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Abstract: Taiwan is highly susceptible to global warming, experiencing a 1.4 ◦C increase in air
temperature from 1911 to 2005, which is twice the average for the Northern Hemisphere. This has
potentially led to higher rates of respiratory and cardiovascular mortality. Accurately predicting
maximum temperatures during the summer season is crucial, but numerical weather models become
less accurate and more uncertain beyond five days. To enhance the reliability of a forecast, post-
processing techniques are essential for addressing systematic errors. In September 2020, the NOAA
NCEP implemented the Global Ensemble Forecast System version 12 (GEFSv12) to help manage
climate risks. This study developed a Hybrid statistical post-processing method that combines
Artificial Neural Networks (ANN) and quantile mapping (QQ) approaches to predict daily maximum
temperatures (Tmax) and their extremes in Taiwan during the summer season. The Hybrid technique,
utilizing deep learning techniques, was applied to the GEFSv12 reforecast data and evaluated against
ERA5 reanalysis. The Hybrid technique was the most effective among the three techniques tested.
It had the lowest bias and RMSE and the highest correlation coefficient and Index of Agreement. It
successfully reduced the warm bias and overestimation of Tmax extreme days. This led to improved
prediction skills for all forecast lead times. Compared to ANN and QQ, the Hybrid method proved to
be more effective in predicting daily Tmax, including extreme Tmax during summer, on extended-range
time-scale deterministic and ensemble probabilistic forecasts over Taiwan.

Keywords: deep learning; ensemble forecast; GEFSv12; extended-range time scale; hybrid
post-processing; maximum temperature; Taiwan

1. Introduction

Temperature, a critical weather component, measures how hot or cold the environment
is. It significantly impacts various sectors, including the energy industry, aviation industry,
communication pollution dispersal, and agriculture. Climate change has become the most
severe scientific and social challenge in this country. The IPCC report [1] shows that in the
last 50 years, the annual mean temperature has been increasing at a linear trend of about
0.13 ◦C per decade, almost double the rate of the past century’s increase. In recent decades,
recurrent heat waves with extremely high temperatures have been observed across the
globe, including Asia [2–5], the USA [6], and Europe [7]. With the escalating progression
of global warming, heat waves are predicted to increase in frequency, intensity, duration,
and spatial coverage [1,8]. Heatwaves are among the most dangerous natural hazards
worldwide, leading to an increase in deaths and emergency hospital admissions. They
particularly impact children, older people, and patients with chronic diseases [2,9]. The
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US National Weather Service has shown that the annual casualties due to heat waves were
more than those caused by many dynamic natural disasters such as floods, hurricanes,
lightning, and tornadoes (http://www.nws.noaa.gov/om/hazstats.shtml (accessed on
1 June 2023).

Several studies [8,10] have found that heat waves over East Asia are primarily associ-
ated with persistent high-pressure and anticyclonic circulation patterns that dynamically
produce large-scale subsidence and, therefore, prolonged hot conditions at the surface level.
Numerous studies [11,12] reveal that the western North Pacific subtropical high (WNPSH)
is a vital component of the East Asian summer monsoon system. It plays a significant role
in regulating this region’s summer monsoon rainfall and tropical storm activities. The
anomalous WNPSH is a crucial source of extreme climate conditions, such as flooding,
drought, and heat waves, over the East Asian region. The occurrence of heatwaves in East
Asia is primarily due to variations in WNPSH and is also associated with El Niño–southern
oscillation (ENSO) as well as the tropical Indian Ocean warming [8].

Taiwan is one of East Asia’s subtropical islands, making it susceptible to extreme
weather and climatic changes brought on by global warming [13]. According to the IPCC
assessment [14], the rise in the air temperature in Taiwan (1.4 ◦C) from 1911 to 2005 is
nearly twice the increase (0.7 ◦C) in the Northern Hemisphere. Research [15] shows that
in Taipei during 1994–2003, each 1 ◦C increase in surface air temperature above 31.5 ◦C
led to an approximate increase of 9.3% in respiratory mortality, with a range of 4.1–14.8%.
Meanwhile, each 1 ◦C increase above 25.2 ◦C led to approximately a 1.1% increase in
cardiovascular mortality, within a range of 0.3–1.9% [15].

Extended-range forecasts are generally used to predict weather and climate extreme
events such as heatwaves, cold waves, droughts, and floods. These forecasts can provide
relevant weather information, such as the onset timing of the rainy season, the risk of
extreme rainfall events, heat waves, etc. However, there is still a well-known gap in
current numerical prediction systems for extended-range time scales. This gap exists
between medium-range weather forecasts (up to 10 days) and seasonal climate predictions
(longer than one month). The initial conditions of the atmosphere influence medium-
range weather forecasts. In contrast, seasonal climate predictions are more influenced by
slowly evolving surface boundary conditions, such as the sea surface temperature and soil
moisture content [16]. Predictions on the extended-range time scales have progressed in
some regions and seasons [17] despite the full potential of their predictability requiring
further exploration.

In recent years, there has been a significant improvement in the accuracy of short- and
medium-range weather forecasts worldwide, particularly in extra-tropical regions, which
benefit from advanced numerical modeling. However, the same cannot be said for tropical
areas such as monsoon regions, where prediction skills remain inadequate [18,19]. This can
predominantly be attributed to the complexity of tropical processes. These are influenced
by the interactions between the ocean, land, and atmosphere; atmospheric circulation;
convection; as well as clouds and radiation. Precipitation and moisture also play a role in
affecting different spatial and temporal scales. To enhance the prediction accuracy on this
time scale in smaller regions such as Taiwan Island, global models need to be improved
to better represent land–sea contrast and topography [20]. In addition to enhancing the
global models, post-processing techniques are also crucial for improving extended-range
forecasts in smaller regions. Post-processing techniques can be utilized to correct systematic
errors in the model output, such as bias in the mean and variance of the forecast variables.
Numerous studies [21–23] have shown that the post-processing of raw GCM forecasts is
essential. Various post-processing approaches with varying complexities and statistical
basis have been developed to calibrate raw GCM forecasts [24,25]. Computationally efficient
approaches have been proposed due to their ease of implementation and low computation
cost. These include the rank histogram calibration method [22], the “poor man’s ensemble”
method [26], the analog method [27], the frequency match method (FMM; [28]), and
the quantile mapping method [19,29]. However, these methods may not yield reliable
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and skillfully calibrated forecasts [30]. Data-driven models, such as machine-learning
models, are increasingly being used in post-processing. Comparisons of these models
demonstrated that their performance varies with study areas, GCMs, and evaluation
metrics [25]. Therefore, there is no single, ultimate post-processing model [31,32]. To
provide reliable and skillful forecasts, an effective post-processing approach is essential.
This approach must be unbiased, reliable in ensemble spread, and at least as good as the
climatology reference forecasts.

