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Abstract: In the realm of daily activity planning, precise weather forecasting services hold paramount
significance. However, the prevalent dissemination of weather forecasts through conventional chan-
nels like radio, television, and the internet often yields only generalized regional predictions. This
limitation contributes to diminished forecast reach, inadequate accuracy, and a lack of individual-
ization, thwarting the effective distribution of meteorological insights and inhibiting the fulfillment
of personalized forecast demands. Addressing these concerns, our study proposes a personalized
weather forecasting approach that harnesses machine learning techniques and leverages the 5G
messaging platform. By amalgamating projected user travel data, we augment personalized weather
reports and extend user coverage to achieve tailored, timely, and high-quality weather services.
Concretely, our research commences with an extensive analysis of large-scale user travel behavior
data to extract pertinent travel attributes. Subsequently, we construct a user’s future location predic-
tion model—dubbed the Loc-PredModel—by employing the Extreme Gradient Boosting (XGBoost)
algorithm to forecast users’ trip destinations and arrival times. Anchored in the anticipated outcomes
of user travel behavior, personalized weather data reports are formulated. Experimental results
underscore the Loc-PredModel’s remarkable predictive prowess, demonstrating a root mean squared
error (RMSE) value of 0.208 and a coefficient of determination (R2) value of 0.935, affirming its
efficacy in prognosticating users’ trip destinations and arrival times. Furthermore, our 5G message-
driven platform, rooted in intelligent personalized meteorological services, underwent testing within
Chengdu city and garnered positive user feedback. Our research effectively surmounts the limitations
of conventional weather forecasting platforms by furnishing users with more precise and customized
weather information predicated on behavioral analysis and the 5G information ecosystem. This study
not only advances the theoretical groundwork of intelligent meteorology but also offers invaluable
insights and guidance for future advancement. By providing users with a more personalized and
timely intelligent meteorological service experience, our approach exhibits transferability, with the
research methodology and model potentially extendable nationwide or even on a larger scale beyond
the study’s Chengdu-based scope.

Keywords: behavior prediction; personalized delivery; intelligent meteorological services; 5G
messaging platform; machine learning

1. Introduction

Weather has a significant impact on people’s daily lives and work [1]. Accurate me-
teorological information can assist individuals in better organizing their work and life,
thereby enhancing productivity [2] and improving the quality of life. As the pace of life
accelerates, there is an increasing demand for the accuracy of weather forecasts [3], with
users’ personalized requirements becoming more prominent. Despite the breakthroughs
achieved in intelligent and automated meteorological monitoring technology [4], the qual-
ity and quantity of meteorological data have improved significantly, and the accuracy and
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resolution of forecasts continue to improve [5]. However, they also face the challenge of
information overload brought about by the widespread proliferation of the internet [6].
Particularly in terms of the dissemination channels for meteorological data, traditional
media such as broadcast television and the internet still dominate [7]. However, these chan-
nels often only provide rough forecasts over a large regional scope, failing to meet modern
society’s demand for personalized, precise, and timely meteorological information. For
instance, different locations within the same administrative region of a city can experience
vastly different weather conditions. Higher geographical resolution services can offer more
accurate meteorological insights. This situation results in low forecast reach, inadequate
precision, and a lack of personalized services, thereby restricting the practical application
of meteorological data in everyday life.

Therefore, personalized weather recommendations have emerged as a novel research
direction. Leveraging techniques like machine learning, these studies utilize historical
data to offer more accurate and personalized weather recommendations. While such
research contributes to enhancing prediction accuracy and user experience, the limitations
of personalized weather recommendations persist, unable to address the issue of timely
information delivery in meteorology.

To address the aforementioned issues, researchers have been striving to enhance
the accuracy and personalization of these services [8–10]. In this pursuit, there has been
accelerated technological innovation to ensure precise monitoring, forecasting, and detailed
services [11]. Government reports also emphasize the strengthening of disaster prevention
and emergency capabilities through improved meteorological services. One key aspect
involves advancing core technologies such as refining weather mechanisms and enhancing
numerical forecasting models [12]. Through the combination of these efforts, researchers
are committed to improving the quality, timeliness, and personalization of meteorological
services, thereby contributing to the overall well-being and safety of society.

However, despite the significant progress made in the field of meteorological services,
current research primarily focuses on enhancing meteorological services but lacks an in-
depth exploration from the perspective of user behavior analysis to improve the accuracy
of meteorological services. Personalized weather forecasting research that is based on user
behavior analysis and takes a user-centric approach is currently relatively scarce. This
research perspective holds great significance. Leveraging technologies such as machine
learning, personalized weather forecasting based on user behavior analysis can tailor
weather forecasts to individual users by analyzing their historical behaviors, preferences,
and backgrounds, better meeting their unique needs and patterns. This forward-looking
research direction holds the potential to open up new avenues for enhancing the accu-
racy and personalization level of meteorological services. Delving into the correlation
between user behavior and meteorology will provide a fresh perspective for personalized
weather forecasting, thereby further elevating the precision and personalization level of
meteorological services.

Therefore, this study aims to comprehensively consider the strengths and weaknesses
of these models and integrate them with the 5G messaging platform to establish a refined
and efficient personalized meteorological service system. By deeply analyzing user travel
behavior, integrating multi-model predictions, and leveraging the rich media and interactiv-
ity features of the 5G messaging platform, personalized, timely, and high-quality weather
forecasts can be achieved to meet diverse user demands. The selection of the 5G messaging
platform is driven by its superior bandwidth, lower latency, and enhanced capacity com-
pared to 4G networks, enabling the delivery of rich media content and facilitating more
interactive user experiences. While the 4G platform can also support similar services, the
5G platform offers distinct advantages in terms of delivering immersive and engaging
meteorological information, thereby significantly enhancing the quality and efficiency of
meteorological information services.

