
Citation: Bai, J.; Yang, F.; Xu, M.;

Wang, H. Empirical Models of

Respiration and Net Ecosystem

Productivity and Their Applications

in a Subtropical Coniferous

Plantation in China. Atmosphere 2023,

14, 1557. https://doi.org/10.3390/

atmos14101557

Academic Editor: David F.

Plusquellic

Received: 9 August 2023

Revised: 30 September 2023

Accepted: 11 October 2023

Published: 13 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Empirical Models of Respiration and Net Ecosystem
Productivity and Their Applications in a Subtropical
Coniferous Plantation in China
Jianhui Bai 1,* , Fengting Yang 2, Mingjie Xu 3 and Huimin Wang 2

1 LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and

Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; yangft@igsnrr.ac.cn (F.Y.);
wanghm@igsnrr.ac.cn (H.W.)

3 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; xumj@syau.edu.cn
* Correspondence: bjh@mail.iap.ac.cn

Abstract: Net ecosystem exchange (NEE), solar radiation (including photosynthetically active radi-
ation PAR), and meteorological parameters were measured in a subtropical coniferous plantation
in China during 2013–2016. Applying the PAR balance principle at a canopy level and analyzing
the observation data, an empirical model of respiration (Re, EMRe) considering 3-factor and 2-factor
situations was developed and tested for all sky conditions. Generally, the respiration simulations
were in reasonable agreement with the observations for the hourly, monthly, and annual sums of res-
piration. For example, using 3-factor and 2-factor models, the estimated annual sums of daytime and
nighttime respiration in 2013–2016 overestimated that which was observed by about 31% and 26%,
respectively. Further applications of EMRe and an empirical model of gross primary production (GPP,
EMGPP) developed previously at this site, and an empirical model of net ecosystem productivity
(NEP, EMNEP) using 3-factor and 2-factor models were obtained (NEP = GPP-Re) and evaluated for
all sky conditions. Generally, the simulations of the hourly, monthly, and annual sums of NEP showed
reasonable performances. The estimated NEP values overestimated the observations by 22% and
27% for the hourly sums in 2013–2016 when using the 3-factor and 2-factor models, respectively, and
7% and 12% for annual sums in 2013–2015 (2016 data were not used as the CO2 flux measurements
had some problems in the 2016 summer). The NEP estimations were evidently improved when more
factors (e.g., dark respiration) influencing Re were considered in the daytime respiration compared to
those without considering these factors. To simplify the numerous and complicated CO2 processes in
the simulations of Re and NEP, the PAR energy method was applied to capture and describe its main
processes and energy interactions. The PAR energy method was suitable for studying the energy
relationships associated with CO2 processes and developing empirical models for the simulations
of GPP, Re, and NEP. These models were useful tools to investigate the multiple interactions and
mechanisms between CO2, other atmospheric compositions, and PAR. Thus, the energy method is
suggested to be applied to carbon balance.

Keywords: net ecosystem exchange; respiration; net ecosystem productivity; PAR balance;
multiple interactions

1. Introduction

Global warming (especially in three Polar regions and other representative regions in
the 20th century) is reported by the Intergovernmental Panel on Climate Change (IPCC) and
several studies have aroused the great concern of scientists and government officials [1–7].
The global CO2 concentration has been steadily rising from 1959 to 2021 (https://gml.noaa.
gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt, accessed on 3 August 2023). CO2
is accounting for 70% of greenhouse gases (GHG) emissions with an atmospheric lifetime
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of 200 years [8]; therefore, the emissions and increases in GHGs, (mainly CO2) [9,10] should
be reduced in the context of global carbon neutrality. The terrestrial biosphere sequesters
20–30% of global anthropogenic CO2 emissions [11]; thus, it is an important task to accu-
rately evaluate the regional and global ecosystem carbon balance, to better contribute to
achieving the international double carbon goal.