The NOAA NCEP has implemented the Global Ensemble Forecast System version
12 (GEFSv12) to support stakeholders for sub-seasonal forecasts, hydrological, and
other meteorological applications [29,33–35]. This model provides consistent reforecast
products for the period of 2000–2019, which are available on Amazon Web Services (AWS,
https://registry.opendata.aws/noaa-gefs/ (accessed on 1 June 2023)) and accessible to
the public. In this study, an Artificial Neural Network combined with quantile mapping
(ANN-QQ; hereafter termed as Hybrid post-processing) based on a statistical post-
processing technique is applied to NCEP GEFSv12 reforecast raw products for predicting
summer (June through September; JJAS) surface air maximum temperature (Tmax) and
associated extremes (Tmax ≥ 90th percentile of annual Tmax) on an extended-range time
scale over Taiwan. The paper is organized as follows: a brief description of the data and
analysis methodologies is given in Section 2. The results are discussed in Section 3, and
the broad conclusions are presented in Section 4.

2. Data and Methodology
2.1. Data Used

The surface air maximum temperature (Tmax) products of the NCEP GEFSv12 over
Taiwan island (21.5◦ N–26◦ N, 119.5◦ E–122.5◦ E) for reforecast period (2000–2019) have
been obtained from Amazon AWS. These products are generated from initial conditions at
00 UTC daily, with forecasts leading up to 16 days for 5 ensemble members. The reforecast
products extended up to 35 days with initial conditions set weekly at 00 UTC every Wednes-
day for 11 ensemble members [27]. GEFSv12 reforecast products based on the Global
Forecast System version 15.1 (GFSv15.1). It uses the FV3 Cubed-Sphere dynamical core [36]
with a horizontal resolution of ~25 km (C384 grid) and 64 hybrid vertical levels, with the top
layer centered at 0.27 hPa (~55 km). A modified scale-aware convection parameterization
scheme is incorporated into GEFSv12 model physics to mitigate the excessive cloud-top
cooling and stabilize the model [37]. The Hybrid Eddy-Diffusivity Mass-flux (EDMF)
scheme is utilized to simulate vertical mixing in the planetary boundary layer [38], and the
GFDL-based cloud microphysics scheme is used for predicting five cloud species [33,34].
The Rapid Radiative Transfer Model (RRTM), developed at Atmospheric and Environ-
mental Research, is used to estimate shortwave and longwave radiative fluxes [39]. Chun
and Baik (1998) developed a scheme for convective gravity wave drag [40]. On the other
hand, the GFS orographic gravity wave drag and mountain blocking schemes are based
on Alpert’s (1988) study [41]. A two-tiered approach is used to derive the SST boundary
conditions, which account for the day-to-day variability of sea surface temperature (SST)
and near sea surface temperature (NSST), respectively [42–44]. The GEFSv12 forecast
system uses SKEB [45,46] and SPPTs [47,48] to represent model uncertainty. Further details
on the configuration and impacts of the individual components can be found in the work
of Zhou [33,34].

In this study, we used the GEFSv12 Tmax reforecast products. These are based on
00 UTC initial conditions every day and provide forecasts for a lead time of 1 to 16 days
with 5 members. The reforecast data are available in grib2 format at 3 h intervals at 0.25◦

resolution for the first 10 days of forecasts. Beyond these 10 days, the data are available
at 6 h intervals and at a resolution of 0.5◦. For consistency, forecasts from Day-1 to 10 are
considered to have the same horizontal resolution as forecasts from Day-11 to 16. The
maximum 2 m air temperature (Tmax) over Taiwan for the period from 2000 to 2019,
obtained from the ECMWF Reanalysis version 5 (ERA5) (https://cds.climate.copernicus.

https://registry.opendata.aws/noaa-gefs/
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eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form (accessed on 1 June 2023),
was used as a reference for evaluating the performance of GEFSv12. This evaluation focuses
on summer Tmax and associated extreme events of Tmax (daily Tmax exceeding the 90th
percentile) over Taiwan, with forecast lead times from Day-1 to 16 [49].

The ERA5 reanalysis dataset, based on a sophisticated weather model and including
a wealth of data types, provides globally distributed weather variables at 30 km resolu-
tion. It employs an assimilation system using ground, ocean, satellite, and atmosphere
observations, making it regarded as a proxy for regional observations [49]. In 2022, Lee and
his team evaluated the capability of ERA5 data to accurately represent rainfall trends in
Taiwan and discovered that it effectively identified significant, localized rainfall events [50].
Similarly, a 2020 research study by Mostafa Tarek and associates utilized ERA5 data as
a benchmark for hydrological simulations in North American catchments and found its
results to be on par with those derived from observation-based models [51]. Velikou and
team, in their 2022 publication, confirmed the precision of ERA5 data in representing both
average and peak temperatures across Europe [52]. Additionally, McNicholl and colleagues
in 2021 stated that ERA5 data provide trustworthy estimates of weather conditions even in
areas where on-the-ground measurements are unattainable [53]. These studies demonstrate
the credibility of the ERA5 reanalysis dataset when used to create calibration models and
serve as a benchmark for assessing the efficiency of raw and calibrated predictions.

