveals the overall network structure, comprising three core components: the
encoder, decoder and skip connection. Initially, the input remote sensing image undergoes
processing through a patch partition block. This block segments the GF-1 WFV slice image
into 512 × 512 patches using a 4 × 4 processing unit, concurrently expanding the number
of channels to sixteen times the original size. The segmented data then proceed to the
encoder section, where semantic feature extraction takes place. The linear embedding layer
adjusts the number of input data channels based on a threshold denoted as C. Subsequently,
the alternating arrangement of Swin Transformer blocks and patch merging layers enables
the production of feature representations at different scales in the encoder section. In
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this process, the data’s dimensions in length and width are halved, while the number of
channels doubles with each step. The Swin Transformer block is tasked with extracting high-
resolution image features, while the patch merging layer handles down-sampling to reduce
the resolution of the feature map at this stage by half. Bottleneck layers are incorporated
to prevent the models from becoming excessively deep, which could hinder convergence.
The neatly symmetrical network structure elucidates the decoder’s functionality. In order
to improve resolution and reduce dimensionality, the model performs up-sampling in
the decoder section. The skip connection layer plays an important role in concatenating
contextual information, by fusing deep and shallow layer features to compensate for the loss
in the down-sampling process. Upon restoration to the original size, the linear projection
block is employed for pixel-level predictions, ultimately yielding the final output.

Atmosphere 2023, 14, x FOR PEER REVIEW 6 of 20 
 

 

slice image into 512 * 512 patches using a 4 * 4 processing unit, concurrently expanding 
the number of channels to sixteen times the original size. The segmented data then pro-
ceed to the encoder section, where semantic feature extraction takes place. The linear em-
bedding layer adjusts the number of input data channels based on a threshold denoted as 
C. Subsequently, the alternating arrangement of Swin Transformer blocks and patch 
merging layers enables the production of feature representations at different scales in the 
encoder section. In this process, the data’s dimensions in length and width are halved, 
while the number of channels doubles with each step. The Swin Transformer block is 
tasked with extracting high-resolution image features, while the patch merging layer han-
dles down-sampling to reduce the resolution of the feature map at this stage by half. Bot-
tleneck layers are incorporated to prevent the models from becoming excessively deep, 
which could hinder convergence. The neatly symmetrical network structure elucidates 
the decoder’s functionality. In order to improve resolution and reduce dimensionality, the 
model performs up-sampling in the decoder section. The skip connection layer plays an 
important role in concatenating contextual information, by fusing deep and shallow layer 
features to compensate for the loss in the down-sampling process. Upon restoration to the 
original size, the linear projection block is employed for pixel-level predictions, ultimately 
yielding the final output. 

 
Figure 4. The architecture of Swin-UNet. 

The Swin Transformer block (Figure 5) employs a sequential structure comprising a 
window-based multi-head self-attention (W-MSA) module, a shifted window-based 
multi-head self-attention (SW-MSA) module and a 2-layer Multilayer Perceptron (MLP) 
with Gaussian Error Linear Units (GELU) non-linearity. These components are organized 

Figure 4. The architecture of Swin-UNet.

The Swin Transformer block (Figure 5) employs a sequential structure comprising
a window-based multi-head self-attention (W-MSA) module, a shifted window-based
multi-head self-attention (SW-MSA) module and a 2-layer Multilayer Perceptron (MLP)
with Gaussian Error Linear Units (GELU) non-linearity. These components are organized
alternately within four LayerNorm (LN) layers. To express this, the Swin Transformer block
can be represented as follows:

ẑl = W − MSA
(

LN
(

zl−1
))

+ zl−1, (1)

zl = MLP
(

LN
(

ẑl
))

+ ẑl , (2)

ẑl+1 = SW − MSA
(

LN
(

zl
))

+ zl , (3)
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zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1, (4)
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Among them, ẑl and zl represent the outputs of the lth W-MSA module and MLP
module, respectively. Utilizing a window partitioning mechanism in its design, the Swin-
UNet enhances its capacity to comprehend and represent semantic information within
images, thereby elevating its performance in image segmentation tasks.

