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Abstract: Urban high-temperature disasters have gradually emerged as a significant threat to human
society. Therefore, it is crucial to assess and identify areas at risk of such disasters and implement
urban planning measures aimed at mitigating their impact. Additionally, a multitude of studies
have demonstrated the significant cooling effect of urban blue-green spaces (UGBS), which play
a pivotal role in urban environments. Incorporating a UBGS layout into planning and evaluation
processes has substantial potential for mitigating high-temperature disasters. This paper presents
the construction of a set of assessment processes for mitigating urban high-temperature disaster risk
using a UBGS structure layout specifically for the main urban area of Harbin, China. We employed
GIS and multi-source remote sensing imagery to develop local climate zone (LCZ) maps applicable
to the designated study area. The differentiated impact of UBGS factors on high-temperature disaster
risk was determined using the multi-scale geographical weighted regression model (MGWR). The
results showed the following: (a) There was an overall low risk level, with 19.61% of the high-risk
areas concentrated within the second ring road, forming a spatial pattern characterized by “one line,
one cluster”. (b) The risk of the building category LCZs was generally higher than that of the natural
category LCZs. The risk of the architectural LCZs could be summarized as the risk of low-density
LCZs being smaller than that of the high-density LCZs, except LCZ 5. The mean value of the LCZ 2
and LCZ 5 types was the highest. (c) Through indicator screening, AREA_MN, SHAPE_MN, PD,
and NP were found to be significant determinants influencing the risk, and the effectiveness and
spatial differentiation of these main factors exhibited notable disparities. (d) By comparing different
LCZ types, we concluded that the mitigation effect of these factors on risk may be interfered with
by building height (BH); NP may be positively interfered with by BH; and PD and SHAPE_MN
may be negatively interfered with by BH. The research results provided a new perspective and
practical scientific basis for high-temperature disaster risk-mitigation planning based on UBGSs
under LCZ classification.

Keywords: local high-temperature risk; urban blue-green space (UBGS); multi-scale geographical
weighted regression (MGWR); local climate zone (LCZ); Harbin city

1. Introduction

China’s urbanization rate has reached 65.22% since urbanization became a key growth
strategy [1,2]. However, rapid economic growth brought on by urbanization has also
resulted in the original natural landscape being replaced by roads and buildings, which
has contributed to frequent extreme heat in cities under the dual influence of low ground
permeability and global warming [3,4]. The frequency change of extreme weather will
have a profound impact on human society and the natural environment [5]. As a typical
urban climate problem, high-temperature disasters brought on by extreme hot weather
have become of concern to scholars in various fields [6,7]. In recent years, urban high-
temperature disasters have led to a significant increase in morbidity and mortality. In 1995,
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the Chicago high-temperature disaster caused more than 700 deaths in one week [8]. In 2010,
the heat disaster in New Delhi put more than 100 million people at risk from heat waves.
In 2023, a deadly heat wave called “Cerberus” swept across Europe, with temperatures
in Italy reaching a staggering 48.8 degrees Celsius. The risk assessment of urban high-
temperature disasters has become an important topic in the study of climate change due to
the increasingly frequent occurrence of extreme high-temperature events. To support the
sustainability of urban development, a thorough investigation of the relationship between
urban landscape characteristics and high-temperature disaster risks is crucial.

The study of high-temperature-disaster risk assessment has grown together with the
growth of natural-disaster risk assessment. In order to address the hazards of climate
change, the IPCC’s fifth report recommended a framework for assessing the risk of natural
disasters based on the notion of “disaster stress-social vulnerability exposure” [9]. In this
approach, the three characteristics of disaster factors, disaster environments, and disaster-
carrying bodies are used to underline the significance of the entire process of climatic
disaster occurrence. This approach has been widely used in the investigation of high-
temperature-disaster risk assessment. By merging GIS and remote sensing pictures in San
Diego, Inostroza et al. created a high-temperature risk-assessment model based on exposure,
sensitivity, and adaptability [10]. Thanvisitth-pon developed an urban high-temperature
risk-assessment framework using the four dimensions of risk, exposure, sensitivity, and
adaptive capability, while also assessing the urban high-temperature risk in Bangkok,
Thailand [11]. Some of these studies have conducted in-depth investigations into the
spatial and temporal distribution of high-temperature disaster risk, proving that there is
a spatial and temporal dynamic change of high-temperature disaster risk [12]. Yin used
daily meteorological monitoring data from 1989 to 2018 to explore the spatial and temporal
distribution pattern of high-temperature disaster risk in the Belt and Road region [13]. The
research on high-temperature catastrophe risk in the literature, however, has primarily
focused on analyzing the risk level in a particular study region, and the research findings
have been focused on creating each study area’s risk map [14,15]. The quantitative role
of the driving factors affecting high-temperature disaster risk remains uncertain [16]. The
presence of uncertainty is a constraint on the capacity of planners to provide precise
suggestions about the optimization of land use. Additionally, it restricts the potential of
landscape design to mitigate urban heat issues [17,18].

In order to explore the elements relevant to mitigating heat disasters, researchers in
various fields have studied various urban cooling measures, including the use of cooling
materials and colors [19,20], as well as the planning of urban blue-green spaces (UBGSs) [21].
Numerous studies have demonstrated that UBGSs may greatly reduce urban heat, lower
surface temperatures, and be more cost-effective [22,23]. Green spaces (including forests,
urban parks, green roofs, and other vegetated areas) can cool the air through evaporation
and also reduce the ground temperature by reducing the solar radiation directly reach-
ing the ground through shade [24]. Blue spaces (including water-covered areas such as
rivers, lakes, artificial water features, etc.) offer great cooling capacity due to their high
thermal capacity (i.e., they heat up more slowly than air and other substances for the same
amount of solar radiation) and evaporation and convection processes [25,26]. Studies have
also shown that UBGS cooling is controlled by environmental factors such as building
height/density [27,28]. However, high-temperature hazard risk depends not only on the
thermal hazard caused by excessively high temperatures but also on sensitivity and vul-
nerability [10,11]. Additionally, UBGSs may enhance residents’ participation in outside
activities, increasing the risk of residents suffering heat-related injuries [29]. Most studies in
the existing literature have concentrated on the direct relationship between landscape pat-
tern indicators, such as size, shape, type, density, connectivity, and complexity (composition
and configuration) of UBGSs and land surface temperature [30–33], but there has been less
focus on the trade-off between these indicators and the risk of high-temperature disasters.
It is unclear whether enhancing UBGSs will reduce the likelihood of high-temperature
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disasters, and further research is required to determine the full impact of UBGS landscape
patterns on this risk.