2.2. Calibration Methods
2.2.1. Quantile Mapping

A suitable statistical post-processing technique is highly required to calibrate any
GCM raw forecast products based on the reforecast period uncertainty for skillful forecast
guidance and to increase its usability. In this study, the quantile mapping post-processing
technique is used as a benchmark calibration method for evaluating the Artificial Neural
Network (ANN) and the ANN combination with quantile mapping (ANN-QQ, hereafter
mentioned as Hybrid). These calibration methods on NOAA GEFSv12 reforecast products
for deterministic and ensemble probabilistic forecasts of summer Tmax and its extremes on
an extended-range time scale over Taiwan with Day-1 to 16 forecast lead times have been
evaluated against ERA5 reanalysis.

The QQ method, also known as histogram equalization or rank matching [11,19,54], is
used to statistically transform model data into bias-corrected data to increase the usability
of model products after calibration. The daily Tmax statistics for ERA5 reanalysis and
GEFSv12 reforecasts were determined separately for each lead time (Day-1 to Day-16) and
grid point of Taiwan. This calibration method is independently applied to each of the
five ensemble members and each forecast lead time. To enlarge the sample size, a 31-day
moving window is utilized, positioning the forecast day at the center. This results in a
sample size of 620 time steps (31 days × 20 years) for each day and each lead time forecast
at a grid point. For the gridpoint on 1 June 2000 with a Day-1 forecast lead time, the sample
of daily Tmax from 17 May to 16 June from ERA5 and GEFSv12 reforecast period was
used. The same procedure is independently implemented for each lead time and ensemble
member at a grid point to approximate the daily Tmax intensity distributions from ERA5
and GEFSv12 reforecasts for each day from 1 June to 30 September. This technique employs
the empirical probability distributions of ERA5 and GEFSv12 Tmax values to generate a
calibrated output. The bias-corrected value for the Tmax forecast of the GEFSv12 model (Q)
can be calculated by taking the inverse of the cumulative distribution function (CDF) of
ERA5 values (CDFERA5

−1) at the probability corresponding to the raw GEFSv12 output
CDF (CDF GEFSv12) at a particular value (Ft).

Q = CDFERA5
−1(CDFGEFSv12(Ft)) (1)

The technique of quantile mapping involves a transformation between CDFs of the
ERA5 and GEFSv12 models. The Leave-one-out Cross-Validation (LOOCV) procedure is

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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implemented. The raw and QQ-calibrated forecasts are referred to as Raw-GEFSv12 and
QQ-GEFSv12, respectively.

2.2.2. Artificial Neural Network (ANN)

The IPCC report [15] emphasizes the challenge meteorologists face in forecasting tem-
perature changes due to global warming. The complexity and non-linearity of atmospheric
variables, such as temperature fluctuations, make extended-range predictions quite compli-
cated. A study [55] indicates that a method based on Artificial Neural Networks (ANN)
provides more precise temperature prediction compared to conventional techniques due to
its exceptional ability to handle the complex non-linearities of the atmosphere. This method
surpasses statistical approaches that often require assumptions about data, such as normal
distribution or data immutability, providing a superior way to detect discrepancies. The
limitations of standard temperature prediction involve assumptions of linear connections
between variables, which can occasionally complicate results [56]. Conversely, ANNs
provide a robust tool for swift data processing inspired by biological neurons’ parallel
processing. Interlinked neurons in ANN can handle complex situations and offer more
precise temperature forecasts than traditional statistical approaches. Significantly, ANNs
can adapt, permitting model weight adjustments to learn the relation between input and
output from existing data directly [56]. ANNs have the ability to minimize training times
and data requirements compared to other statistical methods. They can establish a correla-
tion between inputs and outputs to forecast outcomes. As a data-centric approach, ANNs
can discern non-linear associations between inputs and outputs without resolving intricate
partial differential equations. This makes it an optimal tool for predicting temperatures, as
shown in many studies using atmospheric data [57–60]. This study implements an ANN
calibration method on GEFSv12 reforecast products for summer Tmax and associated Tmax
extremes over Taiwan for all forecast lead times (Day-1 to 16).

ANNs can be either single-layer or multi-layer. The single-layer model directly con-
nects each input and output unit without interconnections among input units. The more
complex multi-layer model, however, does interconnect its input and output units [61,62].
The Back Propagation Neural Network (BPNN) uses the gradient descent method to min-
imize the discrepancy between the intended target and the actual outcome. This is a
widely used design in Artificial Neural Networks (ANN) [63,64]. This type of ANN is
constructed, assessed, and accuracy tested. Hecht-Nielsen undertook a study using double-
cross-validation to find the perfect number of hidden neurons in a single hidden layer
to avoid overfitting. However, an ANN’s effectiveness heavily depends on the training
data and parameters like initial weights, learning pace, momentum, epoch, and activation
functions. Thus, to achieve the best performance, the structure of the ANN should be cus-
tom designed to match the characteristics of the dataset [65]. In this study, pre-processing
techniques were used to identify and eliminate outliers, reduce noise, and normalize the
range of inputs and outputs for the daily Tmax from the 5 ensemble members of GEFSv12.
The Neural Network Toolbox in MATLAB was used to train, visualize, and simulate ANNs.
To determine the optimal ANN structure for a particular day forecast, a double cross-
validation procedure was employed. This involved leaving out one datapoint from the
620 sample data and fitting the ANN model to the remaining data in a cross-validation
mode. The performance of each iteration was monitored using metrics such as Mean Square
Error (MSE) and Root Mean Squared Error (RMSE), while the number of hidden neurons
increased from 1 to 20.

Many research studies [64,66] have shown that when the number of hidden neurons is
increased, the MSE and RMSE decrease for both training and testing data. However, after a
certain point, the MSE and RMSE decrease for training but increase for testing. This study
also indicates that after a certain point, the errors in testing data will continue to rise without
much change in the training data. To ensure that the training, testing, and validation sets
are evenly distributed across different classes and to avoid any potential issues that may
arise from having similar or sequential data in the sets, the optimal number of neurons for
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the ANN model was determined by randomizing the pooled dataset. This resulted in a
best-hidden layer size of 7. In the context of a Backpropagation Neural Network (BNN),
randomization helps to prevent the algorithm from quickly converging to local minima by
introducing oscillations.