2.3. Evaluation Index

Currently, the main method for evaluating image segmentation relies on the confusion
matrix (Table 1), with four basic parameters as the core evaluation. By performing linear
operations on four parameters, more authoritative evaluation indicators for semantic
segmentation can be derived.

Table 1. Confusion matrix.

Prediction Reference Result

Positive
Positive True Positive

Negative False Positive

Negative Positive False Negative
Negative True Negative

Employing appropriate performance metrics to assess cloud and cloud shadow detec-
tion methods is essential for evaluating their effectiveness. Therefore, the validation indica-
tors selected for the experiment include the Overall Accuracy (OA), Precision (P), Recall
(R), Intersection over Union (IoU) and F1-Score. The specific formulas are outlined below:

OA =
TP + TN

TP + FP + TN + FN
, (5)

P =
TP

TP + FP
, (6)

R =
TP

TP + FN
, (7)

F1 = 2 ∗ P ∗ R
P + R

, (8)

IoU =
TP

TP + FP + FN
, (9)
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2.4. Experimental Setting and Implementation Details

The algorithm presented in this paper is implemented using the PyTorch deep learning
framework on a Windows 10 system equipped with an NVIDIA GeForce RTX 3060 GPU
(Graphics Processing Unit). This experiment is centered on binary classification at distinct
levels, specifically targeting cloud detection and cloud shadow detection. The analysis of
network behavior and the extraction of target-specific feature information is conducted
for each category individually, with a particular emphasis on identifying the features that
differentiate the target category from others.

Network training employs the AdamW optimizer, an adaptive gradient method that
leverages both first-order and second-order moment estimates. The exponential decay rates
used to estimate the first and second moments are set to β1, β2. Some essential parameters
in model training are shown in Table 2.

Table 2. Partial parameter description in model training.

Parameter Value

β1 0.9
β2 0.999

Base learning rate 0.001
Decay rate 0.1

Window size 16

The loss function of binary classification consists of Dice Loss and Binary Cross
Entropy Loss. The Dice coefficient serves as a similarity measurement function for sets and
is commonly employed to assess the similarity between two samples. Its values fall within
the range of 0 to 1. The optimizer is utilized for parameter updates, and the best training
outcomes are employed for multiple training iterations. To facilitate pre-training, the best
model weights obtained during the training process can serve as the initial weights for
subsequent training sessions.

3. Results
3.1. Comparison of Results between Models and Distribution Analysis

Numerous studies have demonstrated the effectiveness of CNN-based models in cloud
detection. To investigate the influence of different backbone networks on segmentation
outcomes, this study carefully selected various mainstream CNN-based network models,
including their enhanced versions, for comparative experiments aimed at a comprehensive
evaluation of model predictions. Specifically, the models used for comparison include
U-Net, DeepLabV3+ [38,39] and PSPNet [40]. DeepLabV3+ has a higher detection per-
formance by combining with Atrus convolution. It can obtain multi-scale information of
images under complex feature conditions and is capable of performing target recognition
tasks under certain conditions. PSPNet has been optimized based on the pyramid pool
module. The models selected in this study have certain representativeness and typicality,
which can reflect the current level of cloud and cloud shadow detection methods based on
CNN models. Among them, U-Net adopts VGG16 architecture, while DeepLabV3+ and
PSPNet adopt MobileNet. These choices represent optimal configurations. In comparison
to alternative backbone networks, these selections consistently yielded superior perfor-
mance and currently represent the prevailing approaches for cloud detection in remote
sensing imagery. All models underwent uniform training from scratch. Additionally, the
dataset includes data from four WFV sensors, confirming the model’s suitability across
various sensor types. The similarity and difference of target distribution often need to
be evaluated through pixel-by-pixel analysis methods. The experimental results, as pre-
sented in Tables 3 and 4, highlight the exceptional performance of the Swin-UNet across all
evaluation metrics for GF-1 WFV.
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Table 3. Statistics of cloud detection results for different models.