This research holds significant theoretical and practical value. Theoretically, it explores
novel personalized weather recommendation methods by leveraging the rich media and
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interactivity features of the 5G messaging platform, addressing the limitations of traditional
approaches. Practically, it offers new communication channels and interaction methods to
improve the reach and user satisfaction of meteorological information, promoting intelli-
gent, personalized, and accurate meteorological information services.

2. Related Work

In the domains of personalized weather forecasting and smart meteorological services,
previous research has explored various approaches, yet limitations persist. Many methods
overly rely on traditional meteorological data and models, struggling to meet personalized
demands. Some studies overlook user behaviors and preferences, focusing excessively on
data analysis and prediction. This study aims to bridge these research gaps by analyzing
user travel behavior data to extract travel patterns and preferences. We employ a future
location prediction model based on the Extreme Gradient Boosting (XGBoost) algorithm to
accurately predict users’ upcoming destinations. Combining individual user characteristics,
personalized meteorological data reports are generated. Leveraging the 5G messaging
platform, we achieve a tailored smart meteorological service that caters to diverse users.

Compared to prior research, our approach offers innovations: a focus on user behavior
to better address practical needs, the application of machine learning for more accurate
predictions, and the utilization of the 5G messaging platform for timely delivery, enhancing
both timeliness and personalization.

Integrating artificial intelligence, big data, and cloud computing, intelligent weather
push technology offers real-time and precise weather information based on user require-
ments and contexts. Key steps encompass data collection, requirement modeling, and
valuable information generation. By introducing 5G messaging platform technology and
utilizing the Rich Communication Suite (RCS) protocol, strong reach, lightweight interac-
tion, rich media engagement, and intelligent services are provided. Through the synergy
of 5G messaging platform technology and intelligent algorithms, personalized and high-
quality weather services are realized, ultimately enhancing user experiences.

This research amalgamates user behavior analysis and data processing techniques,
offering innovative approaches to realize personalized weather forecasting and smart
meteorological services. It is poised to carve new pathways for refining the accuracy and
personalization of meteorological services, delivering customized weather information and
services to users.

2.1. Current State of Travel Prediction Research

Machine learning-based travel prediction methods are currently categorized into sev-
eral types, including K-Nearest Neighbors (KNN) [13], Deep Neural Networks (DNN) [14],
Random Forest (RF) [15], and the context-aware Loc-PredModel. KNN predicts by compar-
ing similar travelers, DNN extracts traveler features through multi-layer neural network
structures, while RF enhances prediction accuracy through ensemble learning.

Travel prediction, which utilizes historical or real-time data to forecast travelers’
destinations, times, and other information, finds widespread applications in intelligent
transportation, smart cities, the mobile internet [16,17], and personalized travel services [18].
Travel prediction methods can be broadly categorized into rule-based [19,20] and machine
learning-based [21] approaches. Rule-based methods rely on manually set rules to infer
travel patterns, but struggle with complex scenarios. In contrast, machine learning-based
methods automatically learn travelers’ characteristics and patterns through algorithms [22],
making them suitable for high-dimensional and nonlinear data. In recent years, with the
advancements in mobile internet, the Internet of Things (IoT), and big data technology,
machine learning algorithms have achieved remarkable success in areas such as image
recognition [23], speech recognition [24], and natural language processing [25], exhibiting
great potential in the field of travel prediction. Among them, deep learning, through multi-
layer neural network structures, can autonomously extract advanced features, showcasing
significant promise.
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This study aims to integrate travel behavior analysis and machine learning to achieve
personalized weather forecasting based on user behavior. By extracting user travel data
features and utilizing machine learning models, our goal is to enhance weather predictions
to be more accurate and personalized. This approach holds the potential to open new
pathways for improving the accuracy and personalization of meteorological services,
expanding the prospects of weather prediction.

2.2. Current State of Personalized Weather Recommendation Research

Currently, research on personalized weather recommendations primarily focuses on
user feature-based approaches. Studies aim to capture users’ individual characteristics,
preferences, and needs by constructing user profiles or models using historical behavior
data or user feedback, thereby delivering personalized weather recommendations. For
instance [26] utilizes association rules to recommend weather service products to users.
Other studies propose recommendation methods based on user profiles and collaborative
filtering. These methods analyze users’ activities on social networks and location data to
establish user profiles and employ collaborative filtering algorithms to suggest weather
information that aligns with the interests of users similar to them.

Furthermore, some approaches integrate user models with context awareness, taking
into account individual attributes such as health status and lifestyle habits, alongside the
current context, to provide users with tailored weather information.

However, there is currently a lack of research on weather recommendations based
on user travel behavior. Such research emphasizes the analysis of users’ travel purposes,
methods, times, and other behaviors. By utilizing historical or real-time travel data, these
studies predict future locations or routes to offer users relevant weather information.
Despite the existing progress in personalized recommendations based on user features,
the field of personalized weather recommendations grounded in geographical location
and travel prediction remains largely unexplored. Therefore, this study aims to address
this research gap by comprehensively exploring and providing a travel behavior-based
approach to personalized weather recommendations.

2.3. Research Content

The research framework of this paper aims to establish a personalized weather rec-
ommendation system based on travel and weather data. The framework primarily encom-
passes the following key steps, as depicted in the Figure 1:

Data collection and preprocessing: Initially, gather users’ travel and weather data.
Travel data encompass information such as users’ travel purposes, methods, and times,
while weather data include details like weather conditions, temperature, and humidity.
These data need to undergo preprocessing to ensure accuracy and consistency.