As an important basis, measuring net carbon exchange by forests is essential to obtain
reliable carbon balance (e.g., source, sink, exchange) and validate/evaluate the model
performances. As a second step, all kinds of models can be developed and then applied
to 1) study processes and mechanisms of CO2 flux, net ecosystem exchange (NEE), net
ecosystem productivity (NEP) (NEE= -NEP), respiration (Re) and gross primary production
(GPP), 2) simulate the variations of NEP, Re and GPP, 3) understand the responses of
NEE, Re, GPP to their driving factors, as well as to climate change [12–15]. For example,
these models include empirical models, sophisticated models [14,16–18], and atmospheric
inversions [19,20]. The popular empirical models consider several processes (mostly in one
direction) that are of limited in understanding the mechanisms. The complicated models
can elucidate the specific processes in vegetation, soil, and atmosphere and obtain a better
understanding of the processes and their mechanisms. The widely used process-based
dynamic global vegetation models (DGVMs) are useful tools to calculate the natural land
sink, and the DGVM multi-model mean estimate of the global land sink is in agreement
with the global carbon budget residual land sink. Currently, novel and innovative machine
learning algorithms offer powerful tools to estimate carbon balance (GPP, NEE, Re, etc.),
especially extreme gradient boosting (XGBoost), artificial neural networks (ANN), and GIS
data-based studies. These artificial intelligence might meet the challenges in carbon balance.
Until now, there are still large differences among models [14,15,18,21–29]. Additionally,
many hypotheses and assumed parameters were used in these complex models, which
were limited by our current understanding of the carbon balance processes [21]. The Eddy
covariance (EC) technique is reliable for obtaining CO2 exchange between the atmosphere
and ecosystem, and EC flux data are commonly used for validations [22,23]. There are also
large uncertainties in CO2 flux observations and model predictions [22–29]. On the basis
of current progress and urgent needs, the internal processes and external drivers, as well
as their relationships between solar energy, atmosphere, vegetation, and land, should be
fully studied.

Respiration is an important and integral part in regional and global carbon cycling [30,31].
O2 uptake and the subsequent metabolism of the reaction product in the photorespiratory
process is the second highest metabolite flux in plants behind photosynthesis [32,33].
New information about respiration and GPP to ensure a better partitioning between
the components of the CO2 atmospheric budget is necessary [34]. NEE or NEP is a
vital indicator to evaluate ecosystem carbon exchange, whereas the accurate simula-
tion of respiration is still a big challenge [31], as it is very small compared to NEE and
GPP, and many factors/processes control daytime and nighttime respirations through
different mechanisms.

Three metabolic processes control carbon fluxes in vegetation, namely, photosynthesis,
photorespiration, and respiration, which are significant and influenced by many factors
(temperature, light, water, relative humidity, O2 and CO2 concentrations, etc.). Many
photosynthesis models (e.g., photosynthesis–irradiance curves, non-rectangular hyperbolic,
or rectangular hyperbolic models) were developed and commonly used in their simulations,
but there are few photorespiration models [35,36]. In addition, the Lloyd–Taylor equation
was widely used to extrapolate the daytime respiration from nighttime respiration [37,38].

China has diverse ecosystems covering several climate zones. Chinese scientists have
implemented many studies on China’s land carbon budgets and made much progress.
However, there is still the need to accurately evaluate the terrestrial carbon budgets and
reduce the uncertainties, considering the large differences in the magnitude of the land
carbon budget among numerous model simulations [15,39–44].
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In order to simplify the sophisticated description in the respiration and NEP processes
and to avoid using too many hypotheses and assumed variables, we further applied the
photosynthetically active radiation (PAR) balance principle in the respiration and NEP
simulations, based on reasonable simulations of GPP using an empirical model of GPP
(EMGPP) and PAR balance method [45].

The objective of this study is to (1) develop an empirical model of respiration (EMRe),
and an empirical model of NEP (EMNEP) combined using EMRe and EMGPP developed
earlier for a thorough understanding and estimate carbon balance in a subtropical conif-
erous forest in China; (2) evaluate these two empirical model performances against the
observations; (3) simulate the Re and NEP in 2013–2016 under all sky conditions; (4) test the
feasibility of the PAR balance method and understand the carbon exchange thoroughly by
applying the PAR balance method to simulate the Re and NEP from a previous simulation
of GPP.

2. Instrumentation and Methods
2.1. Site Description

The measurements of CO2 fluxes, solar radiation, and meteorological parameters
were carried out from a 45 m tower installed by the Chinese Academy of Sciences (CAS)
at the Qianyanzhou subtropical coniferous plantation, Taihe county, Jiangxi province
(26◦44′48′′ N, 115◦04′13′′ E, 110.8 m) since 2003 [46]. BVOC emission fluxes, solar radia-
tion, and meteorological variables were also measured at this tower from 22 May 2013 to
4 January 2016 [47]. Main trees are pinus massoniana, pinus elliottii, cunninghamia lanceolata,
and broadleaf trees, with a coverage of 42.0%, 49.6%, 5.8%, and 2.6%, respectively. The
main shrubs are Loropetalum Chinense, Adinandra millettii, and Lyonia Compta. The forest
surrounding the tower covers about 90% in 1 km2 and 70% in 100 km2, and the average
canopy height is 18 m. The mean slope of this study region is 2.8–13.5◦. Annual precipita-
tion is 1485.1 mm, and annual temperature is 17.9 ◦C [48]. The annual sum of global solar
radiation was 4579 and 4496 MJ m−2 in 2013 and 2014, respectively, and the annual sum of
PAR was 7998 and 7656 mol m−2 in 2013 and 2014, respectively [47].