Method OA(%) P(%) F1-Score(%) R(%) IoU(%)

U-Net 93.57 81.23 93.75 94.54 78.38
DeepLabV3+ 95.5 93.21 95.47 95.86 83.82

PSPNet 95.36 89.44 95.41 96.45 86.54
Swin-UNet 95.61 98.01 95.48 96.84 82.24

Table 4. Statistics of cloud shadow detection results for different models.

Method OA(%) P(%) F1-Score(%) R(%) IoU(%)

U-Net 97.86 74.56 96.87 85.34 60.04
DeepLabV3+ 97.92 84.03 97.17 83.09 56.1

PSPNet 97.7 82.2 97.51 78.92 51.85
Swin-UNet 97.46 84.64 97.55 84.12 56.56

Figure 6 presents a histogram depicting the overall accuracy of Swin-UNet for cloud and
cloud shadow detection, revealing that over 90% of the validation results achieved an overall
accuracy exceeding 90%. The exceptions were limited to validation datasets encompassing
water bodies and adjacent bright surfaces. Overall, despite the input data consisting of only
three visible light and one near-infrared channels, contemporary cloud detection methods
relying on deep learning models exhibit relatively effective detection capabilities. As depicted
in Table 3, except for Swin-UNet, other models have relatively higher recall than accuracy,
implying that the model tends to produce more instances of over-detection than missed
detection. Distinguishing the local high-light surface from the cloud is challenging, particularly
in areas where the high-light surface is adjacent to the cloud. This includes bare ground,
buildings and other man-made structures. Apart from IoU, Swin-UNet outperforms all
other metrics. It achieves precision, F1-score and recall rates of 98.01%, 95.48% and 96.84%,
respectively. Table 4 presents the performance indicators for various models in cloud shadow
detection. The average overall accuracy across all models is quite similar, with each exceeding
97%. Swin-UNet exhibits the highest precision and F1-score, although its recall rate and cloud
shadow IoU are slightly lower compared to those of U-Net, by 1.22% and 3.48%, respectively.
PSPNet exhibits subpar detection results due to its reliance on pyramid pooling modules for
global information gathering. However, to maintain uniform input and output dimensions,
the feature layers before and after pooling are directly combined for up-sampling, resulting
in a coarser detection outcome that is more susceptible to missed detections. DeepLabV3+
delivers superior detection performance by leveraging the hollow space pyramid module to
extract information from varying fields of view. It comprehensively addresses the multi-scale
challenge posed by the detected object and integrates multi-scale features, resulting in a more
detailed detection outcome. The Swin Transformer block has proven its efficacy in the feature
extraction process of moderate- and high-resolution images. Its optimized multi-head self-
attention mechanism allows for more precise concentration on target features while mitigating
potential interference. It is evident that Swin-UNet excels in multiple performance metrics,
underscoring its effectiveness in addressing the limitations associated with limited spatial
information and a narrow spectral range in moderate- and high-resolution remote sensing
images. These challenges have historically constrained data processing and application in the
context of GF-1 WFV images.

Figure 7 is a visual display of the global detection results of true color images using
Swin-UNet. It is evident that Swin-UNet exhibits minimal errors in the overall view, and its
distribution accuracy is noteworthy. It only has false detections in a small range of bright
surfaces and shallow thin clouds. The model achieves high-precision image segmentation by
extracting spectral, textural and other features from four-channel data. It excels in refining target
edges and recognizing small and subtle clouds and cloud shadow areas. Clearly, Swin-UNet,
trained on a large dataset, adeptly tackles image segmentation tasks at moderate and high
resolutions, such as GF-1 WFV. It efficiently generates accurate cloud and cloud shadow masks.
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3.2. Comparison of Different Land Cover Scenarios

The model’s detection performance exhibits some degree of applicability but fre-
quently yields substantial variations in detection outcomes across different scene contexts.
Generally, cloud and cloud shadow detection demonstrate high precision in vegetated
regions like grasslands. However, it can occasionally suffer distortion in areas like barren
land and water bodies, particularly in terrain scenarios where spectral and texture features
exhibit similarities. The model often encounters challenges distinguishing clouds from
bright surfaces like ice and snow, as well as distinguishing cloud shadows from dark sur-
faces like water bodies. In this section, in order to evaluate the applicability and robustness
of the model, the results of various land cover scenarios are used for comparative analysis.
To be specific, the experimental validation data can be categorized into scenarios including
barren land, vegetation, water bodies, urban areas and coastal regions.