Due to limitations in the domains of researchers and planners, in past urban climate
studies, only a small proportion of the explanations of the effects of urban landscape el-
ements on the climate have been successfully translated into planning practices [34–36].
Weather researchers are unfamiliar with planning needs at all scales, and planners strug-
gle to understand the complex interactions between the climate and cities. A landscape
classification framework with a high degree of visualization that is simple to understand
and apply is required to bridge the knowledge gap between various fields and aid in the
translation of research findings on high-temperature disaster risk into sustainable urban
planning strategies. In order to clearly distinguish between the urban landscape and urban
climate, this study divided cities into local climate zones (LCZs) [37] and examined the
effect of UBGS landscape patterns on the risk of high-temperature disasters under the LCZ
scheme. The LCZs were divided into two categories. There were 17 LCZ types, including
10 building category LCZs (LCZs 1–10) and 7 natural category LCZs (LCZs A–G). The LCZ
scheme has been successfully applied to many urban high-temperature problems [38,39],
but few researchers have used it in the risk assessment of high-temperature disasters.
Existing studies have highlighted the importance of 3D and 2D features in urban envi-
ronments in ameliorating extreme heat events [40], while studies have also demonstrated
differences in climate characteristics among different building class LCZs [41]. Therefore, it
is of great significance to explore the distribution of local high-temperature disaster risks
and to thoroughly study the impact of UBGSs on high-temperature disasters. However,
most current studies have used fixed grids to divide basic units, which not only has poor
accuracy but also does not provide effective support for field environment optimization.
Based on current research, this paper focused on three targets: (1) carrying out a more
thorough LCZ categorization in the study region; (2) creating a model for assessing the risk
of high-temperature disasters, assessing high-temperature disasters from the angles of risk
of disaster-causing danger, disaster-generating sensitivity, and disaster-bearing vulnera-
bility, and determining the distribution of high-temperature disaster risk; and (3) using
MGWR to identify UBGS landscape pattern factors that can be used to regulate the risk of
high-temperature disasters. The research results provide a reference for mitigating urban
high-temperature disasters and the rational planning of urban land use.

2. Materials and Methods
2.1. Study Area

Harbin (latitude 45◦38′19′′–45◦51′47′′ N, longitude 126◦28′31′′–126◦50′7′′ E) is located
in the south of Heilongjiang Province, with a total area of about 53,100 square hectares. It
is in the temperate zone as a whole, with a temperate continental monsoon climate and
obvious monsoon characteristics, four distinct seasons, and large temperature differences
throughout the year. The lowest temperature exceeds minus 40 ◦C, the highest tempera-
ture can reach 39.2 ◦C, and the average annual precipitation is 649 mm. As a typical old
industrial city, Harbin’s rapid urbanization has caused a series of problems, such as habitat
fragmentation and environmental pollution. According to the statistics of the Heilongjiang
Meteorological Bureau, in the most recent 10 years, the maximum temperature in summer
in the city has gradually increased, the number of high-temperature days has gradually
increased, and the disasters caused by high temperatures in the city have gradually increas-
ingly affected the daily life of residents. This study took the main urban area of Harbin as
the research area, and the research scope was consistent with the boundary of the outer
ring of Harbin, which is composed of the central urban area surrounded by high-speed
roads (as shown in Figure 1).
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Figure 1. Research location map.

2.2. Overall Workflow

To evaluate the danger of the urban area experiencing a high-temperature disaster and
investigate the impact of UBGSs on its geographical heterogeneity, first, we merged building
data with RS data to identify the LCZs as the research scale. Based on this, we undertook
a thorough assessment of disaster-causing danger, disaster-generating sensitivity, and
disaster-bearing vulnerability, and determined the distribution of urban high-temperature
disaster risk using RS data and GIS. Secondly, we created a regression model using high-
temperature disaster risk as the dependent variable, and we filtered the UBGS landscape
pattern index computed from LULC data as an independent variable. We assessed the
performance of the OLS, GWR, and MGWR by comparing the sizes of R2 and AICc. Finally,
the important UBGS landscape pattern characteristics that could be utilized to control the
danger of an urban high-temperature disaster risk were identified, and the spatial factors
were incorporated into the high-temperature disaster risk-mitigation approach. The main
workflow of this article is shown in Figure 2.

2.3. Data

The RS image data used in this study (Table 1) included Sentinel-2A remote sensing
images and Landsat 8 remote sensing images, which were used for land-use analysis
and land-surface-temperature inversion, respectively. Basic geographic information data
(Table 2), including building, road network, POI, and population data, were used for LCZ
classification and high-temperature-disaster risk assessment.
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Table 1. Remote sensing data and description.

Remote Sensing Data

Time Resolution Data Sources

Sentinel-2A 23 August 2022 10 m European Space Agency
Landsat 8 15 September 2019 30 m USGS

Table 2. Basic geographic information and description.