2.2. Instruments and Measurements

The EC system including a 3-D sonic anemometer (Model CSAT3, Campbell Scien-
tific Inc., Logan, UT, USA), open-path CO2/H2O analyzer (Model LI-7500, Li- COR Inc.,
Lincoln, NE, USA) and CR5000 datalogger (Campbell Scientific Inc.) was located at 23
and 39 m above the ground to measure CO2 flux at Qianyanzhou subtropical coniferous
plantation [46], and the observational data (NEE, Re and GPP) at 23 m during 1 January
2013 to 31 December 2016 were used in this study.

Solar global radiation (Q), direct radiation (D), and PAR were measured using ra-
diometers (model TBQ-4-1 and TBS-2, 322 Institute of Jinzhou, China; LI-190SA Quantum
Sensor, LI-COR, Inc., Lincoln, NE, USA,) and a solar radiation system with a frequency of
1 Hz at the Qianyanzhou Experimental Station (CAS), 800 m away from the flux tower [47].
The diffuse radiation (S) is derived from Q-D×cosZ, Z is the solar zenith angle. Q, D, and
PAR were measured routinely, except from 1 January to 21 May 2013, when Q and PAR
were obtained from the weather station at the Qianyanzhou Experimental Station. All solar
radiation sensors were cleaned every morning and when they are needed. Meteorological
parameters, temperature (◦C), relative humidity (RH, %), and water vapor pressure (E, hPa)
were measured using a HOBO weather station (Model H21, Onset Company, Bourne, MA,
USA) [47].

2.3. Flux Data Processing and Usage

ChinaFLUX developed some methods for evaluating the performance of observation
system and flux data quality control (e.g., coordinate rotation, WPL correction, canopy
storage calculation, nighttime flux correction, gap filling, and flux partitioning [49]), which
were used to deal with the flux data in this study. The raw data were processed using
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double coordinate rotations, Webb, Pearman, and Leuning density correction [50,51]. Two
equations were used for gap filling of CO2 flux in daytime and nighttime [37,52]. The
observed daytime carbon flux was NEP. After the calculations of daytime respiration, the
observed GPP was calculated by GPP = NEP + Re and the routine daytime and nighttime
observations [38]. More detailed introduction (threshold method, data gap filling, etc.) is
reported in studies [45,53,54].

On the EMRe model development, the following data were not used so as to reduce
the influence of measurement errors of carbon flux (mgCO2 m−2 s−1) and solar radiation:
(1) NEE larger than two times the standard deviation computed from all individual ob-
servations along with these corresponding respirations and GPP values, (2) global solar
radiation with Z > 75◦.

2.4. Empirical Model of Respiration (EMRe)

Based on PAR balance at canopy level, an empirical model of BVOC emissions (EMBE)
was developed for some representative forests (a subtropical coniferous forest, a subtropical
bamboo forest, and a temperate forest) in China [55]. Further application of PAR balance
principle and EMBE, an empirical model of GPP (EMGPP) was developed in Qianyanzhou
subtropical forest with reasonable performance [45], considering the similarities of PAR use
in the processes of BVOC emissions and GPP, in which CO2 (GPP) was replaced by BVOCs
in the EMGPP. Furthermore, these experiences were used in empirical model developments
of respiration and NEP in this study.

Briefly, EMGPP (Equation (1)) considers the following three main processes: PAR
attenuation by CO2 in the atmosphere (GPP term); PAR attenuation by atmospheric gases,
liquids, and particles (GLPs, except CO2, photochemical term); PAR scattering by GLPs
(scattering term [45,55]). At a canopy level, these three processes contribute to PAR balance.
After adjustment, the EMGPP is described as follows:

e−0.1aGPPtm × cos(Z) = A1PAR + A2e−kWm × cos(Z) + A3e−S/Q + A0 (1)

where a = 1 mgCO2
−1 m2 s−1 is an attenuation coefficient for CO2 in the atmosphere, m

is the optical thickness, GPP is the hourly GPP in the sampling period (mgCO2 m−2 s−1),
sampling period t = 1 h, and 0.1 is a normalizing coefficient. W = 0.021E × 60, E is the
average water vapor pressure (hPa) at the ground in the sampling time period, and k is
the mean absorption coefficient of water vapor in 0.70–2.845 µm. Scattering factor (S/Q)
represents the atmospheric GLP amounts [47]. Z is the solar zenith angle (degree), and
Cos(Z) = 1/m. Coefficients Ai are determined using observational dataset (solar radiation,
water vapor pressure, GPP, etc.).