Data association and fusion: Associate and merge travel data with weather data,
connecting the two datasets using key information like latitude, longitude, and timestamps.
This forms a comprehensive dataset, serving as the foundation for subsequent training and
analysis of predictive models.

Destination prediction model: In this phase, compare and train four distinct prediction
models to forecast users’ travel destinations. These models might include the KNN model,
DNN model, RF model, and our model. By assessing the performance of different models,
select the most suitable one to accurately predict users’ upcoming destinations.

Spatiotemporal weather report generation: Once the destination prediction model
determines the upcoming user destination, combine spatiotemporal weather data for that
location with user-defined preference features to generate a personalized customized
weather report. This report not only includes standard weather information but also
incorporates attire recommendations and activity suggestions based on user preferences.
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5G message push: Finally, utilizing the 5G message platform, precisely deliver the
generated personalized weather report to users through push notifications. This platform
enables high-speed delivery and rich media interaction, ensuring users promptly receive
personalized weather information.

Through the aforementioned steps, the research framework of this paper establishes a
personalized weather recommendation system based on travel and weather data. Conse-
quently, it provides users with more considerate and accurate weather information services.

2.4. Innovative Aspects and Highlights

1. Fusion of travel behavior prediction and personalized weather services: This research
introduces travel prediction techniques to the field of meteorological services for the
first time. By analyzing users’ travel behavior, it forecasts potential destinations and
generates personalized weather forecasts for those destinations. This fusion combines
travel behavior and weather data to provide users with more intelligent, real-time,
and accurate weather services, thereby enhancing user satisfaction and experience.

2. Application of XGBoost algorithm in personalized recommendation model: This
study employs the XGBoost algorithm, an efficient and powerful machine learning
technique, to predict users’ future locations. By leveraging user characteristics, this
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machine learning model generates personalized weather reports that align with users’
behavior patterns and preferences.

3. Construction of an intelligent weather push platform: By establishing a precise in-
telligent weather push platform, this research maximizes the broad coverage and
multimedia transmission advantages of the 5G messaging platform. Integrating
multiple data sources and predictive models, this platform delivers comprehensive,
accurate, and personalized meteorological services to users. This push mechanism
not only enhances the efficiency of conveying meteorological information but also
provides users with smarter, personalized services.

4. Implementation of smart travel advice: The study further implements intelligent
travel advice based on the 5G messaging platform, interacting with the intelligent
weather push module to offer more accurate and timely travel recommendations.
Combining machine learning techniques with spatiotemporal feature algorithms, this
research accurately predicts urban travel status and trends, enabling users to receive
more effective, granular weather reports, and enhancing their quality of life.

5. Real-world application and effect validation: This research goes beyond theoreti-
cal exploration and conducts practical trials in the Chengdu region, deploying the
5G-based intelligent personalized weather service platform. The successful imple-
mentation of this application demonstrates the feasibility and effectiveness of this
approach, with the potential to elevate the quality of meteorological services and
improve people’s lives.

Through the aforementioned innovative aspects, this research presents novel ideas and
opportunities for the application of travel prediction technology in meteorological services,
the provision of personalized weather information, and the construction of intelligent
push platforms.

In the subsequent chapters, the first section introduces the dataset used in the experi-
ments, describing its source, collection method, and content. The second section outlines
the methods and technologies employed in the research, delving into the machine learning-
based travel prediction methods, including different types of models like KNN, DNN, and
RF. It also details the principles and applications of the XGBoost algorithm, along with how
user features are incorporated to generate personalized weather reports. Furthermore, the
construction of the intelligent weather push platform is elaborated, including the utiliza-
tion of the 5G messaging platform for precise delivery and the implementation of smart
travel advice. The third section describes the experimental process and results, offering a
comprehensive insight into the experimental design, process, and outcomes. It explains
how user-specific features, travel patterns, and weather data were obtained from publicly
available travel datasets and subjected to necessary preprocessing. The design and imple-
mentation of the machine learning models are meticulously discussed, along with how the
preprocessed data were employed for model training and testing. In the concluding part, a
summary of the entire research is provided. The experimental process and outcomes are
revisited, analyzing the feasibility and effectiveness of the results. The research’s innovative
aspects and its role in addressing existing gaps are emphasized. Finally, limitations and
future research directions are discussed to provide guidance for further investigations.

By comprehensively addressing these chapters, this paper offers a detailed exploration
of various facets of the experiment, spanning from data processing to method application,
experimental result presentation, and conclusion. This enables readers to gain an in-depth
understanding of the research’s contributions and value.

3. Dataset and Data Processing

This research conducts travel pattern analysis based on a shared bicycle dataset.
Considering our focus on individual travel patterns, we opt to use transportation data as
a proxy to indirectly extract individuals’ spatiotemporal location patterns. In real-world
scenarios, various modes of transportation, such as shared bicycles, taxis, buses, and
subways, record features like departure time, departure location, arrival time, and arrival
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location. Notably, shared bicycle datasets represent the travel patterns of a substantial
number of urban users. Thus, we regard shared bicycle datasets as significant sources
for studying individual travel patterns. Furthermore, 5G-enabled devices can also collect
these data attributes. With this in mind, we adopt a transfer learning approach. We
utilize publicly available shared bicycle datasets to construct travel prediction models and
smoothly transfer these models to other modes of transportation and data collected from
5G-enabled devices for application.

Through the travel pattern prediction model, we can obtain information regarding
users’ arrival times and locations, which can be combined with user characteristics to offer
personalized weather reports. To achieve this goal, this research necessitates the use of
shared bicycle datasets in conjunction with corresponding weather datasets.