Data Category Data Sources Data Content

Building (Vector data) Baidu Map Building structure outline, height, the
number of floors (stories)

Road network (Vector data) Baidu Map Urban road

POI (Vector data) Baidu API Name of point of interest, latitude
and longitude

Demographic (Raster data) World Pop Population distribution, age, sex

2.4. LCZ Classification

The urban architectural form affects the urban climate [42]. The LCZ system systemat-
ically classifies complex urban spaces from the perspective of climate effects, connecting
“urban structure” and “urban climate elements”. Stewart and Oke divided the entire LCZ
system into building category LCZs and natural category LCZs [37]. Therefore, based on
the natural conditions of the central urban area in Harbin city, relevant indicators were
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calculated to classify the building category LCZs [43]. The calculation formula is shown
in Appendix A. Additionally, the dominant land-cover type divided by the land-use data
served as the foundation for the classification of the natural category LCZs. Finally, we
combined the building category LCZs and the natural category LCZs based on the actual
conditions in the study region [44] to obtain the final LCZ classification (Table 3). To reflect
the building types between LCZ 9 and the natural environment classification, LCZ 9 was
subdivided into five subclasses, as illustrated in Figure 3.

Table 3. LCZ classification system.

Building Category LCZs Definition Natural Category
LCZs Definition

LCZ 1
Compact high-rise

LCZ A Dense trees(BSF > 40%, BH ≥ 30 m)

LCZ 2
Compact midrise

LCZ B Scattered trees(BSF ≥ 40%, 12 m ≤ BH < 30 m)

LCZ 3
Compact low-rise

LCZ D Low plants
(BSF > 40%, BH < 12 m)

LCZ 4
Open high-rise

LCZ E Bare rock or paved
(20% ≤ BSF < 40%, BH ≥ 30 m)

LCZ 5
Open midrise

LCZ F Bare soil or sand(20% ≤ BSF < 40%, 12 m ≤ BH < 30 m)

LCZ 6
Open low-rise

LCZ G Water(20% ≤ BSF < 40%, BH < 12 m)

LCZ 9
(Sparsely built)

LCZ 9A
Sparsely built mixed with

Dense trees (10% ≤ BSF < 20%) —— ——

LCZ 9B
Sparsely built mixed with

scattered trees (10% ≤ BSF < 20%) —— ——

LCZ 9D
Sparsely built mixed with

low plants (10% ≤ BSF < 20%) —— ——

LCZ 9E
Sparsely built mixed with bare rock or paved

(10% ≤ BSF < 20%) —— ——

LCZ 9F
Sparsely built mixed with bare soil or sand

(10% ≤ BSF < 20%) —— ——
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2.5. High-Temperature-Disaster Risk Assessment

In this study, a framework for assessing urban high-temperature disaster risk (T) was
developed. The risk was divided into three categories: danger of disaster generation (D),
sensitivity to disaster generation (S), and vulnerability to disaster bearing (V).

2.5.1. D Factors

The D factors were the factors that induced the formation of T. Based on previous
studies, we chose surface temperature and urban development intensity as hazard assess-
ment indicators [45]. In order to determine the surface temperature, we employed RS data
for surface temperature inversion. We then used building data to determine the level of
urban development, which included BSF and the normalized building index (NDBI). The
NDBI can represent the proportion of impervious surfaces and is an important indicator
of the urbanization level. The smaller the NDBI, the smaller the urban building land area,
that is, the smaller the proportion of impervious surfaces. In this study, Landsat 8 data
with 30 m resolution were used to calculate the NDBI. The calculation formula is shown in
Appendix B.

2.5.2. S Factors

The natural environment dominates the S factors created by T. The primary natural
environmental element, according to earlier studies, is water permeability, which includes
river systems and forest vegetation [46]. As a result, the basic research unit’s distance
from water and vegetation coverage (FVC) was chosen as the evaluation indices of disaster
environmental sensitivity. The research shows that the higher the vegetation coverage and
the shorter the distance to water, the better the cooling effect [21]. Therefore, considering
that FVC and proximity to water are negative indicators, the reciprocal value of the above
indicators was considered in the sensitivity evaluation. In this study, we used ArcGIS to
determine the proximity to water and Landsat 8 remote sensing image data to calculate the
FVC. The calculation formula is shown in Appendix B.

2.5.3. V Factors

Urban areas with a high population density and economic agglomeration are par-
ticularly vulnerable to the threat of high temperatures and are more likely to experience
unfavorable side effects that exacerbate the harm caused by T [47]. Children and the elderly
are particularly susceptible to heat disasters [48]. Therefore, population density (PD) and
facility density were selected as V evaluation indicators in this study, in which popula-
tion density included population density under 15 years old and population density over
60 years old, and facility density included living facility density and production facility
density. In this study, demographic data and POI data were used to calculate the PD and
facility density.

2.5.4. T Methods

(1) Calculation of the T index

According to previous studies, the multiplication and division of indicators are more
effective than addition and subtraction in reflecting the synergistic relationship between
indicators [49]. Therefore, the T model of this study was as follows.

FDRI = D× S×V (1)

In the formula, FDRI represents the T index, and the larger the value, the higher the
risk degree; D represents the disaster-causing danger; S represents the disaster-generating
sensitivity; and V represents the disaster-bearing vulnerability.
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According to the corresponding weights, the comprehensive indexes of D, S, and V
were calculated [49]. The formula was as follows:

Dj =
m

∑
i=1

Xij × wj (2)

where Dj is the comprehensive risk index of unit j, m is the number of indicators, Xij is
the range normalization value of index j of unit i, and wj is the weight of index j. The
sensitivity composite index Sj and the vulnerability composite index Vj were calculated by
the same method.

(2) Determination of the weight of each influencing factor

There are two types of index-weight calculation techniques: subjective weighting
methods and objective weighting methods. The expertise of relevant academics can be used
in the subjective weighing approach; however, the weight will be unstable because it is
based on the evaluator’s own preferences. The objective weighing method fixes the problem
of data stability, but the outcome can still be readily erroneous in terms of relevance. In
order to determine the weights of each index, this study used both a subjective weighting
method and an objective weighting method [50].