It is known that GPP = Re + NEP, and Re is ecosystem respiration. Then, it is necessary
to calculate ecosystem respiration. Firstly, an empirical model of daytime respiration
(mgCO2 m−2 s−1, Equation (2), 3-factor) (under conditions of light) was developed and
named as Re (LR) method.

e−0.1bRetm × cos(Z)= B1PAR + B2e−kWm × cos(Z) + B3e−S/Q + B0 (2)

where, we set b = 1, m = 1 and cos(Z) = 1 for daytime estimation. Coefficients Bi (i = 1,
2, 3) and B0 were determined by analyzing observational data (data criteria, Section 2.3)
in the daytime (Re, solar radiation, water vapor). e−0.1bRetm × cos(Z) > 1 was used in
Re model development. The 3-factor and 2-factor EMRe models were developed for two
atmospheric situations (S/Q < 0.5 and S/Q≥ 0.5, representing low atmospheric GLPs, high
solar radiation and air temperature, and high GLPs, low solar radiation and air temperature,
respectively), which were similar to EMGPP and EMBE models [45,55].

In view of the fact there are no measurement of global direct or diffuse radiation at
some stations in China, the 3-factor Re empirical model was adjusted to the 2-factor Re
model, i.e., the scattering term was removed in Equation (2).
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Secondly, nighttime Re, dark respiration was developed by further application of
EMGPP (Equation (1)) or Re (LR) (Equation (2)) from daytime to nighttime and named the
Re (DR) method.

E−0.1bRetm × cos(Z) = C1e−kWm × cos(Z) + C0 (3)

Similarly, we set b = 1, m = 1 and cos(Z) = 1 for nighttime Re simulation. Coefficients
C1 and C0 were obtained by analyzing nighttime measurements (Re, water vapor). The
data criteria as e−0.1bRetm × cos(Z) > 1 was also used in nighttime Re model development.
The hourly respiration during a day was computed by using above daytime respiration
and nighttime respiration. This method is named Re (LDR). Similar methods are used in
the studies [56–58].

Additionally, daytime Re was estimated by extrapolating nighttime EMRe (b = 1 and
m = 1) and daytime parameters, which are widely used in current Re simulations [54,57].
We named this method as Re (DDR) for a whole day. In the following sections, evaluations
of Re simulations in nighttime and daytime + nighttime using above methods were per-
formed. So, an empirical model of respiration (EMRe) was used to simulate daytime and
nighttime respiration.

Finally, NEP values in different time scales during 2013–2016 were calculated by
GPP-Re and two Re models under all sky conditions.

3. Results
3.1. Model Development in a Subtropical Coniferous Forest

As PAR transfers in the atmosphere and its interactions with atmospheric GLPs are
different under different atmospheric conditions, two situations were investigated for
S/Q < 0.5 and S/Q ≥ 0.5, respectively, which represented a relative clean and a polluted
atmosphere and environmental conditions (e.g., GLP concentrations, clouds, solar radiation,
air temperature, relative humidity, and water vapor).

3.1.1. Empirical Model of Ecosystem Respiration in Daytime: Re (LR) Method

During the daytime and nighttime, Re and NEP displayed small variations in this
coniferous forest compared to that of GPP. NEP showed evident diurnal, seasonal, and
inter-annual variations, and was influenced by the driving factors, e.g., PAR, air and soil
temperature, precipitation, clouds, water vapor, vapor pressure deficit (VPD), soil water
content [46,54,59,60], and higher values appeared around noon and in the summer.

Selecting the hourly observational data described in Section 2.3 together with that
corresponding to S/Q < 0.5 and S/Q ≥ 0.5, 67 and 985 group data (sample point n = 67 and
985) from 23 May 2013 to 31 December 2014 were used to develop the 3-factor and 2-factor
Re empirical models during the daytime, respectively. Meanwhile, the water vapor pressure
at the ground and Re were also used to determine the coefficients Bi of the EMRe models
(defined as Re (LR)). Tables 1 and 2 show the results and statistical metrics, including coeffi-
cient of determination (R2), average and maximum of the absolute relative bias, δavg and
δmax (%), (δ = |ycal − yobs|× 100/|yobs|, where ycal and yobs are calculated and observed Re

values), normalized mean square error (NMSE = (ycal − yobs)
2/(ycal × yobs) [61]), standard

deviations of calculated and observed fluxes (σcal and σobs), mean absolute deviations
(MAD, in mgCO2 m−2 s−1 and percentage of mean measured value, %), and root mean
square errors (RMSE, in mgCO2 m−2 s−1 and in percentage of mean measured value).