To optimize the ANN, the Min-Max transformation is applied to input and output
values to speed up the training process, avoid saturation, and reduce the chances of
becoming stuck in local optima. This transformation shifts the data into the range [−1, 1]
through the following equation:

Xi,scaled =
Xi − Xmin

Xmax − Xmin
(2)

where Xi is the original input value. After the ANN simulation, the transformed values
are converted back to their original values using various transfer functions. Johnstone and
Sulungu [67] discuss the most commonly used transfer functions, such as linear, hyperbolic
tangent sigmoid, and logistic sigmoid, which are suitable for problems with non-linearity.
These transfer functions enable the ANN to accurately convert the transformed values back
to their original form. In this study, a feed-forward Backpropagation Neural Network with
7 hidden neurons and a hyperbolic tangent sigmoid transfer function was implemented
using the MATLAB ANN toolbox and the Levenberg–Marquardt training algorithm for
deep learning of summer Tmax over Taiwan. This choice of transfer function is effective for
temperature prediction, as it is a non-linear, differentiable, and monotonic function that
yields better training performance for multi-layer neural networks. In this study, a basic
ANN is created using the components outlined in Table 1.

Table 1. The following are considered to develop a simple ANN model to improve the GEFSv12
prediction skill in depicting summer daily Tmax and associate Tmax extremes over Taiwan.

No. of Hidden Layers: 1

No. of nodes/neurons in the hidden layer 7

Neural Network used Feed-forward network

Neural Network processing functions Map matrix row minimum and maximum
values to [−1, 1]

Data divided function 70% data for training and 30% data for
validation

Learning rate 0.001

Max number of iterations/epochs used 1000

Error tolerance for stopping criterion 1 × 10−14

Training function used Supervised weight/bias training function with
sequential order weight/bias training (trains)

Neural Network performance functions used Mean squared error performance function

For summer Tmax forecasts over Taiwan, the ANN calibration method is applied to
each forecast lead time at a grid point independently using a 31-day moving window with
620 sample data (31 days × 20 years). The forecast day is the center of the 31-day moving
window. The Leave-one-out Cross-Validation (LOOCV) procedure has been implemented
to calibrate the outputs of the GEFSv12 using ANN. The resulting calibrated outputs are
referred to as ANN-GEFSv12.

2.2.3. Hybrid Post-Processing

The QQ technique, described in Section 2.2.1, was used to improve summer daily
Tmax and associated Tmax extremes in Taiwan by applying it to the ANN-GEFSv12 output.
The LOOCV procedure was used to evaluate the performance of the Hybrid statistical
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post-processing method. A visual representation of the methodology used in this study
is presented in Figure 1. The predictive accuracy of the different calibration methods for
deterministic and ensemble probabilistic forecasts of Tmax and associated extremes was
compared using standard skill metrics.
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2.3. Analysis Procedure

The accuracy of Raw, QQ, ANN, and Hybrid methods in predicting summer daily Tmax
over Taiwan for Day-1 to 16 forecast lead times during the reforecast period (2000–2019)
was evaluated against ERA5 using standard skill metrics such as mean bias (MB), Root
Mean Square Error (RMSE), correlation coefficient (CC), and Index of Agreement (IOA).
The probability distributions of the Raw and all three calibration methods were com-
pared with ERA5 by pooling all grid points and 5 ensemble members for each forecast
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lead time separately. The spatial distribution of summer (JJAS) Tmax extremes over Tai-
wan was analyzed, taking into account the average frequency of Tmax extremes from all
five individual members for each forecast lead time separately. The performance of Raw
and all three calibration methods in predicting summer Tmax extremes against ERA5 was
evaluated using a contingency table and associated statistical categorical skill scores, such
as Accuracy (ACC), Frequency Bias (BIAS), Probability of Detection (POD), False Alarm
Rate (FAR), Success Ratio (SR), Threat Score (TS), and Equitable Threat Score (ETS). A
performance diagram has been created to illustrate the statistical categorical skill scores of
Raw and all calibration methods in depicting summer daily Tmax extremes. This diagram
measures the geometric relationship between Frequency Bias, SR, FAR, POD, and TS [68].

Probabilistic forecasts are essential for providing more accurate and reliable weather
and climate predictions, as they are better able to capture the inherent uncertainty of
extreme events. To evaluate their accuracy, metrics such as reliability, resolution, Brier score
(BS), Brier skill score (BSS), and receiver operating characteristic (ROC) curve are used.
These metrics are invaluable for climate risk management in various sectors. The Brier score
measures the accuracy of probabilistic forecasts in binary situations and ranges from 0 to 1,
with 0 being the perfect score. The Brier skill score (BSS) is used to compare the accuracy
of a probabilistic forecast to a reference/climatological forecast. A BSS of 1 indicates an
accurate forecast, while a BSS of 0 or lower suggests that the forecast is less reliable than
the reference [69,70]. The reliability and resolution of an ensemble probabilistic forecast
of a particular category are two distinct characteristics [71]. The reliability of an ensemble
probabilistic forecast is the accuracy of the predicted class/interval of outcomes compared
to the actual distribution of observations. A perfectly calibrated forecast has a reliability
of 0, while a scale from 0 to 1 measures the reliability of a forecast, and 1 represents the
worst reliability. The resolution of a forecast is a measure of its accuracy in predicting the
frequency of an event. A resolution of 0 indicates that the forecast is either always the
same or completely random, while a resolution equal to the uncertainty means that all
uncertainty has been accounted for. The receiver operating characteristic (ROC) curve plots
the False Alarm Rate (FAR) on the x-axis against the Probability of Detection (POD) on
the y-axis. A forecast with skill will have a curve above the diagonal line, while a forecast
below the line is worse than a climatological or reference forecast. An accurate forecast will
be close to the ideal upper left corner [72].

3. Results

This study applied various calibration methods to NOAA NCEP GEFSv12 reforecasts
to improve the predictability of summer daily Tmax and associated Tmax extremes over
Taiwan. The performance of these methods was evaluated using standard skill metrics
for deterministic and ensemble probabilistic forecasts. The results are discussed in the
following subsections.