3.1. Bike-Sharing Data

The dataset employed in this study is derived from the Mobike bicycle dataset for
August 2016 in Shanghai, which constitutes a shared bicycle open dataset. This dataset en-
compasses six distinct categories of features, namely bicycle ID (bike_id), user ID (user_id),
departure time (start_time), departure longitude (start_lon) and latitude (start_lat), arrival
time (end_time), and arrival longitude (end_lon) and latitude (end_lat). The dataset covers
the timeframe from 1 August 2016, 00:00, to 1 September 2016, 00:00, and comprises a total
of 1,023,603 records. Both Bicycle ID and user ID have been encoded using Label Encoder,
while time data have been transformed into timestamps. Refer to Table 1 for the shared
bicycle dataset fields and their corresponding descriptions. An illustrative example of the
dataset is provided in Table 2.

Table 1. Shared bicycle dataset fields and their descriptions.

Field Description

bike_id Vehicle number
user_id User ID, de-identified

start_time Start time of the ride, accurate to the minute
start_lon Start location (longitude)
start_lat Start location (latitude)

end_time End time of the ride, accurate to the minute
end_lon End location (longitude)
end_lat End location (latitude)

Table 2. Example of the bike-sharing dataset.

orderid bike_id user_id start_time start_lon start_lat end_time end_lon end_lat

1 324731 7541 28 August 2016 0:00 121.49 31.28 28 August 2016 0:08 121.486 31.273
6 288841 4427 28 August 2016 0:00 121.462 31.313 28 August 2016 0:17 121.455 31.315
8 315873 6474 28 August 2016 0:00 121.416 31.154 28 August 2016 0:14 121.419 31.156

10 93155 12616 28 August 2016 0:00 121.436 31.32 28 August 2016 0:12 121.444 31.31
11 352484 11596 28 August 2016 0:00 121.459 31.325 28 August 2016 0:08 121.46 31.315
13 127840 9570 28 August 2016 0:00 121.353 31.285 28 August 2016 0:07 121.362 31.283
15 125990 15692 28 August 2016 0:00 121.441 31.228 28 August 2016 0:30 121.455 31.19
16 346549 4373 28 August 2016 0:00 121.426 31.222 28 August 2016 0:31 121.423 31.268
17 352552 350 28 August 2016 0:00 121.524 31.301 28 August 2016 0:14 121.518 31.291
20 351480 16317 28 August 2016 0:00 121.442 31.313 28 August 2016 0:10 121.453 31.311

The meanings of the fields in the data file are as follows, as indicated in the table below.
Please note that some user information has been de-identified in the dataset.

3.2. Meteorological Observation Data

These weather data not only provide detailed information on weather conditions but
also reflect the impact of different weather conditions on travel. Therefore, they become
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key input factors in the intelligent weather push model. In this study, we also used
meteorological observation data from the same time period as the Shanghai shared bicycle
data, spanning from 1 August 2016, 0:00 to 1 September 2016, 0:00. These meteorological
observation data meticulously records various weather elements during this period, such as
temperature, humidity, wind speed, wind direction, precipitation, and more. By combining
these meteorological observation data with the shared bicycle data, a more comprehensive
description of weather conditions can be achieved for the study. Through the thorough
utilization of these meteorological observation data, we can more accurately analyze travel
patterns, thus achieving more precise personalized intelligent weather push services.

Figure 2 is the temperature chart for Shanghai in August 2016. Table 3. is example of
Shanghai meteorological observation data.
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Table 3. Table example of Shanghai meteorological observation data.

Datetime Latitude Longitude Station
Height Temperature Precipitation Relative

Humidity
Wind
Speed

Wind
Direction

Horizontal
Visibility

03 August 2016
15:00:00 121.3667 31.1 5.5 27.4 0 81 1.5 119 32,500

03 August 2016
15:00:00 121.45 31.4 5.5 28.3 0 80 2.1 121 29,900

03 August 2016
15:00:00 121.1994 31.3806 6.5 28 0 79 1.5 161 35,000

03 August 2016
15:00:00 121.4928 31.6664 4.3 28.3 0 82 2.2 147 26,800

03 August 2016
15:00:00 121.4333 31.2 4.6 28.8 0 71 0.4 249 35,000

03 August 2016
15:00:00 121.7833 31.05 5 27 2.4 88 1.8 65 35,000

03 August 2016
15:00:00 121.5333 31.2333 4.4 28.8 0 75 0.9 99 27,300

03 August 2016
15:00:00 121.35 30.7333 5.2 28.8 0 71 3.4 44 35,000

03 August 2016
15:00:00 121.1167 31.1333 4 26.8 0.6 87 2 148 12,600

03 August 2016
15:00:00 121.2333 31.0333 4.2 28.3 0 73 2.6 88 35,000

03 August 2016
15:00:00 121.5 30.8833 4.6 28.8 0 75 3.5 75 35,000
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3.3. Weather Forecast Data

Table 4 is example of Shanghai meteorological forecast data.

Table 4. Table example of Shanghai meteorological forecast data.

Datetime Latitude Longitude Condition Temperature Ultraviolet
Radiation Visibility Winddegrees Wind

Direction Windlevel Wind
Speed

03 August 2016
15:00:00 31.231763 121.484443 Light Rain 28 1 700 270 West

wind 2 2.69

03 August 2016
15:00:00 31.220367 121.424624 Heavy

Rain 28 1 700 270 West
wind 2 2.69

03 August 2016
15:00:00 31.223428 121.455965 Heavy

Rain 28 1 1200 270 West
wind 2 2.69

03 August 2016
15:00:00 31.24984 121.395555 Heavy

Rain 28 1 700 270 West
wind 2 2.69

03 August 2016
15:00:00 31.2646 121.505133 Moderate

Rain 28 1 1200 270 West
wind 2 2.69

03 August 2016
15:00:00 31.259541 121.526077 Light Rain 28 1 1200 270 West

wind 2 2.69

3.4. Integration of Dataset Construction

In order to comprehensively analyze travel patterns and provide personalized in-
telligent weather recommendation services, this study adopts a method of associating
shared bike data, meteorological observation data, and weather forecast data to construct
an integrated dataset. This integrated dataset uses latitude, longitude, and time as refer-
ence points to organically combine data from different sources, providing richer and more
accurate information.