Figures 1 and 2 show the scatter plots of the calculated versus the measured daytime
hourly Re during 2013–2014 using the 3-factor and 2-factor Re models for S/Q < 0.5 and
S/Q ≥ 0.5 situations.
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Table 1. Coefficients of the 3-factor and 2-factor EMRe models (3-F, 2-F) in the daytime (Equation (2))
determined using observational data in the subtropical coniferous plantation during 2013–2014,
statistical metrics, i.e., coefficient of determination (R2), average of the absolute relative bias (δavg,
%), normalized mean square error (NMSE), ratio of calculated Re to observed Re (cal/obs), standard
deviations of calculated and observed fluxes (σcal and σobs), together with mean bias errors (MAD,
mgCO2 m−2 s−1 and %) and root mean square errors (RMSE, mgCO2 m−2 s−1 and %) (S/Q < 0.5,
n = 67).

Model B1 B2 B3 B0 R2 δavg NMSE cal/obs σcal σobs
MAD RMSE

(mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

3-F 0.026 1.036 0.000 0.057 0.999 24.31 0.085 1.001 0.07 0.02 0.05 24.04 0.06 29.37

2-F 0.026 1.036 0.057 0.999 24.31 0.085 1.001 0.07 0.02 0.05 24.04 0.06 29.37

Table 2. Same as Table 1, but for the 3-factor and 2-factor EMRe models at S/Q ≥ 0.5 (n = 985).

Model B1 B2 B3 B0 R2 δavg NMSE cal/obs σcal σobs
MAD RMSE

(mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

3-F 0.016 1.185 −0.112 0.093 0.994 68.45 0.582 1.009 0.17 0.04 0.12 63.41 0.14 76.72

2-F 0.008 1.234 0.039 0.994 72.46 0.638 1.010 0.18 0.04 0.12 66.35 0.15 80.30

Atmosphere 2023, 14, x FOR PEER REVIEW 6 of 24 
 

 

Table 1. Coefficients of the 3-factor and 2-factor EMRe models (3-F, 2-F) in the daytime (Equation 
(2)) determined using observational data in the subtropical coniferous plantation during 2013–
2014, statistical metrics, i.e., coefficient of determination (R2), average of the absolute relative bias 
(δavg, %), normalized mean square error (NMSE), ratio of calculated Re to observed Re (cal/obs), 
standard deviations of calculated and observed fluxes (σcal and σobs), together with mean bias errors 
(MAD, mgCO2 m−2 s−1 and %) and root mean square errors (RMSE, mgCO2 m−2 s−1 and %) (S/Q < 0.5, 
n = 67). 

Model B1 B2 B3 B0 R2 δavg NMSE cal/obs σcal
 σobs

 
MAD RMSE 

(mgCO2 
m−2 s−1) (%) 

(mgCO2 
m−2 s−1) (%) 

3-F 0.026 1.036 0.000 0.057 0.999 24.31 0.085 1.001 0.07 0.02 0.05 24.04 0.06 29.37 
2-F 0.026 1.036  0.057 0.999 24.31 0.085 1.001 0.07 0.02 0.05 24.04 0.06 29.37 

Table 2. Same as Table 1, but for the 3-factor and 2-factor EMRe models at S/Q ≥ 0.5 (n = 985). 

Model B1 B2 B3 B0 R2 δavg NMSE cal/obs σcal
 σobs

 
MAD RMSE 

(mgCO2 
m−2 s−1) (%) (mgCO2 

m−2 s−1) (%) 

3-F 0.016 1.185 −0.112 0.093 0.994 68.45 0.582 1.009 0.17 0.04 0.12 63.41 0.14 76.72 
2-F 0.008 1.234  0.039 0.994 72.46 0.638 1.010 0.18 0.04 0.12 66.35 0.15 80.30 

Figures 1 and 2 show the scatter plots of the calculated versus the measured daytime 
hourly Re during 2013–2014 using the 3-factor and 2-factor Re models for S/Q < 0.5 and 
S/Q ≥ 0.5 situations. 

 

Figure 1. Scatter plot of calculated versus measured daytime hourly Re using the 3-factor and 
2-factor Re models (left and right) during 2013–2014 (S/Q < 0.5, n = 67). The lines are a linear fit to 
the data for calculated versus measured Re. 

 

Figure 1. Scatter plot of calculated versus measured daytime hourly Re using the 3-factor and 2-factor
Re models (left and right) during 2013–2014 (S/Q < 0.5, n = 67). The lines are a linear fit to the data
for calculated versus measured Re.