This study employed the analytic hierarchy process (AHP) as a subjective weighting
method to assess the importance of indicators associated with high-temperature disasters.
Initially, an analytic hierarchy model was constructed, consisting of a target layer, a criterion
layer, and an indicator layer. Subsequently, expert scoring was utilized to determine the
scores for each factor, and the judgment matrix was employed to derive the index weights
for each level. These weights were then utilized as the subjective weights for this study.

When weighing indications for high-temperature disasters, the entropy technique
was utilized as an objective method. To determine the objective weight of this study, the
extreme value approach was utilized first for standardization, and the entropy method was
used for thorough evaluation based on each indication standardization stage.

Table 4 displays the final weight of each index, which was determined by the weighting
and averaging 70% of the subjective weight findings and 30% of the objective weight results.

Table 4. Comprehensive weight of each indicator.

Target Layer Weighted
Value Criterion Layer Weighted

Value Secondary Index Weighted
Value Three-Level Index Weighted

Value

High-Temperature-
Disaster Risk
Assessment

1

Disaster-Causing
Danger

0.4139
Surface temperature 0.285

Development
intensity 0.1289

Building density 0.0945
Normalized

building index 0.0344

Disaster-Generating
Sensitivity

0.1161
Water proximity 0.0727

Fractional
Vegetation Cover 0.0434

Disaster-Bearing
Vulnerability 0.4701

population density 0.24

population density
under 15 years old 0.1199

population density
over 60 years old 0.1201

facility density 0.2301
living facility

density 0.1397

production facility
density 0.0904

2.6. Analysis of the Influence of the UBGS Landscape Pattern on T

The landscape pattern index can consolidate a lot of information on landscape patterns
and show how they fit together structurally and in space [30]. With “optimized stock”
planning, the cooling effect cannot be obtained by increasing UBGSs over a large area [51].
Therefore, it is very important to study how the size, form, and combination of UBGSs
affect T. This will allow us to find the best way to use space to fully take advantage of
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the cooling effect of UBGSs. We used T as the dependent variable and calculated the
number of patches (NP), patch density (PD), average patch area (AREA_MN), and average
shape index (SHAPE_MN) as independent variables [30–33] (see Appendix C for a list of
indicators and how to calculate them). This allowed us to find the regulatory factors by
which UBGSs influence T intensity.

As a variation of the standard geographically weighted regression (GWR) model, multi-
group geographically weighted regression (MGWR) is a good local regression method that
can solve and explain spatial heterogeneity [52,53]. At runtime, each independent variable
is given its own appropriate bandwidth. The bandwidth of the variable can show the size
of the variable’s spatial effect on the dependent variable, and the spatial process model
built using the multi-bandwidth method is more accurate [54,55]. This study explored
the effects of multiple UBGS landscape pattern indicators on high-temperature hazard
risk; the use of MGWR made the results more authentic. Before using the multi-scale
geographically weighted regression model (MGWR), we used the multiple linear stepwise
regression method to remove variables that were too similar. Then, MGWR was used to
find the different regulatory factors that were linked to the T.

yi =
k

∑
j=i

βbwj(ui, vi)xij + εi (3)

here, yi represents the observation value of the dependent variable at the ith sample point;
βbwj (ui, vi) is the regression coefficient of the jth independent variable at the ith sample
point; bwj is the differential bandwidth used by the regression coefficient of the jth variable;
(ui, vi) represents the spatial coordinates of the ith sample point; xij is the observation
value of the jth independent variable at the ith sample point; and εi is the stochastic
perturbation term.

In order to verify the applicability of MGWR in this study, spatial autocorrelation
analysis was carried out on the T index, and its spatial changes were visualized as spatial
clusters with similar values. The results showed that the spatial distribution of the com-
posite index had a strong positive spatial correlation. Units with a high-risk composite
index were more likely to be adjacent to other units with a high-risk composite index
(Appendix D). Therefore, the spatial heterogeneity of T in this study was verified, which
supported the spatial characteristics of the data captured by the GWR program. In addition,
the goodness of fit of R2, adjusted R2, and AICc were used as goodness-of-fit criteria to
compare the performance of traditional OLS, classical GWR, and MGWR. Models that best
fit the relationship between dependent and independent variables typically have higher
adjusted R2, lower resists, and lower AICc [56,57].

3. Results
3.1. LCZ Classification Map

The research area was divided into 964 research units using the urban LCZ division
approach, based on the fundamental unit of a road. To create the LCZ types, the height and
density of buildings inside the basic unit were counted and coupled with land-use data.

Figure 4 depicts the LCZ map of the study area, as well as a few samples of classified
images for the current LCZ classes. The LCZ map revealed a dispersion of the natural
category LCZs in close proximity to the city center, whereas the building category LCZs
were predominantly concentrated in the urban core (particularly evident in the yellow
regions). Notably, 76.5% of LCZs fell under the construction category, while 23.5% belonged
to the natural category, thus highlighting Harbin’s significant level of urbanization.
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Figure 4. LCZ map of the study area and the proportion of each LCZ.

The two primary categories in the building district were LCZ 6 (open low-rise) and
LCZ 5 (open midrise). The remaining space was dominated by LCZ 9B (sparsely built
mixed with scattered trees) and LCZ 9E (sparsely built mixed with bare rock or paved).
LCZ 2 and LCZ 3 (compact buildings) made up a total of 4.36% of the construction category
for the LCZ. The majority of Harbin’s buildings are intermediate and low-rise, and the
distribution is generally open.

Among the natural category LCZs, LCZ D (low plants) was the main landscape around
the main urban area, followed by LCZ B (scattered trees) and LCZ E (bare rock or paved).

3.2. Assessment of Disaster Risk
3.2.1. D Factors

The average, maximum, and minimum values of D in Harbin were 0.1749, 0.3785, and
0.0137. The city was in medium danger overall. The numerical results were divided into
five grades using the natural breakpoint method (Jenks). The value ranges, from small
to large, were low danger risk (0.0137–0.1117), relatively low danger risk (0.1118–0.1536),
medium danger risk (0.1537–0.1948), relatively high danger risk (0.1949–0.2393), and high
danger risk (0.2394–0.3785).