Specifically, in the construction process of the integrated dataset, we first use latitude,
longitude, and time as the basis for association, matching the departure and arrival locations
and times from the shared bike data with corresponding timestamps in the meteorological
observation data. This approach allows us to link each trip with the weather conditions at
specific times, laying the foundation for subsequent analysis.

Simultaneously, we include weather forecast data in the integrated dataset to further
enhance its richness and accuracy. Incorporating weather forecast data with actual ob-
servation data contributes to a more comprehensive weather prediction. By comparing
forecasted data with actual observed data, we can better understand the changing trends in
weather and provide users with more reliable weather information.

The construction of this integrated dataset allows us to comprehensively leverage
multiple data sources, thus, more comprehensively capturing travel patterns and weather
impact factors. By associating shared bike data, meteorological observation data, and
weather forecast data, we can conduct more refined analyses in the spatial and tempo-
ral dimensions, providing stronger support for intelligent travel recommendations and
personalized weather notifications.

3.5. Data Preprocessing

To effectively preprocess the shared bike and meteorological data, this study follows
the following steps to ensure data quality and suitability:

1. Data cleaning: In the preliminary stage of data preprocessing, rigorous data cleaning
is performed for both shared bike and meteorological data. Firstly, for shared bike
data, records containing missing values or anomalies are removed. This includes data
with unreasonable timestamps, latitude and longitude values exceeding actual ranges,
and negative speed values. Similarly, for meteorological data, records with missing or
abnormal values, such as invalid temperature, humidity, and wind speed data, are
also eliminated.

2. Data transformation: After data cleaning, data transformation is carried out to suit
subsequent analysis and modeling. Timestamps are converted into dates and hours,
aiding in associating data with time to explore travel patterns and weather conditions
across different time periods. Latitude and longitude values are transformed into grid
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IDs, mapping spatial information to discrete grids for subsequent spatial analysis.
Additionally, wind directions are converted into angle values to better comprehend
and compare directional differences.

3. Data normalization: To eliminate scale differences between numeric data, normal-
ization or standardization is applied. This ensures that data distributions are on a
consistent scale, balancing the weights between different features. Normalizing data
to a standard normal distribution or within the [0, 1] range prevents the model from
being influenced by data scales during training and testing.

4. Data matching: In the process of merging shared bike and meteorological data, the
key is to match the two types of data based on time and space. Each travel record
is associated with weather observation data under a specific time interval and grid
ID. This matching ensures that each trip is linked to weather conditions during its
specific time period, providing strong support for subsequent analysis.

Through the aforementioned preprocessing steps, we obtain a normalized integrated
dataset where each record includes shared bike data features such as user ID, time, latitude,
and longitude, as well as meteorological data features like temperature, humidity, wind
speed, wind direction, precipitation, and cloud cover.

During the experimental modeling process, data preprocessing plays a crucial role.
Rigorous data cleaning, transformation, and matching guarantee the quality and accuracy
of data used in model training and testing. Particularly with ample data available, effective
data preprocessing is vital for establishing reliable analysis and prediction models. By
removing problematic data records, we ensure the accuracy of model inputs, thereby
enhancing the efficiency of predicting and analyzing travel patterns.

4. Methodology and Model Introduction

The methodology employed in this study comprises several key steps. Firstly, we
collect and analyze users’ travel behavior data to extract travel features and preferences.
Subsequently, utilizing the XGBoost algorithm [27] from machine learning, we construct a
predictive model for users’ future locations, capable of accurately forecasting their upcom-
ing destinations. Following this, personalized meteorological data reports are generated
based on users’ personal characteristics and the meteorological indicators of their higher
interest. Finally, leveraging the 5G messaging platform technology, these personalized mete-
orological reports are precisely delivered to users, achieving an intelligent and personalized
weather service.

4.1. Model Structure

Personalized weather push services can be customized based on predictable user
travel information, such as where the user is likely to go and when they will arrive. In
this paper, based on the Extreme Gradient Boosting (XGBoost) algorithm in machine
learning technology, we build a user arrival destination prediction model, named Loc-
PredModel, to integrates all kinds of data. The model takes the user’s travel data (departure
location, departure time, etc.) and additional data as input to the model to directly infer the
destination location and arrival time of the user. The overall structure of the Loc-PredModel
is shown in Figure 3.

The XGBoost algorithm is an improved algorithm based on the gradient-enhanced
decision tree, adding additional features (such as column sampling and shrinking) to avoid
overfitting and enhance the predictability of the model. By introducing a regularization
term to measure the complexity of the tree model into the objective function, the risk of
overfitting can be reduced. XGBoost can use a decision tree or a linear base model as
the base learner, updating the weight of the learner based on the error obtained from
each iteration. Finally, learners with different weights are combined to form an integrated
model to implement the prediction. In general, the XGBoost algorithm tends to have better
accuracy and less time to build the model due to its additional training process, while
the algorithm also has the advantages of supporting parallel computation, built-in cross-
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validation, and accepting missing values. Therefore, in this paper, the XGBoost algorithm
is chosen to build the Loc-PredModel model for prediction. As an integrated tree model,
the predicted value is calculated as shown in Equation (1):