Atmosphere 2023, 14, x FOR PEER REVIEW 6 of 24 
 

 

Table 1. Coefficients of the 3-factor and 2-factor EMRe models (3-F, 2-F) in the daytime (Equation 
(2)) determined using observational data in the subtropical coniferous plantation during 2013–
2014, statistical metrics, i.e., coefficient of determination (R2), average of the absolute relative bias 
(δavg, %), normalized mean square error (NMSE), ratio of calculated Re to observed Re (cal/obs), 
standard deviations of calculated and observed fluxes (σcal and σobs), together with mean bias errors 
(MAD, mgCO2 m−2 s−1 and %) and root mean square errors (RMSE, mgCO2 m−2 s−1 and %) (S/Q < 0.5, 
n = 67). 

Model B1 B2 B3 B0 R2 δavg NMSE cal/obs σcal
 σobs

 
MAD RMSE 

(mgCO2 
m−2 s−1) (%) 

(mgCO2 
m−2 s−1) (%) 

3-F 0.026 1.036 0.000 0.057 0.999 24.31 0.085 1.001 0.07 0.02 0.05 24.04 0.06 29.37 
2-F 0.026 1.036  0.057 0.999 24.31 0.085 1.001 0.07 0.02 0.05 24.04 0.06 29.37 

Table 2. Same as Table 1, but for the 3-factor and 2-factor EMRe models at S/Q ≥ 0.5 (n = 985). 

Model B1 B2 B3 B0 R2 δavg NMSE cal/obs σcal
 σobs

 
MAD RMSE 

(mgCO2 
m−2 s−1) (%) (mgCO2 

m−2 s−1) (%) 

3-F 0.016 1.185 −0.112 0.093 0.994 68.45 0.582 1.009 0.17 0.04 0.12 63.41 0.14 76.72 
2-F 0.008 1.234  0.039 0.994 72.46 0.638 1.010 0.18 0.04 0.12 66.35 0.15 80.30 

Figures 1 and 2 show the scatter plots of the calculated versus the measured daytime 
hourly Re during 2013–2014 using the 3-factor and 2-factor Re models for S/Q < 0.5 and 
S/Q ≥ 0.5 situations. 

 

Figure 1. Scatter plot of calculated versus measured daytime hourly Re using the 3-factor and 
2-factor Re models (left and right) during 2013–2014 (S/Q < 0.5, n = 67). The lines are a linear fit to 
the data for calculated versus measured Re. 

 
Figure 2. Scatter plot of calculated versus measured daytime hourly Re using the 3-factor and 2-factor
Re models (left and right) during 2013–2014 (S/Q ≥ 0.5, n = 985). The lines are a linear fit to the data
for calculated versus measured Re.

In general, the 3-factor and 2-factor Re models displayed reasonable simulations for
S/Q < 0.5 and S/Q ≥ 0.5 conditions, and larger estimation uncertainties were found for
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Re simulations at S/Q ≥ 0.5, which corresponds to large GLP loads, such as clouds, dust,
aerosols, rain, dew, fog, resulting in large observational errors in flux, solar radiation, and
meteorology measurements (Tables 1 and 2). Under S/Q < 0.5 conditions (a much cleaner
atmosphere compared to that at S/Q ≥ 0.5), the 3-factor Re model performed similar or
the same estimations as the 2-factor model, indicating that the scattering factor/roles can
be omitted.

3.1.2. Empirical Model of Ecosystem Respiration during Nighttime: Re (DR) Method

Using data criteria as e−0.1bRetm × cos(Z) > 1 and in Section 2.3, 4412 and 4445 group
data (n = 4412 and 4445) in 2013 and 2014 from 1 January to 31 December, along with the
water vapor pressure at the ground and Re were selected to determine the coefficients Ci of
the EMRe model (Equation (3)) during the nighttime. The results and statistical metrics are
shown in Table 3.

Table 3. Same as Table 1, but for the coefficients of the EMRe model (Equation (3)) determined using
observational data (n = 4412, 4445) in 2013 and 2014, respectively.

Data C1 C0 R2 δavg NMSE cal/obs σcal σobs
MAD RMSE

(mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 0.153 −1.133 0.589 26.05 0.112 0.937 0.06 0.08 0.03 18.46 0.05 32.41

2014 0.175 −1.150 0.606 32.68 0.141 1.002 0.06 0.08 0.03 19.81 0.05 37.59

According to the better ratio of the calculated Re to the observed Re, 1.002, the
coefficients of 2014 were selected for EMRe. Almost all the calculated Re values were
close to the observed within one standard deviation, except that the observed Re values
were smaller than −0.3 (absolute Re > 0.3). Figures 3 and 4 display the calculated and
observed hourly Re values in 2014 and their scatter plots. Generally, the EMRe simulations
agreed reasonably with the observations during the nighttime in 2014.