3.1. Prediction Skill of Raw, QQ, ANN, and Hybrid Post-Processing Methods for Summer Daily
Tmax over Taiwan

The performance of raw and three calibration methods (ERA5, QQ, ANN, and Hybrid)
for predicting summer (JJAS) daily Tmax over Taiwan for 2000–2019 was evaluated by
analyzing the spatial patterns of the climatological mean at forecast lead times of Day-1,
5, 10, and 15 (Figure 2). Both Raw-GEFSv12 and ERA5 display similar spatial patterns of
summer daily Tmax over Taiwan for all forecast lead times. However, GEFSv12 exhibits a
warm bias in most parts of the country. The daily Tmax from ERA5 is lower in the east and
progressively increases towards the west, a trend that is similarly observed in GEFSv12.
The highest summer Tmax is observed in the southernmost region of Taiwan. The GEFSv12
forecasts for all lead times confirm this. All calibration methods notably reduced the warm
bias in most parts of Taiwan, resulting in a Tmax climatological mean similar to ERA5 for
all forecast lead times.
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Figure 2. Climatological mean of summer (JJAS) surface air maximum temperature (Tmax) over
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times for the period of 2000–2019.

The spatial patterns of IAV of summer Tmax over Taiwan from GEFSv12 and ERA5 are
similar across all forecast lead times (Figure 3). The GEFSv12 model tends to overestimate
the IAV of summer Tmax in most parts of the country for all forecast lead times. The IAV of
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Tmax is higher in the northeastern part of the country, and this is accurately represented in
the GEFSv12 forecasts for all lead times. All three calibration methods successfully reduced
the overestimation in IAV of Tmax over Taiwan. The spatial patterns of the IAV of Tmax
were found to be similar to those of ERA5 for all forecast lead times. The ANN method
slightly underestimated the IAV of Tmax in most parts of the country, while the QQ and
Hybrid methods accurately captured the magnitude of the IAV of Tmax over Taiwan for all
forecast lead times. The Hybrid method of capturing the IAV of Tmax in Taiwan is more
effective than the QQ method, especially for longer lead time forecasts (Figure 3).
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The QQ method has the advantage of adjusting the Tmax probability distribution to
the observed data, particularly in the extreme tails, to account for IAV. The spatial patterns
have been improved; however, the temporal patterns remain unchanged. Deep learning
combined with the QQ method has been found to be effective in capturing temporal
patterns, IAV, and climatological patterns. The Hybrid method has been seen to be more
successful than the QQ and ANN methods.

The Raw-GEFSv12 model showed a high RMSE in predicting summer daily Tmax in the
eastern parts of Taiwan for all forecast lead times (Figure 4). The patterns of RMSE were akin
to the IAV patterns, showing elevated values in regions with high IAV. The RMSE increased
with lead time. All three calibration methods effectively reduced the RMSE in most parts
of Taiwan for all forecast lead times. The RMSE of the QQ method increases for longer lead
times, while the ANN and Hybrid methods demonstrate substantial improvements. The
comparison between the methods reveals that the RMSE of ANN and Hybrid methods is
lower than that of the QQ method for all forecast lead times, particularly in the eastern
parts of the country (Figure 4).
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The GEFSv12 shows a high Index of Agreement (IOA) (>0.8) for predicting summer
daily Tmax in northwestern Taiwan, decreasing to >0.5 in the southeast (Figure 5). However,
the IOA is lower for all forecast lead times in the central part of the country. The IOA of
GEFSv12 for summer daily Tmax generally decreases with increasing forecast lead time in
most areas. However, the implementation of calibration techniques has notably enhanced
the IOA in predicting Tmax over Taiwan across all forecast lead times. The ANN method
has an IOA range of 0.7 to 1, which is higher than the QQ range of 0.5 to 1. The accuracy of
the forecasts for Tmax in all parts of Taiwan produced by ANN is significantly higher for
longer lead times. Conversely, the IOA from QQ deteriorates with an increase in lead time,
primarily due to the greater magnitude of errors in the forecasts. However, the Hybrid
method yields a higher IOA value (0.8–1) than the other two methods, making it the most
reliable for predicting daily Tmax during the summer over Taiwan across all forecast lead
times. Hybrid methods of predicting Tmax demonstrate more reliable results across the
majority of the country compared to ANN and QQ for all forecast lead times (Figure 5).
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The performance of the Raw and all three calibration methods in predicting Tmax
over Taiwan for the reforecast period were evaluated using RMSE, mean bias, correlation
coefficient, and Index of Agreement (Figure 6). The results demonstrated that the RMSE
increased proportionally with the forecast lead time. The Raw displayed the highest RMSE,
fluctuating between 1.5 and 2.5 ◦C. Yet, the usage of calibration techniques including QQ
(0.8–1.2 ◦C), ANN (0.6–1 ◦C), and Hybrid (0.6–1 ◦C) notably reduce the RMSE across all
forecast lead times (Figure 6a). The comparison of the methods reveals that ANN and
Hybrid have similar RMSE values, which are much lower than QQ for all forecast lead
times (Figure 6b). The warm bias of 0.6–1 ◦C over Taiwan during the summer season
was successfully reduced to nearly 0 ◦C by all calibration methods. The GEFSv12 exhibits
a distinct correlation with Taiwan’s daily summer Tmax for Day-1 forecasts, showing
a high correlation value of more than 0.8. However, the correlation tends to diminish
with an increase in lead time, falling to 0.4 (refer to Figure 6c). No improvement was
observed in the correlation coefficient when the QQ method was used compared to the
Raw products. Both the ANN and Hybrid calibration methods significantly improved the
correlation coefficient (r > 0.79) for all forecast lead times. The Hybrid method yields the
same correlation coefficient values as the ANN for all forecast lead times. However, for
longer lead times, both the ANN and Hybrid methods show a significant improvement in
the correlation coefficient (Figure 6c). The IOA of GEFSv12 in predicting Tmax over Taiwan
is highest for shorter lead times (0.8) and decreases to 0.6 as the forecast lead time increases
(Figure 6d). All calibration methods enhance the IOA at each forecast lead time. The Hybrid
method exhibits the maximum IOA (0.92), outperforming both the ANN (0.88) and QQ (0.9)
methods. The Hybrid method consistently produced higher IOA values compared to the
ANN across all forecast lead times, as depicted in Figure 6d. The Hybrid calibration method
exhibited higher IOA values than the QQ method for all forecast lead times (Figure 6d).
This increase in accuracy is particularly beneficial for longer lead time forecasts, which can
greatly aid climate management in various regional sectors, such as Taiwan.
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The probability distribution (PDF) of summer daily Tmax over Taiwan was calculated
from all five ensemble members and all grid points of Taiwan daily Tmax values pooled
for ERA5, Raw, and each calibration method for the study period and selected lead time
forecasts (Day-1, 5, 10, and 15). The results are shown in Figure 7. The Raw data PDF of the
daily maximum temperature during summer is more right-skewed than the ERA5 data
across all forecast lead times. This suggests that there is a higher frequency of extreme
Tmax days in the Raw data compared to the ERA5 data. These findings are illustrated in
Figure 7. The calibration methods were well-adjusted for the probability distribution of
summer daily Tmax over Taiwan to ERA5 for all the forecast lead times. The QQ method
was found to be more effective than the ANN. The Hybrid method proved to be the most
effective for adjusting the PDF of summer daily Tmax over Taiwan, according to ERA5 data.
It performed better than both the QQ and ANN methods in aligning the summer daily
Tmax PDF with the ERA5 data.
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Figure 7. The PDF of summer (JJAS) daily Tmax over Taiwan from ERA5 (black dotted lines), Raw
(blue dotted lines), QQ (magenta dotted lines), ANN (cyan dotted lines), and Hybrid methods (Red
dotted lines) for Day-1, 5, 10, and 15 forecast lead times for the reforecast period of 2000–2019.