ŷt
i = ŷt−1

i + f t(xi) (1)

where ŷt
i is the predicted value of the i th sample after the t th iteration, ŷt−1

i represents
the predicted value of the previous t − 1 foundation model, and f t(xi) represents the t th
foundation model. Considering that the prediction of user arrival destination and arrival
time is a regression problem, the loss function equation of the model is set as shown in
Equation (2):

L =
m

∑
i=1

l(yi, ŷi) (2)

where m is the number of samples, l is the training loss, yi is the real value of the user’s
arrival destination and arrival time, and ŷi is the predicted value of the destination and
arrival time. After the regularization term is introduced, the objective function equation of
the model is set as shown in Equation (3):

Obj = L +
n

∑
i=1

Ω( fi) (3)

This objective function consists of two parts, the former is a loss function and the
latter is a regularization term, which is used to suppress the model complexity to prevent
overfitting, where n is the number of trees. The expression of the regularization term is
shown in Equation (4):

Ω( f ) = γT +
1
2

λ‖ω‖2 (4)

where γ and λ are the penalty coefficients, T is the number of nodes in a given tree, and
‖ω‖2 is the L2 regular term.
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4.2. Model Hyperparameters

In this paper, a gridded parameter search method called GridSearchCV is used to
determine the model hyperparameters. In the process of parameter search, the set of
hyperparameters with the smallest error is selected as the final hyperparameters of the
model. We conducted a grid search for six major hyperparameters of Loc-PredModel, and
the search range of each hyperparameter is shown in Table 5.

Table 5. Hyperparameter search range in the GridSearchCV.

Hyperparameter Range Interval

n_estimators 100–600 100
max_depth 6–10 1

min_child_weight 2–4 1
learning_rate 0.1–0.5 0.1

subsample 0.7–1 0.1
colsample_bytree 0.7–1 0.1

5. Experiment and Evaluation
5.1. Experimental Environment and the Evaluation Index

The experiments were primarily conducted on a server with Graphic Processing Unit
(GPU), with detailed software and hardware specifications outlined in Table 6.

Table 6. Experimental environment setting.

Item Parameter

Operating system Ubuntu 16.04
Memory capacity 128 GB

Central Processing Unit (CPU) Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
Graphics Processing Unit (GPU) NVIDIA RTX 6000

Python version 3.8.2
Keras version 2.9.0

In this study, the performance of the models was evaluated using three metrics: mean
absolute error (MAE), root mean squared error (RMSE), coefficient of determination (R2),
and Pearson correlation coefficient (COR) [28]. MAE and RMSE were used to measure
the deviation between predicted values and actual values, with smaller values indicating
lower deviation. R2 reflects the goodness of fit of the model to the data, ranging from 0
to 1, where values closer to 1 indicate a better fit. COR measures the correlation between
predicted values and actual values, with higher values indicating stronger correlation. The
formulas for these evaluation metrics are defined as follows, where n is the number of
samples, yi is the actual value, ŷi is the predicted value, and yi is the sample mean:

MAE =
∑n

i=1|yi − ŷi|
n

(5)

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(6)

R2 = 1− ∑n
i=1
(
yi − ŷi)

2

∑n
i=1

(
yi −

−
y)2

(7)

COR =
COV(ŷi, yi)√
Var[ŷi]Var[yi]

(8)
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5.2. Data Analysis Results

We begin by analyzing the features of user riding data in the dataset. Figure 4a presents
the distribution of user riding distances. It is evident from the graph that the majority of
users have riding distances not exceeding 2 km. Among these, approximately 42.4% of the
data consist of distances under 1 km, while distances between 1 km and 2 km make up
around 34.8% of the total data. Notably, data points with riding distances exceeding 5 km
account for 10.8%, which could introduce higher prediction challenges due to the likelihood
that longer distances reflect instances where users might change their riding destinations.
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user cycling time.

Figure 4b portrays the distribution of user riding durations. The data show that the
highest proportion falls within the range of 5 to 10 min, accounting for approximately
31.2%. Data points with riding durations exceeding 30 min constitute around 11.2%.
Similar to riding distances, longer riding durations could also contribute to increased
prediction complexities.

Next, we delve into the Pearson correlation analysis of various variables in the dataset.
As shown in Figure 5a, the arrival time of users is highly correlated with their departure
time, with a correlation coefficient of 0.94. Simultaneously, concerning users’ arrival
destinations, there exists a noticeable correlation with their departure locations. The
correlation between arrival longitude and departure longitude is 0.68, while the correlation
between arrival latitude and departure latitude is 0.88. Departure longitude also exhibits
some influence on arrival latitude (Cor = 0.15).

Subsequently, using the XGBoost algorithm, this study conducts feature importance
analysis on all input features. Figure 5b illustrates the results. It is evident that the departure
time feature holds the greatest importance in the prediction process of the model, followed
by the departure location’s significance. Notably, the user ID and bike ID features have the
least importance in the model’s prediction, aligning with the results of Pearson correlation
analysis among the variables.
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5.3. Model Performance Comparison

The main features for predicting users’ arrival locations and times include the user’s
departure location and time, with auxiliary features being the bike ID and user ID. The
dataset was divided randomly into a training set (70%) and a test set (30%), which were
preprocessed using standardization functions.

Several different models were developed and tested for predicting users’ destinations
and arrival times:

K-Nearest Neighbor (KNN): The KNN algorithm finds the K-Nearest Neighbors of a
given sample in the feature space and assigns the average attributes of these neighbors to
the sample for prediction. It was developed using the “sklearn” package in Python, with
the parameter n_neighbors set to 7.

Deep Neural Network (DNN): The DNN receives predictive variables as inputs at the
input layer, and generates predictions in the output layer by training neurons in hidden
layers. It was developed using the “Keras” package in Python, comprising one input layer
(128 neurons), two hidden layers (with 64 and 32 neurons, respectively), and one output
layer, utilizing the “relu” activation function.