It is noticed that there were some scattered points (Figure 4, left) that may influence
the Re model’s performance. Therefore, seven larger scattered points in 2014 were removed
in the further analysis, and the new estimated results are shown in Table 4 and Figure 4
(right). No large differences were found, e.g., coefficients and the ratio of the calculated Re
to the observed Re. Then, the previous Re model was used in the later study.
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Table 4. Same as Table 3, but for using the updated data in 2014 (n = 4438).

Data C1 C0 R2 δavg NMSE cal/obs σcal σobs
MAD RMSE

(mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2014 0.175 −1.150 0.606 32.68 0.141 1.001 0.06 0.08 0.03 19.34 0.05 33.96

3.2. Evaluation and Application of the EMRe Models under all sky Conditions during 2013–2016
3.2.1. Nighttime Re Simulations Using Re (DR) Method

We used the EMRe model (Equation (3)) for Re estimations from 22 May 2013 to 31
December 2016; the hourly Re values calculated using the coefficients in Table 3 were
compared with the measurements. To fully evaluate the model performance, detailed
results for each year and 2013–2016 are displayed in Table 5 and Figure 5 (a scatted plot of
calculated versus measured nighttime hourly Re during 2013–2016). Generally, hourly Re
simulations exhibited suitable performances at nighttime with little underestimations for
2013 and 2015. A little larger underestimation (~20%) in 2016 may be caused by instrument
problems during June–October.

Table 5. Same as Table 1, but for hourly nighttime Re during 2013–2016.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 27.24 0.121 0.064 0.074 0.92 2752 0.031 18.80 0.054 33.27

2014 44.76 0.148 0.065 0.083 1.01 4576 0.028 20.71 0.052 38.67

2015 44.40 0.110 0.057 0.070 0.93 4673 0.028 18.49 0.049 31.98

2016 43.46 0.227 0.060 0.095 0.81 4835 0.048 27.26 0.076 42.89

2013–2016 41.42 0.159 0.061 0.083 0.91 16,836 0.034 21.91 0.060 37.98
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Similarly, the daily sums of the nighttime Re values were also estimated and shown in
Table 6. The daily sums of the Re simulations were also in line with the observations.

Table 6. Same as Table 5, but for daily sums of Re at nighttime during 2013–2016.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 15.35 0.029 0.656 0.553 0.92 224 0.248 12.34 0.329 16.37

2014 19.50 0.036 0.688 0.751 1.01 365 0.242 14.31 0.321 18.96

2015 12.14 0.024 0.602 0.582 0.93 365 0.210 10.73 0.290 14.78

2016 20.34 0.078 0.677 0.814 0.81 366 0.463 19.82 0.588 25.16

2013–2016 16.99 0.046 0.658 0.737 0.91 1320 0.296 14.79 0.407 20.36

Furthermore, the mean monthly sums of the nighttime Re values for each year and
four years over 2013–2016 were also computed (Table 7 and Figure 6), and were also in
agreement with the observations.

Table 7. Same as Table 6, but for mean monthly sums of Re at nighttime during 2013–2016.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 11.69 0.013 45.22 41.61 0.92 7 5.517 9.02 7.041 11.51

2014 11.23 0.010 30.31 47.42 1.03 12 4.506 8.75 5.433 10.55

2015 7.75 0.008 41.05 41.06 0.93 12 4.244 7.12 5.221 8.76

2016 18.99 0.056 40.83 51.73 0.79 12 13.626 19.11 15.780 22.13

2013–2016 12.50 0.025 18.28 21.07 0.91 53 7.143 11.74 9.337 15.34
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Figure 6. Calculated and observed monthly sums of nighttime Re (Recal, Reobs) with error bars
showing one time standard deviation of the observed Re during 2013–2016.

Figure 7 shows the simulations of the annual sums of Re at nighttime during
2013–2016. The ratios of the mean annual sums of the calculated to the observed Re
were 0.93, 1.01, 0.93, and 0.81 for 2013, 2014, 2015, and 2016, as well as 0.91 for 2013–2016.



Atmosphere 2023, 14, 1557 10 of 24

Atmosphere 2023, 14, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 6. Calculated and observed monthly sums of nighttime Re (Recal, Reobs) with error bars 
showing one time standard deviation of the observed Re during 2013–2016. 