3.2. Statistical Categorical Skill Scores for Summer Daily Tmax Extremes over Taiwan from Raw,
QQ, ANN, and Hybrid Methods

Statistical skill scores (e.g., POD, FAR, ACC, SR, TS, ETS) were computed for the
2000–2019 reforecast period for Taiwan’s summer daily Tmax extreme days (Tmax > 90th
percentile of annual Tmax) from Day-1 to 16. The ETS of GEFSv12 for summer daily Tmax
extremes is higher in coastal areas than in interior regions of Taiwan (Figure 8). The ETS
values decrease with the increasing forecast lead time. All calibration methods tested
showed an improvement in the ETS score for summer daily Tmax extremes over Taiwan
for all forecast lead times. Raw and all three calibration methods for summer daily Tmax
over Taiwan indicate a decrease in ETS score with increasing forecast lead times. However,
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the ANN method yields a higher ETS score than the QQ calibration method. The Hybrid
method yields the highest ETS score than ANN and QQ for all forecast lead times (Figure 8).
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daily Tmax extremes over Taiwan against ERA5 with Day-1, 5, 10, and 15 forecast lead times for the
period of 2000–2019.

The ETS scores for the Week-1, Week-2, and Week-1 to 2 scales were further analyzed.
Results showed that the Hybrid method had the highest ETS score for all forecast lead times.
The ETS score for predicting summer daily Tmax extremes over Taiwan from GEFSv12 is
higher for Week-1 than Week-2, as seen in Figure 9. The ETS score from GEFSv12 for the
two-week period (Week-1 to Week-2) is higher than the ETS scores of Week-1 and Week-
2 for predicting summer daily Tmax extremes in Taiwan. All three calibration methods
improve the ETS score for summer daily Tmax extremes for Week-1, Week-2, and Week-1
to 2. The ETS score of summer daily Tmax from all three methods is higher for Week-1
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than Week-2 and Week-1 to Week-2. The comparative analysis shows that the ETS from
ANN in most parts of Taiwan for summer daily Tmax extremes for Week-1, 2, and 1 to 2 is
relatively higher than the QQ calibration method. The Hybrid method for summer daily
Tmax extremes for Week-1, 2, and 1 to 2 yielded notably higher ETS scores in most parts of
Taiwan than the ANN and QQ calibration methods.
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A performance diagram is a graphical representation of multiple skill scores, such
as POD, Frequency Bias, TS, and SR (1-FAR), which can be used to compare and analyze
performance [63]. Figure 10a shows that the GEFSv12 model overestimates summer daily
Tmax extreme days over Taiwan for all forecast lead times, with a Frequency Bias of more
than 1.5 and a POD ranging from 0.6 to 0.8. The SR and TS scores of GEFSv12 decrease with
increasing forecast lead time. However, the three calibration methods have been found to
effectively reduce the overestimation of daily Tmax extremes over Taiwan for all forecast
lead times. For summer daily Tmax extremes over Taiwan, the POD has decreased for all
forecast lead times when using all three calibration methods. However, the QQ method
showed higher POD values than ANN for longer lead time forecasts.
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The ANN model yields higher SR and TS values than the QQ method for all forecast
lead times. Both the QQ and Hybrid calibration methods are able to accurately reproduce
the number of summer Tmax extreme days observed in ERA5. However, the Hybrid method
outperforms the other two methods in terms of POD, SR, and TS skill scores. This suggests
that the Hybrid method could be beneficial for extended-range time-scale predictions.

The comparison of GEFSv12 with three calibration methods for Week-1, 2, and 1 to
2 revealed a substantial overestimation of summer Tmax extreme days (Figure 10b). All
three calibration methods were successful in reducing overestimation. However, the Hybrid
method showed the highest statistical categorical skill scores. The skill scores from Raw,
QQ, ANN, and Hybrid calibration methods were generally higher for Week-1 and Week-1
to 2 than for Week-2 (Figure 10b). This suggests that the GEFSv12 summer Tmax extreme
day data are not reliable without calibration. The Hybrid method was found to be the most
effective in improving the skill scores for all forecast scales. This makes it a valuable tool
for climate risk management in the region.