Specifically, a total of 106 LCZs (11.00%) were in high-danger risk areas, and the high-
danger risk areas were distributed in a “U” shape in the main urban area, widely distributed
in the areas around the railway station and scattered along the airport expressway, Gongbin
Road, and Xianfeng Road (Figure 5). There were 251 LCZs (26.03%) of relatively high-
danger risk areas and 250 LCZs (25.93%) of medium-danger risk areas, which were radially
interspersed with each other in the old city (inside the Second Ring Road) and along
Xianfeng Road, Xuefu Road, and urban and rural roads. Outside the tricyclic ring, there
were 357 LCZs (37.03%) with low danger risk, including low danger risk and relatively low
danger risk.
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As shown in Figure 6, LCZ2 and LCZ3 accounted for the highest ratio of 67% and
64%, respectively, in high-danger risk areas. Following this were LCZ 5, LCZ 6, and LCZ
4 at 20%, 19%, and 7%, respectively, showing that compact LCZs had a larger probability
of disaster-causing danger than other LCZ types. In the relatively high-danger risk areas,
LCZ 5 and LCZ 6 accounted for the highest ratios, at 54% and 48%, respectively, followed
by LCZ 4, LCZ 9E, and LCZ 9F, at 30%, 27%, and 21%, respectively. LCZ 3 and LCZ E
accounted for 15% and 14% of their own ratios, indicating that in the relatively high-danger
risk areas, compact LCZs, open LCZs, and LCZs with a larger proportion of hard ground
and bare soil were the most common.

It is important to note that the majority of LCZ 9E and LCZ 9F areas are in the construc-
tion phase and therefore have the potential to rise to high-danger risk areas. In contrast,
most of the LCZ 9A, LCZ 9B, and LCZ 9D types were in low- or relatively low-risk classes,
and the number of low-risk areas was LCZ 9D (20%) > LCZ 9A (19%) > LCZ 9B (2%). The
proportion of vegetation cover in an LCZ unit may be an important factor in effectively
resisting or reducing the risk of an LCZ disaster.



Atmosphere 2023, 14, 1652 12 of 22

Atmosphere 2023, 14, x FOR PEER REVIEW 12 of 23 
 

 

As shown in Figure 6, LCZ2 and LCZ3 accounted for the highest ratio of 67% and 
64%, respectively, in high-danger risk areas. Following this were LCZ 5, LCZ 6, and LCZ 
4 at 20%, 19%, and 7%, respectively, showing that compact LCZs had a larger probability 
of disaster-causing danger than other LCZ types. In the relatively high-danger risk areas, 
LCZ 5 and LCZ 6 accounted for the highest ratios, at 54% and 48%, respectively, followed 
by LCZ 4, LCZ 9E, and LCZ 9F, at 30%, 27%, and 21%, respectively. LCZ 3 and LCZ E 
accounted for 15% and 14% of their own ratios, indicating that in the relatively high-dan-
ger risk areas, compact LCZs, open LCZs, and LCZs with a larger proportion of hard 
ground and bare soil were the most common. 

It is important to note that the majority of LCZ 9E and LCZ 9F areas are in the con-
struction phase and therefore have the potential to rise to high-danger risk areas. In con-
trast, most of the LCZ 9A, LCZ 9B, and LCZ 9D types were in low- or relatively low-risk 
classes, and the number of low-risk areas was LCZ 9D (20%) > LCZ 9A (19%) > LCZ 9B 
(2%). The proportion of vegetation cover in an LCZ unit may be an important factor in 
effectively resisting or reducing the risk of an LCZ disaster. 

 
Figure 6. (a) The proportion of D numbers across different LCZ types; (b) The proportion of S num-
bers across different LCZ types; (c) The proportion of V numbers across different LCZ types.; (d) 
The proportion of T numbers across different LCZ types. 

Figure 6. (a) The proportion of D numbers across different LCZ types; (b) The proportion of S
numbers across different LCZ types; (c) The proportion of V numbers across different LCZ types.;
(d) The proportion of T numbers across different LCZ types.

3.2.2. S Factors

The mean value, maximum value, and minimum value of S were 0.0257, 0.0832, and
0.0014. The numerical results were divided into five grades using the Jenks method. The
value ranges, from small to large, were low sensitivity risk (0.0014–0.0147), relatively low
sensitivity risk (0.0148–0.0249), medium sensitivity risk (0.0250–0.0366), relatively high
sensitivity risk (0.0367–0.0508), and high sensitivity risk (0.0509–0.0832).

The number of LCZs with high or above-sensitivity risk was 228 (23.65%), and the
number of LCZs with low or below-sensitivity risk was 539 (55.91%). In general, the sensi-
tivity of the main urban area of Harbin was low risk. According to the spatial distribution of
disaster-generating sensitivity, the high-sensitivity risk areas in the study area had the char-
acteristics of “one belt, four cores”, with Harbin Railway Station as one belt and Haidong
Railway Station, the intersection of Nanzhi Road and Changjiang Road, Jinxiang Street,
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and some sections of the airport road as the core. In addition, in the Jiangnan area, the LCZ
containing Majiagou River was divided into the building category LCZs. The sensitivity
values of the building category LCZs gradually moved toward the high-sensitivity risk
core and decreased towards the main stream of the Songhua River or the Ashe River basin.
The LCZ sensitivity values in the Jiangbei area were at a low-sensitivity risk or relatively
low-sensitivity risk level.