Random Forest (RF): This ensemble model is composed of multiple classification
or regression trees. Input predictive factors are randomly partitioned into each tree us-
ing bootstrapping, training the predictive model using data within each tree to mitigate
model overfitting risks. It was developed using the “sklearn” package in Python, with the
parameter n_estimators set to 100.

Loc-PredModel: This model, designed for predicting users’ destination using the
XGBoost algorithm, was developed using the “XGBoost “package in Python. Parameters
were set as n_estimators = 200 and max_depth = 3.

The performance of each model is presented in Table 7, where “Train_c” denotes the
time consumption on the training set, and “Test_c” represents the time consumption on the
test set. For location prediction, the units for mean absolute error (MAE) and root mean
squared error (RMSE) are degrees, whereas for arrival time prediction, the units for MAE
and RMSE are minutes.
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Table 7. Model performance comparison.

Method MAE RMSE R2 COR Train_c Test_c

KNN 0.114 0.240 0.876 0.943 - 14.033 s
DNN 0.106 0.210 0.887 0.950 195.005 s 5.603 s

RF 0.105 0.248 0.911 0.953 16.216 s 1.029 s
Loc-PredModel 0.101 0.208 0.935 0.966 2.315 s 0.055 s

Overall, the Loc-PredModel outperforms other models across all three evaluation
metrics. The performance of the Random Forest model is comparable to that of the Loc-
PredModel. Notably, the Loc-PredModel exhibits the fastest efficiency, with a training time
of 2.315 s on the training set and an inference time of 0.055 s on the test set. In contrast, the
Random Forest model takes 16.216 s for training and 1.029 s for inference on the test set. The
DNN model has the longest training time, at 195.005 s on the training set and 5.603 s on the
test set. The parallel tree structure of the Loc-PredModel based on the XGBoost algorithm
contributes to its lower time consumption, making it highly advantageous for practical
deployment and application. The experimental results demonstrate the effectiveness of the
Loc-PredModel in predicting users’ arrival locations and times. It not only exhibits good
prediction accuracy but also boasts lower time consumption.

After confirming the superior performance of the Loc-PredModel, further analysis
was conducted, through feature ablation experiments, to explore the impact of different
features on prediction performance. As shown in Table 8, the results show that the Loc-
PredModel achieves good prediction performance when given the departure time and
departure location information as inputs. Adding the bike_id feature has a larger impact
on improving prediction performance compared to adding the user_id feature. This aligns
with the results from the Pearson correlation analysis and feature importance analysis in
Section 5.2. Importantly, when both bike_id and user_id features are included as inputs to
the model, prediction performance does not improve further. This suggests that adding
more features to the model does not always enhance prediction performance, as it might
introduce redundant information.

Table 8. The impact of different predictors on model performance.

Features MAE RMSE R2 COR

start_time+start_lon+start_lat 0.101 0.268 0.908 0.950
start_time+start_lon+start_lat+user_id 0.101 0.218 0.928 0.963
start_time+start_lon+start_lat+bike_id 0.101 0.208 0.935 0.966

start_time+start_lon+start_lat+user_id+bike_id 0.101 0.208 0.932 0.965

Furthermore, we also examined how different travel distances and travel times affect
the predictive performance of the model. This analysis helps us understand the model’s
ability to predict user behavior under various travel conditions. Figure 6a illustrates the
predictive performance of the Loc-PredModel across different travel distances. Generally,
the model exhibits better predictive performance for shorter travel distances and poorer
performance for longer distances. The predictive ability of the model noticeably decreases
when the travel distance exceeds 5 km (R2 = 0.758). Figure 4b displays the model’s predic-
tive performance across different travel times. Similar to Figure 6a, longer travel distances
correspond to poorer predictive performance. However, the decline in performance is
more gradual, suggesting that the model is more sensitive to travel distance than travel
time. These results confirm the hypotheses made in Section 5.2, which stated that the user’s
travel distance and travel time are significantly correlated with prediction difficulty.
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6. Personalized Weather Report Generation

The primary objective of this research is to deliver personalized weather reports that
specifically address individual users’ requirements and preferences. This section aims to
provide a comprehensive understanding of how the outcomes from the predictive model
are integrated with user preference features to formulate customized weather reports.

6.1. Consideration of User Preference Features

In order to generate personalized weather reports, it is crucial to take into account
various user preference features, including their sensitivities towards elements such as
temperature, precipitation, and wind speed. These features can be derived from historical
preference data, user feedback, and personal information. By integrating these features,
a better comprehension of user needs can be attained, thereby facilitating the creation of
weather reports that align closely with their preferences.

6.2. Data Integration Process

The integration process involves the combination of three sets of data. Firstly, meteo-
rological data comprise two categories: basic meteorological elements such as precipitation,
temperature, wind speed, wind direction, and humidity, and lifestyle weather elements like
air quality, UV index, dress index, and car wash index. Secondly, user travel data primarily
include the user’s mode of travel, departure time, departure location, arrival time, and
destination. Lastly, user preference feature data involve user characteristics such as age
group, occupation, and primary commuting method.