Figure 8 illustrates that the Swin-UNet, employed in this study, exhibits superior
segmentation performance in comparison to other models. The Swin-UNet demonstrates
strong performance in a majority of scenarios, effectively delineating cloud and cloud
shadow areas and their boundaries. However, it exhibits weaker recognition performance in
a minority of cases. In scenes featuring barren land and vegetation, all models consistently
excel in detecting clouds and cloud shadows, primarily because there are no visually
ambiguous ground objects in these environments. However, when faced with water bodies
in scenarios C and F, the detection performance is frequently suboptimal. Water surfaces
inherently possess low reflectivity and are dark in appearance, which complicates the
model’s ability to identify targets, particularly minor clouds above the water. Notably, the
Swin-UNet consistently maintains relatively stable performance, providing evidence that
the unique attention mechanism of it plays a crucial role in the classification task of remote
sensing images. In the case of cloud shadow regions, which are challenging for traditional
CNN models to recognize, this model ensures accurate detection while minimizing the
likelihood of false positives and missed detections. PSPNet consistently underestimates
cloud shadows over water areas, and the model exhibits a relatively smoothed edge
detection behavior across all scenarios. This results in challenges related to the missed
detection of thin clouds and the loss of edge details. DeepLabV3+ performs relatively
well, offering finer boundary detection and capturing minor details within the scenes.
However, it continues to disregard the impact of cloud shadows in scene F. In scene D, a
bright surface is present in the urban area, resembling the ice and snow area, which can be
easily mistaken for clouds. Nonetheless, in this scenario, all models perform admirably,
with no conspicuous erroneous detections across a substantial area. In scene F, nearly
all experimental models identify the prominent features in the coastal region as clouds.
This recognition might be attributed to the textural similarities between these features and
actual clouds.
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4. Discussion
4.1. Influencing Factors of the Accuracy

In deep learning models, increased band information frequently enhances classifica-
tion performance. While high-resolution satellite data offer greater imaging detail, their
constrained number of channels restricts the accessibility of image information. Conse-
quently, this limitation partially hinders the capacity of deep learning models to extract data
information. Furthermore, in the binary classification of specific targets, the proportion of
positive and negative samples constitutes a relevant influencing factor. Figures 9 and 10
depict the cloud coverage and cloud shadow coverage for all images within the dataset.
The results indicate that the distribution of clouds and shadows is mostly concentrated
within 20%. There are almost no datasets with cloud shadows greater than 40%. Specifically,
the dataset’s cloud shadow content is typically limited, encompassing merely 15% of the
data, with cloud shadows equal to or exceeding 10%.
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In this study, 7602 slices with a cloud shadow content exceeding 10% were extracted,
and the influence of sample proportion factors on the experimental results was compared.
Figure 11 presents a weight chart that visually illustrates the segmentation outcomes under
varying sample proportions in the comparative experiment. The weight map demonstrates
Swin-UNet’s focus on cloud shadow targets. Pixel colors in the range from red to purple
signify a decreasing weight ratio attributed to cloud shadows, similar to a probability
map for cloud shadow detection. A concentration of red, yellow and green areas on
actual cloud shadows within the weight map signifies heightened attention, a larger
recognition decision proportion and improved segmentation effectiveness. In Figure 11,
two distinct data samples with varying surface conditions were chosen as test images. It
is evident that, under conditions featuring a more abundant and balanced distribution of
cloud shadow samples, the model can precisely direct its attention toward cloud shadows,
thereby substantially mitigating background noise interference. Therefore, in order to
achieve better detection performance in the model, it is necessary to allocate the proportion
of positive and negative samples reasonably. The GF1_WHU dataset employed in this
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study falls slightly short in this regard. It was originally intended for rule-based physical
validation research rather than for deep learning model applications. In this study, the
dataset underwent manual screening, a process that proves beneficial for model training.
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Furthermore, the model’s utilization of a sliding window mechanism restricts its
detection field of view. Consequently, in certain scenarios, detecting the boundary between
clouds and cloud shadows, along with subtle cloud shadow regions, becomes challenging.