As can be seen from Figure 6, LCZ 2 could not accurately characterize the characteristic
rule of sensitivity grade proportion due to the small number of samples but could be
summarized as a combination of the high-sensitivity type and medium-sensitivity type.
The other building category LCZs had similar characteristics in terms of the proportion
of sensitivity classes, among which the high sensitivity (including high sensitivity and
relatively high sensitivity) of the LCZ 5 type accounted for the largest proportion, reaching
46%, followed by LCZ 6 and LCZ 3, at 34% and 31%, respectively. In these LCZ areas,
vegetation was low, or the distance from the water was large, leading to a high sensitivity
level. LCZ 9A and LCZ 9B generally had a high proportion of vegetation cover, so the
low-sensitivity risk amount accounted for a relatively high proportion, at 88% and 77%,
respectively. The natural category LCZs were mainly low-sensitivity risk types, in which
the ratio of high sensitivity (including high sensitivity and relatively high sensitivity) of
LCZ A accounted for 14%, which may have been due to the high proportion of vegetation
in the dense forest area in the study area but the large distance from water.

3.2.3. V Factors

The average, maximum, and minimum values of V in Harbin City were 0.1255, 0.3667,
and 0.0001, respectively. The numerical results were divided into five grades by the Jenks
method. The value ranges, from small to large, were low vulnerability risk (0–0.0588),
relatively low vulnerability risk (0.0589–0.1122), medium vulnerability risk (0.1133–0.1681),
relatively high vulnerability risk (0.1682–0.2284), and high vulnerability risk (0.2285–0.3667).

Specifically, there were 117 (12.13%) LCZs in the high-vulnerability risk area and 199
(20.64%) LCZs in the relatively high-vulnerability risk area, as can be seen in Figure 5. In
the Jiangnan area, the high-vulnerability risk area was widely distributed in the dense
old urban area and interspersed with the relatively high-vulnerability risk area. The
vulnerability value gradually decreased outside the city. In the Jiangbei region, most LCZ
vulnerability levels were at medium risk or below.

As shown in Figure 6, high-vulnerability risk and relatively high-vulnerability risk
areas were mainly concentrated in the building category LCZs, in which LCZ 4 and LCZ 5
accounted for the highest ratio, reaching 74% and 83%, followed by LCZ 6 and LCZ 9A,
reaching 47% and 42%. In the study area, the open LCZ had a higher population density or
facility density. The vulnerability value of LCZ 3 was relatively low, which may have been
due to the constraints of low-rise building environments in this type of LCZ, resulting in a
limited number of people and facilities, and its vulnerability value was smaller than that of
the open LCZ.

3.2.4. T

In this study, the risk assessment model was used to comprehensively evaluate the
study area in combination with D (weight 41.39%), S (weight 11.61%), and V (weight
47.01%). The numerical results were divided into seven grades by the Jenks method.
The value ranges, from small to large, were extremely low risk (0–2.23 × 10−4), low risk
(2.24 × 10−4–5.43 × 10−4), relatively low risk (5.44 × 10−4–9.40 × 10−4), medium risk
(9.40 × 10−4–1.443 × 10−3), relatively high risk (1.444 × 10−3–2.106 × 10−3), high risk
(2.107 × 10−3–2.979 × 10−3), and extremely high risk (2.980 × 10−3–5.324 × 10−3), to
obtain T.

Overall, 189 (19.61%) LCZs were at medium risk or above. The study area was at
low risk as a whole. As can be seen from Figure 5, the high-value comprehensive risk
areas (graded above medium risk) in Jiangnan were distributed in a “one-line, one-cluster”
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pattern. The LCZ area along the railway of Harbin Station had a higher comprehensive risk,
followed by the LCZ area centered on the Second Ring Road Exhibition Business District.
The two risk areas were separated by the UBGS of the Majiagou River and the botanical
gardens. They were also sandwiched between the Songhua River and the Ashe River basin.
LCZ areas with UBGS facilities such as rivers and gardens had low comprehensive risk,
followed by the suburbs outside the third ring road. It is worth noting that taking the LCZ
along the airport road as an example, the LCZ along the road with the urban area as the
core radiating outward also presented with higher risk.

As shown in Figure 6, the areas above the medium risk level were mainly concentrated
in the building category LCZs. In addition to LCZ 2, LCZ 5 had the highest ratio of high
risk (including relatively high risk, high risk, and very high risk), reaching 54%, while
LCZ 3, LCZ 4, and LCZ 6 were all around 30%. Sparse building type LCZs (LCZ 9A-LCZ 9F)
and natural category LCZs (LCZ A-G) had almost no high risk (including relatively high
risk, high risk, and very high risk), except LCZ 9E, where high risk accounted for 18% of
the ratio.

3.3. Regulatory Factors of T

Through linear stepwise regression, we screened 4 core independent variables from
16 UBGS landscape pattern indices, including NP, PD, AREA_MN, and SHAPE_MN
(the linear regression results are given in Appendix E). The four indexes were used as
independent variables to conduct regression analysis with T, and we explored their impact
on T.

Table 5 lists the diagnosis results of the MGWR model. It can be seen that the goodness
of fit of R2 of MGWR was higher than that of the classical GWR model, increasing from
0.829 for GWR to 0.870 for MGWR. The AICc value also decreased from 1600.141 for GWR
to 1204.570 for MGWR. In general, MGWR had a better fitting degree, and the regression
result was closer to the real level.

Table 5. The fitting index of OLS, GWR, and MGWR.