6.3. Integration of User Preference Features and Weather Data

After acquiring user preference features, they are integrated with the weather data
produced by the prediction model to generate personalized weather reports. The process,
illustrated in Figure 7, entails the recommendation system gathering weather data, user
travel data, and user-specific features. Leveraging the Loc-PredModel previously discussed,
the system predicts the user’s location and time. Subsequently, the weather data, travel
data, and user-specific feature data are transmitted to the application server, where they
are amalgamated to generate data reports incorporating weather conditions, destination
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location, and time. These personalized reports are subsequently disseminated to user
terminals through the 5G messaging platform.
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6.4. Practical Application Scenarios

As shown in Figure 8, 5G Messaging Cloud Service Platform, including functions such
as notification management, reply configuration, 5G menu configuration, transmission
management, rich media message editing, and data management, we have successfully
implemented a personalized 5G Messaging Cloud Service Platform based on the Loc-
PredModel. Our personalized weather service recommendation system aims to provide
users with an intelligent, real-time, and tailored meteorological information experience. To
achieve this goal, we have designed a variety of 5G message templates for different scenar-
ios, catering to users’ diverse weather information needs. These templates dynamically and
automatically combine based on the user’s current context and service variations, allowing
flexible deployment of 5G message products for different scenarios. Whether users are on a
journey, preparing for outdoor activities, or in need of real-time weather information, we
can provide weather services relevant to their specific scenarios, ensuring users receive the
latest and most accurate weather information.

In addition, our system implements user text recognition and multimedia weather
interaction question–answer services across various scenarios. Users can pose weather-
related questions to the system through text input or voice recognition. The system responds
in rich multimedia formats, including voice synthesis, images, and videos, based on
the user’s question and current context. This enables users to intuitively grasp weather
conditions, whether they are inquiring about today’s weather, the temperature trend for
the upcoming week, or seeking weather advice for specific activities. Our system caters to
personalized needs, enhancing the user’s meteorological service experience.
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In summary, our personalized weather service recommendation system, through flexi-
ble 5G message templates and multimedia weather interaction question–answer services,
aims to provide users with a more intelligent, real-time, and tailored meteorological service.
We address users’ diverse meteorological information needs, offering a more convenient
and valuable weather forecasting experience.

7. Conclusions and Future Directions

In this research, a comprehensive exploration was conducted in the field of person-
alized weather recommendations to achieve accurate weather predictions based on user
behavior. By analyzing various features such as user departure location, departure time,
bike ID, and user ID, along with the correlations between weather information, predictions
were made for user destination and arrival time, providing users with more personalized
and practical weather recommendations.

Different model approaches, including K-Nearest Neighbor (KNN), Deep Neural
Network (DNN), Random Forest (RF), and Loc-PredModel developed using the XGBoost
algorithm, were thoroughly compared and analyzed. The experimental results demon-
strated that Loc-PredModel performed exceptionally well across multiple evaluation met-
rics, particularly in terms of MAE, RMSE, R2, and COR, showcasing its effectiveness in
predicting user destination and arrival time. Furthermore, the Loc-PredModel exhibited sig-
nificant advantages in terms of time efficiency, making it suitable for practical deployment
and application.

It is worth noting that the feature ablation experiment further verified the impact of
different features on prediction performance. It was observed that even with only departure
time and departure location information as input, Loc-PredModel achieved satisfactory
prediction performance. Moreover, incorporating the bike ID feature significantly improved
prediction performance, while the improvement from the user ID feature was limited.
Interestingly, the performance stopped improving when both bike ID and user ID features
were simultaneously input, emphasizing the importance of feature selection and model
design in personalized weather prediction.
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In summary, this research delved into the relationship between user behavior and
weather, resulting in a personalized weather prediction model based on user travel pat-
terns. Experimental results illustrated the model’s advantages in accuracy, practicality,
and time efficiency. This not only offers a new approach to enhancing the accuracy and
personalization of meteorological services but also provides robust support for the further
development and application of weather prediction. With the continuous advancement of
mobile internet and big data technology, we believe personalized weather prediction will
play an increasingly crucial role in areas such as smart cities and intelligent transportation,
providing users with more convenient and accurate weather information services.

By integrating 5G messaging platform technology and machine learning algorithms,
this research proposed an intelligent weather notification model based on travel prediction
and the 5G messaging platform. The model predicted users’ future locations by analyzing
their travel behavior patterns, combined user features to extract meteorological information
they are most likely to be interested in, and generated personalized weather reports. These
reports were then sent to users through the 5G messaging platform, supporting intelligent
interaction between users and the server. This model realizes personalized smart weather
services, enhancing user satisfaction and reliance on weather information.

8. Discussion and Limitations

The predictive capabilities of our location and time prediction model were initially
limited by the constraints of the shared bicycle dataset, particularly in relation to temporal
and spatial scales. However, the integration of spatial–temporal data obtained from 5G ter-
minal feedback holds promise in overcoming these limitations. This incorporation enables
our personalized weather report generation model to dynamically adapt to corresponding
temporal and spatial constraints, facilitating the generation of tailored weather reports for
effective dissemination to users.

8.1. Enhanced Predictive Capabilities

The implementation of 5G terminal feedback significantly enhances the acquisition of
real-time spatial and temporal location data, thereby augmenting the predictive capabilities
of our personalized weather report generation model. This real-time feedback mechanism
not only enriches the dataset but also contributes to the refinement of the predictive model,
leading to improved accuracy and relevance in the dissemination of weather reports
to users.

8.2. Privacy and Generalizability Considerations

While the integration of 5G terminal feedback data provides promising opportunities,
it necessitates robust data governance and privacy protection protocols. The ethical and
secure utilization of user location data demands careful consideration and implementation
of stringent privacy measures, including anonymization, data encryption, and transparent
data governance. These measures are crucial in upholding user trust and data security,
ensuring responsible and ethical deployment of the proposed model.

Moreover, the localized application of our approach within a specific geographical
context may pose challenges related to the generalizability and adaptability of the model
for diverse urban and rural settings. Variations in user travel behavior, environmental
factors, and infrastructural disparities across regions call for comprehensive validation
procedures to assess the model’s efficacy in different geographic and climatic conditions.
Comprehensive studies across varied geographical regions and user demographics are
necessary to ensure the model’s reliability and applicability across diverse settings.
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