3.3. Probabilistic Prediction Skill Scores of Raw, QQ, ANN, and Hybrid Methods for Summer
Daily Tmax Extremes

The uncertainty of summer Tmax extremes over Taiwan can be evaluated using metrics
such as resolution, reliability, Brier score, Brier skill score, and ROC curves to assess
the ensemble probabilistic forecast. The GEFSv12 probabilistic forecast of summer Tmax
extreme days over Taiwan has a good reliability (<0.15) for all forecast lead times, as
shown in Figure 11a. This was further improved by the application of three calibration
methods (<0.05). The reliability of the forecast decreases with increasing lead time for
Raw and all three calibration methods. However, the ANN and Hybrid methods showed
the highest reliability, particularly a large improvement for longer lead time forecasts.
The resolution of the GEFSv12 model for probabilistic forecasts of summer Tmax extreme
days over Taiwan decreases with increasing forecast lead time, with higher resolution for
shorter lead times (Figure 11b). All three calibration techniques significantly improved the
resolution of the ensemble probabilistic forecast of summer Tmax extreme days over Taiwan
for all forecast lead times. ANN and Hybrid methods showed the highest resolution. A
significant improvement in the resolution of ANN and Hybrid methods has been noticed,
especially for longer lead times. The Hybrid calibration method has a relatively better
resolution than the ANN for all forecast lead times (Figure 11b). The Brier score (BS) is a
metric used to measure the accuracy of binary predictions, where the result is either yes or
no. The ideal score is 0. According to Figure 11c, the confidence of GEFSv12’s ensemble
probabilistic forecasts of summer Tmax extreme days over Taiwan is low (BS > 0.25) for
all forecast lead times. However, the calibration methods used were found to be highly
effective in improving the accuracy (BS < 0.2) of these forecasts. Specifically, the ANN and
Hybrid calibration methods showed higher accuracy than the QQ method. The Hybrid
method of ensemble probabilistic forecasting of summer Tmax extreme days over Taiwan
produces results similar to those of the ANN for all forecast lead times (Figure 11c). The
GEFSv12 ensemble probabilistic forecasting of summer Tmax extreme days over Taiwan
with a BSS of less than −0.4 was not as accurate as the climatological/random forecast for
all forecast lead times. This was evident from the results shown in Figure 11d. However,
the use of calibration methods such as QQ, ANN, and Hybrid methods improved the
BSS remarkably for all forecast lead times. The QQ method was found to be the most
accurate for up to one week lead time than the reference/climatological/random forecast.
After the first week, the ensemble probabilistic forecasting of summer Tmax extreme days
over Taiwan from QQ was not as accurate as expected as the random forecast. However,
the ANN and Hybrid methods outperformed both the random/climatological and QQ
forecasts for all forecast lead times (Figure 11d). The Hybrid method is more effective than
ANN for predicting extreme summer Tmax days over Taiwan for all forecast lead times.
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Figure 11. (a) Reliability, (b) resolution, (c) Brier score, and (d) Brier skill score of Raw, QQ, ANN,
and Hybrid methods against ERA5 for summer daily Tmax extremes ensemble probabilistic forecast
over Taiwan with Day-1 to 16 forecast lead times for the period of 2000–2019.

As a final diagnostic, we use the ROC curve to assess a model’s ability to distinguish
between events and non-events. The ROC curve evaluates the forecast if a summer Tmax
extreme day had occurred. It plots the true positive rate (correctly predicted Tmax extreme
day) against the false positive rate (incorrectly predicted Tmax extreme day). We calculate
the true positive rate and false positive rate for cumulative probabilities ranging from 0% to
100% in increments of 10%. A skillful forecasting model should have a higher true positive
rate than a false positive rate, resulting in an ROC curve that curves towards the top-left
corner of the plot. Conversely, a forecast system with no skill would be a straight line along
the diagonal, indicating that the forecast is no better than a random guess. The AUC (Area
Under the Curve) is a useful scalar measure for summarizing the performance of a model,
with a score of 1 indicating the highest level of skill and a score of 0 indicating the lowest
level of skill. The ROC curves for Raw, QQ, ANN, and Hybrid calibration methods for
ensemble probabilistic forecasting of summer Tmax extreme days over Taiwan are all above
the diagonal line for all forecast lead times, as shown in Figure 12.

Raw and all three calibration methods for ensemble probabilistic forecasting of sum-
mer Tmax extreme days over Taiwan have a satisfactory AUC skill score (>0.65) for all
forecast lead times. However, it has been observed that the AUC skill decreases with
increasing forecast lead times. The Hybrid calibration method yielded the highest AUC
skill score (0.79–0.85), followed by ANN (0.75–0.83), QQ (0.68–0.81), and Raw (0.65–0.74).
The performance analysis of three calibration methods revealed that they significantly
improved the accuracy of GEFSv12 in forecasting extreme summer Tmax days in Taiwan.
The Hybrid calibration method for ensemble probabilistic forecasting of summer Tmax
extreme days on an extended-range time scale over Taiwan has been shown to be more
effective than the QQ and ANN techniques.



Atmosphere 2023, 14, 1620 20 of 25

Atmosphere 2023, 14, 1620 21 of 26 
 

 

 
Figure 12. Receiver operating characteristic (ROC) curve and area under the ROC curve of Raw, 
QQ, ANN, and Hybrid methods against ERA5 for summer extreme daily Tmax ensemble probabil-
istic forecast over Taiwan with Day-1, 5, 10, and 15 forecast lead times for the period of 2000–2019. 

4. Summary and Conclusions 
The IPCC 2013 report highlighted an increase in global temperatures by 0.13 °C per 

decade over the past 50 years, a rate that is twice that of the previous century. Rising 
global temperatures significantly affect various sectors, including energy, aviation, and 
agriculture. The frequency and intensity of heat waves, particularly in Asia, have esca-
lated. For example, in Taiwan, the air temperature rose by 1.4 °C between 1911 and 2005, 
which is double the increase recorded in the Northern Hemisphere. Research indicates a 
significant increase in respiratory and cardiovascular mortalities directly linked to tem-
perature increases above certain thresholds. Current weather prediction systems face 
challenges forecasting extreme conditions 10 days to a month in advance due to com-
plexities in tropical processes. Smaller regions like Taiwan require enhanced global 
models to accurately depict land–sea contrast and topography. Alongside model im-
provements, refining post-processing techniques is also imperative. 