Index OLS GWR MGWR

R2 0.231 0.829 0.87
Adj R2 0.228 0.779 0.841
AICc 2494.536 1600.141 1204.57

Figure 7 shows the MGWR model estimates for the relationship between T and UBGS
factors. When the local coefficients of some variables are shown spatially, the local grid of
variables that do not matter (p < 0.05) is colored white. In general, the UBGS landscape
pattern has a large negative effect on T. The data showed that T can be reduced by increasing
the number of UBGSs, increasing the density of UBGSs, increasing the area of UBGSs, and
changing the shape of UBGSs. Specifically, the central and eastern areas to the south of the
Songhua River, especially the NP in the northeast direction of the International Convention
and Exhibition Center, had a significant negative impact on T. The negative coefficient
of PD was mainly concentrated in the southern part of the study area along the Songhua
River. The significant influence area of AREA_MN was very large, covering almost all the
blocks on the south bank of the Songhua River. The negative coefficient of SHAPE_MN
was concentrated in the area of North 14th Street along the Songhua River and near the
Convention and Exhibition Center.
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It can be seen from Figure 8 that in different types of LCZs, there is spatial heterogeneity
in the influence of UBGSs on T. In LCZ 2 and LCZ 4, NP was a positive coefficient, indicating
that blindly increasing the amount of UBGSs in LCZ 2 and LCZ 4 may have a counter-effect
due to the excessive fragmentation of patches. In addition, by comparing the influence
coefficients of UBGSs on T in each LCZ, it can be qualitatively concluded that the influence
of NP, PD, and SHAPE_MN on T was affected by the BH in the unit. NP was positively
affected by BH. The higher the BH, the stronger the negative influence of NP on T; PD
and SHAPE_MN were negatively affected by building height, and the higher the BH, the
weaker the negative influence of PD and SHAPE_MN on T. The results showed that the
mitigation effect of UBGSs on T is different in different LCZs, and the LCZ interferes with
the mitigation effect of UBGSs.
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4. Discussions
4.1. Quantitative Analysis of the UBGS Landscape Pattern on High-Temperature Disaster Risk

UBGSs have significant cooling and mitigation effects on urban high temperatures [58,59],
but their quantitative impact on high-temperature disaster risk was unclear. In this study,
the risk of high-temperature disasters in the study area was assessed through the framework
of “D-S-V”, and the UBGSs in different research units with significant regulatory effects
on high-temperature disaster risk were analyzed using the MGWR model and landscape
pattern index. Compared with previous studies, this study not only identified the risk
distribution in the study area but also identified UBGS landscape pattern factors that could
be used to regulate risk. The results showed that UBGSs had a significant negative effect
on the risk of high-temperature disasters. The feasibility of controlling high-temperature
disaster risk by UBGSs was proved. At the same time, it can be seen from the results of the
model that the influence coefficients of UBGS factors were spatially heterogeneous, and
different factors had different negative impact areas on high-temperature disaster risk, so it
will be necessary to formulate different mitigation strategies for high-temperature disaster
risk in different regions. In addition, NP, PD, and SHAPE_MN in some plots were positive
coefficients, indicating that the regulation effect of UBGSs in some plots was affected by
surrounding factors, and UBGS planning problems cannot be solved simply by increasing
greening. We also confirmed the view of Mulligan et al. [60] on adjusting the urban spatial
form to alleviate the risk of high temperatures.

4.2. The Necessity of Considering Space in the Mitigation of High-Temperature Disaster Risk

Due to the spatial heterogeneity of the urban local climate and urban structure, as well
as the domain barriers between researchers and planners, planners face challenges in de-



Atmosphere 2023, 14, 1652 17 of 22

veloping UBGS planning schemes, and only limited research results have been successfully
translated into planning practices [33]. The LCZ classification was originally proposed
to facilitate the quantification of urban heat islands, and over time it has been applied
more and more widely [61]. This study used LCZs as the classification basis to assess
T, increasing the research on LCZs in the field of comprehensive data source evaluation
and also proving the viability of LCZs for the assessment of high-temperature disaster
risk. The results showed that the overall heterogeneous pattern of the urban form in
Harbin can be represented by spatial clusters of building category LCZs (LCZ 2-LCZ9F)
and natural category LCZs (LCZ A-LCZ G). There is spatial heterogeneity in the risk of
high temperature under different LCZs. Similar to previous research results, the risk of
high-temperature disasters in building category LCZs was generally higher than that in
natural category LCZs, but the risk of high-temperature disasters in building LCZs was not
fully consistent with the traditional concept of high density > low density, high rise > lower
rise [27]. LCZ 5 had a significantly higher risk of high-temperature disasters than other
building LCZs, except LCZ 2 (which had a small sample size and could not be accurately
judged). This indicated that there was strong spatial heterogeneity in the risk of high-
temperature disasters under LCZ classification. However, this local heterogeneity has been
almost completely ignored in climate-mitigation policies, and the one-size-fits-all design
strategy causes spatial inequality. Therefore, LCZ-based local heat-temperature disaster
risk information could be used as a reference for planners to develop more effective urban
climate-mitigation strategies [62].

In addition, in order to emphasize the spatial heterogeneity of design strategies in
urban planning, the MGWR model was used in this study to illustrate how UBGS factors
affect the high-temperature disaster risk of different units. The research results could
enable planners to determine the applicable location of specific urban design strategies,
so as to change the design model from one-size-fits-all to fine design. For example, in
LCZ 2 and LCZ 4, NP was a positive coefficient, so blindly increasing the number of UBGSs
would lead to space fragmentation and would not effectively alleviate the risk of high-
temperature disasters. Thus, emphasis should be placed on optimizing the original UBGSs
and increasing the area horizontally. In addition, the research results also showed that LCZs
interfere with the mitigation effect of UBGSs, while building height has a positive effect
on NP and a negative effect on PD and SHAPE_MN. Therefore, we believe that building
influences should also be considered when formulating mitigation strategies for different
LCZ spaces with the same impact factors.

4.3. Limitations and Prospects

In this work, internal UBGSs and high-temperature disaster risk were investigated us-
ing LCZs as the classification basis to serve as a foundation for climate-mitigation solutions.
The effects of UBGS variables were subjected to quantitative analysis, while the effects of
LCZs were only subject to qualitative analysis due to perspective and model limitations.
There had not been any quantitative investigation of the synergistic or inhibiting effects
of LCZs and UBGSs on the risk of high-temperature disasters. Therefore, the LCZ type
could be employed as an impact factor in future studies to jointly study the impact of
UBGS components on the risk of high-temperature disasters. Another issue that requires
more research is how to improve the research methodology so that it may be used in other
locations to reduce the danger of high-temperature disasters.