4.2. Limitations and Prospects

Following an analysis of existing studies, it becomes evident that cloud and cloud
shadow detection accuracy tends to be higher in low-latitude plains and similar regions.
This phenomenon arises due to differences in surface conditions, such as vegetation and
bare land, which contrast distinctly with clouds and cloud shadows. Consequently, the
model excels at accurately extracting feature information for recognition purposes. Nonethe-
less, the accuracy of detection in areas featuring water and snow cover is somewhat lacking.
These long-term impacts based on spectral feature information have been difficult to be
effectively recognized by machine learning models, especially for cloud shadow targets.
Furthermore, the experimental dataset has inherent limitations, as it lacks comprehensive
representation of areas like ice and snow. Although Swin-UNet currently performs bet-
ter in the semantic segmentation of GF-1 images than CNN-based models, it still faces
challenges in its applicability when dealing with these challenging, hard-to-distinguish
targets. Simultaneously, as the utilization of deep learning models matures, we aspire to
gather and furnish additional high-quality datasets for cloud and cloud shadow detection,
with a particular emphasis on enhancing datasets related to cloud shadows. Furthermore,
it is very meaningful to explore other Transformer-based network models for related re-
search, which can further provide new detection methods that integrate multiple feature
information sources.

5. Conclusions

Presently, the Gaofen series satellites have reached a high level of maturity, offering
remote sensing services within a global multi-scale framework. They hold substantial
importance for a wide range of environmental monitoring endeavors. Cloud detection,
as a preprocessing step in remote sensing image analysis, serves as a critical cornerstone
for subsequent quantitative analysis and monitoring applications. When facing data with
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limited available band information such as GF-1, the accuracy of traditional methods is
usually insufficient, especially in thin clouds and cloud shadow areas. In this study, Swin-
UNet, which was used for cloud and cloud shadow detection in GF-1 images, achieved
commendable results. The experimental findings lead to the following conclusions:

(1) Swin-UNet demonstrates exceptional performance in the detection of clouds and
cloud shadows within GF-1 WFV optical imagery. It attains an average accuracy of
98.01% in cloud detection, with a recall rate of 96.84% and an F1-score of 95.48%, all
surpassing results achieved by other models. Furthermore, its performance in cloud
shadow detection is equally impressive.

(2) Compared with CNN-based models such as U-Net, DeepLabV3+ and PSPNet, it is
evident that Swin-UNet exhibits excellent performance, stability and robustness in
the classification task of remote sensing images.

(3) The network’s performance can be improved by adopting a more balanced sample
proportion. In the future, the establishment of an extensive sample library and the
integration of multiple feature relationships will hold significant research importance
in the field of cloud and cloud shadow detection. Furthermore, Swin-UNet retains
untapped potential for model improvement and migration applications, offering
enhanced capabilities for the processing of high-resolution satellite data.

In optical satellite images, it is difficult for people to utilize a small number of bands.
There are certain limitations in the theory of this study. It makes the effective extraction
and filtering of complex features a valuable challenge, especially in cloud-shaded areas.
In addition, the manual annotation accuracy of samples also brings certain limitations to
the model. These factors all pose obstacles to the detection of clouds and cloud shadows.
Therefore, modifying the model structure, attempting to combine meta-heuristic methods
and improving sample accuracy are all key research topics in the next stage. It is worth
noting that due to the relatively simple frequency bands involved in the model proposed
in this study, this method still has reference value in other optical satellite images.
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