In September 2020, NOAA NCEP upgraded its Global Ensemble Forecast System to 
version 12 (GEFSv12) to improve the accuracy of sub-seasonal forecasts for meteorolog-
ical and hydrological applications. This model was used to generate consistent reforecast 

Figure 12. Receiver operating characteristic (ROC) curve and area under the ROC curve of Raw, QQ,
ANN, and Hybrid methods against ERA5 for summer extreme daily Tmax ensemble probabilistic
forecast over Taiwan with Day-1, 5, 10, and 15 forecast lead times for the period of 2000–2019.

4. Summary and Conclusions

The IPCC 2013 report highlighted an increase in global temperatures by 0.13 ◦C per
decade over the past 50 years, a rate that is twice that of the previous century. Rising global
temperatures significantly affect various sectors, including energy, aviation, and agriculture.
The frequency and intensity of heat waves, particularly in Asia, have escalated. For example,
in Taiwan, the air temperature rose by 1.4 ◦C between 1911 and 2005, which is double the
increase recorded in the Northern Hemisphere. Research indicates a significant increase in
respiratory and cardiovascular mortalities directly linked to temperature increases above
certain thresholds. Current weather prediction systems face challenges forecasting extreme
conditions 10 days to a month in advance due to complexities in tropical processes. Smaller
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regions like Taiwan require enhanced global models to accurately depict land–sea contrast
and topography. Alongside model improvements, refining post-processing techniques is
also imperative.

In September 2020, NOAA NCEP upgraded its Global Ensemble Forecast System to
version 12 (GEFSv12) to improve the accuracy of sub-seasonal forecasts for meteorological
and hydrological applications. This model was used to generate consistent reforecast
products based on daily 00 UTC initial conditions for forecasts extended up to 16 days
with five ensemble members for a period of 2000–2019, except every Wednesday when
the forecasts were integrated up to 35 days with 11 members. The output of the model is
subject to a high degree of uncertainty and is rarely used as-is. Therefore, post-processing
techniques are used to reduce the uncertainty and improve the accuracy of the forecasts.
In this study, a Hybrid calibration method combining Artificial Neural Network (ANN)
and quantile–quantile mapping (QQ) techniques was applied to the GEFSv12 reforecasts to
enhance the accuracy of summer daily Tmax and related Tmax extremes over Taiwan. The
performance of the Hybrid technique was evaluated against ERA5 reanalysis and compared
to the Raw, ANN, and QQ techniques using standard skill metrics for deterministic and
ensemble probabilistic forecasts.

The GEFSv12 model was found to accurately replicate the spatial patterns of maximum
temperature and its variability in Taiwan for all forecast lead times. However, it had a
warm bias and overestimated the interannual variability (IAV) of Tmax in the southern and
inland regions of Taiwan. The RMSE of the raw model and all three calibration methods
increased with increasing forecast lead time. The Raw forecast for summer Tmax over
Taiwan exhibited a high RMSE across all forecast lead times. However, all the calibration
methods, such as QQ (0.8–1.2 ◦C), ANN (0.6–1 ◦C), and Hybrid (0.6–1 ◦C), notably reduced
the RMSE for all forecast lead times. The QQ method yielded the highest RMSE compared
to the ANN and Hybrid methods for all forecast lead times. The RMSE from the ANN
and Hybrid methods were similar for all forecast lead times. Calibration techniques were
effective in reducing the warm bias of ~0 ◦C in Taiwan during summer for all forecast
lead times. The GEFSv12 model shows a strong correlation with summer daily Tmax over
Taiwan, with a coefficient of more than 0.8 for Day-1 lead time forecasts. This correlation
decreases with increasing forecast lead time, ranging from 0.8 to 0.4. No improvement
was observed in the correlation coefficient when using the QQ method compared to the
Raw products for all forecast lead times. However, the ANN and Hybrid calibration
methods showed a significant improvement in the correlation coefficient for all forecast
lead times, with the improvement being more pronounced for longer lead time forecasts.
The IOA of GEFSv12 for predicting Taiwan’s Tmax shows a decrease from 0.8 to 0.6 as
the forecast lead time increases, with higher values for shorter lead times. All calibration
methods demonstrated a significant increase in the IOA of predicting daily summer Tmax
over Taiwan for all forecast lead times. The ANN and Hybrid methods achieved scores of
0.88–0.92, while the QQ method had scores of 0.67–0.9. The Hybrid method yielded higher
IOA values than the ANN for all forecast lead times.

The GEFSv12 model overestimated the number of Tmax extreme days over Taiwan, but
this was reduced by the QQ, ANN, and Hybrid methods. The ANN model had the lowest
number of heatwave days compared to the QQ and Hybrid approaches. The Hybrid method
had the highest statistical categorical skill scores for all forecast lead times, outperforming
the other two methods in terms of ETS, TS, SR, ACC, FAR, POD, and Frequency Bias. The
prediction accuracy of Raw and all calibration methods for summer daily Tmax extremes
over Taiwan is higher for Week-1, Week-2, and Week-1 to Week-2 forecasts than for day-to-
day forecasts. The comparison of Week-1, 2, and 1 to 2 from Raw and all three calibration
methods reveals that the prediction skill of Week-1 summer Tmax extreme days is superior
to that of Week-2 and Week-1 to 2 when using Raw and all three calibration methods. The
Hybrid method is more effective than the other two methods. The Hybrid method of
forecasting extreme Tmax over Taiwan was found to be more effective than either QQ or
ANN alone, based on the evaluation of probabilistic skill scores (reliability, resolution, Brier
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score, Brier skill score, and ROC curve). The Hybrid-calibrated GEFSv12 forecast can be
beneficial in managing climate risk in Taiwan by providing extended-range forecasts of
Tmax and associated extremes.
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