5. Conclusions

This study took the main urban area of Harbin as the research area, used GIS to create
an LCZ map suitable for the research area, and assessed the local high-temperature disaster
risk of Harbin city through the framework of “disaster-causing danger, disaster-generating
sensitivity, disaster-bearing vulnerability”. Then, based on the comprehensive evaluation
results of the LCZ unit and the UBGS structure, the MGWR model was used to explore the
spatial differentiation of the UBGS landscape pattern index and high-temperature disaster
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risk, and the impact of the UBGS index on high-temperature disaster risk in different LCZ
types was discussed before the law connecting the local high-temperature disaster and
UBGS planning response was summarized. The main research results are as follows:

(1) The overall risk of local high-temperature disasters in Harbin City is low. The number
of LCZs above a medium risk level is 189, accounting for 19.61% of all LCZs, and the
high-value area (above a medium risk level) was distributed in the second ring road
in a “one-line and one-group” way. The visualization of the high-temperature hazard
risk map can accurately provide optimization targets for planners.

(2) High-temperature disaster risk presented obvious spatial heterogeneity. The risk of
high-temperature disaster of building category LCZs was generally higher than that
of natural category LCZs. The highest risk of high-temperature disasters in building
LCZs was LCZ 2, followed by LCZ 5. The overall risk of high-temperature disaster
presented a compact/open category LCZs > Sparse LCZs > natural category LCZs
format, which proved that UBGSs were an important means to regulate the risk of
high-temperature disasters.

(3) There was spatial heterogeneity in the influence of UBGSs on high-temperature
disaster risk. All regional coefficients of AREA_MN had significant negative effects on
high-temperature disaster risk. The coefficient estimates of NP, PD, SHAPE_MN were
negative in most of the spaces, and a few were positive. The mean NP coefficients of
LCZ 2 and LCZ 4 were positive. This shows that it was necessary to consider space in
the mitigation of high-temperature disaster risk. These regulatory factors can provide
targeted strategies for the mitigation of high-temperature disaster risk in the context
of climate adaptation.

(4) The regulation effect of UBGSs on the risk of high-temperature disaster was interfered
with by the BH. When formulating mitigation strategies for different LCZ spaces
with the same impact factors, architectural impacts should also be considered, but the
specific quantitative analysis of their relationship needs to be further explored.
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Appendix A

Table A1. Definition and calculation methods of urban morphology parameters.

Parameters Calculation
Formula Definition Basic Data

BH BH = ∑n
i=1 BSi×BHi

∑n
i=1 BSi

BH is the average building height within the base unit.
Where, n is the number of buildings in LCZ cell; BSi is the
floor area of the building; BHi is the height of the building.

Building data

BSF BSF = ∑n
i=1 BSi
Ssite

BSF refers to the proportion of land surface covered
by buildings.
Where n is the number of buildings in LCZ basic unit; BSi
is the floor area of the building; Ssite is the total area of the
base unit.

Building data

https://www.esa.int/
https://www.esa.int/
https://www.usgs.gov/
https://lbsyun.baidu.com/
https://www.worldpop.org/
https://www.worldpop.org/
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Appendix B

Table A2. The formulas of NDBI and FVC.

Parameters Calculation
Formula

NDBI
NDBI = RSWIR−RNIR

RSWIR+RNIR

Where, RSWIR and RNIR are the spectral reflectance of Band 5 and Band 6 of Landsat 8, respectively.
FVC FVC = (NDVI − NDVImin)/(NDVImax − NDVImin)

2

Appendix C

Table A3. UBGS pattern index.

Variable Class Index Calculation Mode

CLASS

Percent of Landscape (PLAND) PLAND = Pi =
∑n

j=1 ai,j

Ai
× 100

Number of Patches (NP) NP = N

Patch density (PD) PD = ni
Ai
× 10000

Largest Patch Index (LPI) LPI = ai,j(max)
Ai

× 100

Edge Density (ED) ED =
Eij
A (10000)

Landscape Shape Index (LSI) LSI = 0.25Ei,j/
√ai,j

Mean patch area (AREA_MN) AREA_MN =
∑n

j=1 aij

Ni

Average shape index (SHAPE_MN) SHAPE_MN =

0.25Eij√
A

Ni

Fractal (FRAC_AM)
FRAC_AM =

m
∑

i=1

n
∑

j=1

[
2 ln(0.25Lij)

ln(aij)

(
aij
A

)]

CONNECT C =
∑n

j 6=k cj,k

ni(ni−1)/2 × 100

COHESION COHESION =

1−

m
∑

j=1
pij

m
∑

j=1
pij
√aij

[1− 1√
A

]−1
× 100

DIVISION DIVISION =

[
1−

n
∑

j=1

(
aij
A

)2
]

Aggregation Index (AI_class) AI_class =
[

gi,i
max→gi,i

]

LAND
CONTAG CONTAG =

1 +

m
∑

i=1

m
∑

k=1

(Pi)

 gik
m
∑

k=1
gik

ln(Pi)

 gik
m
∑

k=1
gik


2 ln(m)

(100)

Shannon’s Evenness Index (SHEI) SHEI =
−

m
∑

i=1
(Pi×ln Pi)

ln m

Aggregation Index
(AI_land) AI_land =

[
gii

max→gii

]
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Figure A1. The global autocorrelation Moran index of the combined risk of high temperature haz-
ards in the study area. 

Figure A1. The global autocorrelation Moran index of the combined risk of high temperature hazards
in the study area.

Appendix E

Table A4. Analysis results of multiple linear stepwise regression.

Independent Variable t p Allowance VIF

SHAPE_MN −11.537 0.000 0.803 1.246
NP −7.501 0.000 0.916 1.092
PD 5.262 0.000 0.771 1.297

AREA_MN −3.745 0.000 0.900 1.111
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