Figure 7 shows the simulations of the annual sums of Re at nighttime during 2013–
2016. The ratios of the mean annual sums of the calculated to the observed Re were 0.93, 
1.01, 0.93, and 0.81 for 2013, 2014, 2015, and 2016, as well as 0.91 for 2013–2016. 

In a brief summary for the estimates of the nighttime Re from the hourly to annual 
time scales, the EMRe model exhibited a reasonable performance and most of the simu-
lations were within a one time standard deviation of the observed Re. 

 
Figure 7. Observed and calculated annual sums of nighttime Re (Reobs, Recal) with error bars 
showing one time standard deviation of the observed Re during 2013–2016. 

3.2.2. Daytime and Nighttime Re Simulations Using Re (DDR) Method 
Based on some studies where the daytime Re was extrapolated from the nighttime 

Re [37], the EMRe model at nighttime was further applied to calculate the Re at daytime 
during 22 May 2013–31 December 2016 using Equation (3) and observation data at day-
time (water vapor). This Re (DDR) method was used for the Re simulation in the daytime 
and nighttime. The detailed results for the averages of the hourly, daily, monthly, and 
annual sums of Re are given in Tables 8–10 and Figures 8 and 9. 

For daytime + nighttime Re, (1) the EMRe also exhibited acceptable performances, 
and most of the estimations were within a one time standard deviation of the observed 
Re; (2) the estimation errors of Re were smaller than that that at nighttime (e.g., MAD, 
RMSE); thus, it may be caused by that σobs (observed Re) decreased with the increase in 
sampling number (i.e., from 16,836 to 31,606 for 2013–2016). Data quality of observed Re 
at daytime and nighttime, as well as only at nighttime in 2016, were the worst with the 
largest standard deviations (σobs, Tables 5–10), which caused larger simulation errors in 
2016 than in other years. The best Re estimates were performed for nighttime and day-
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In a brief summary for the estimates of the nighttime Re from the hourly to annual time
scales, the EMRe model exhibited a reasonable performance and most of the simulations
were within a one time standard deviation of the observed Re.

3.2.2. Daytime and Nighttime Re Simulations Using Re (DDR) Method

Based on some studies where the daytime Re was extrapolated from the nighttime
Re [37], the EMRe model at nighttime was further applied to calculate the Re at daytime
during 22 May 2013–31 December 2016 using Equation (3) and observation data at daytime
(water vapor). This Re (DDR) method was used for the Re simulation in the daytime and
nighttime. The detailed results for the averages of the hourly, daily, monthly, and annual
sums of Re are given in Tables 8–10 and Figures 8 and 9.

Table 8. Same as Table 5, but for mean hourly daytime and nighttime Re during each year and
2013–2016.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 15.96 0.054 0.062 0.063 0.93 5376 0.021 12.46 0.038 22.35

2014 21.49 0.070 0.066 0.075 1.03 8755 0.022 15.32 0.039 26.90

2015 14.75 0.050 0.059 0.062 0.93 8753 0.020 12.24 0.035 31.52

2016 24.08 0.144 0.059 0.083 0.79 8722 0.044 23.25 0.064 33.73

2013–2016 19.40 0.159 0.062 0.074 0.91 31,606 0.027 16.46 0.046 27.71

Table 9. Same as Table 6, but for daily sums of Re at daytime and nighttime during 2013–2016.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 12.57 0.015 1.470 1.309 0.93 224 0.381 9.25 0.619 15.01

2014 15.71 0.018 1.570 1.555 1.03 365 0.369 10.74 0.608 17.72

2015 11.15 0.015 1.394 1.339 0.93 365 0.359 9.16 0.600 15.31

2016 21.99 0.077 1.398 1.681 0.79 366 0.945 21.03 0.974 21.66

2013–2016 15.66 0.035 1456 1.570 0.91 1320 0.528 13.27 0.708 17.70
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Table 10. Same as Table 7, but for mean monthly sums of Re at daytime and nighttime during
2013–2016.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 10.64 0.009 45.22 41.61 0.92 7 9.952 7.95 7.041 11.51

2014 10.44 0.009 30.31 47.42 1.03 12 8.096 7.76 5.433 10.55

2015 8.06 0.007 41.05 41.06 0.93 12 8.419 7.06 5.221 8.76

2016 20.68 0.066 40.83 51.73 0.79 12 28.303 20.64 32.733 23.88

2013–2016 12.67 0.026 42.02 47.09 0.91 53 14.13 11.67 17.156 14.17
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Figure 9. Observed and calculated annual sums of daytime and nighttime Re (Reobs, Recal) with error
bars showing one time standard deviation of the observed Re during 2013–2016.

For daytime + nighttime Re, (1) the EMRe also exhibited acceptable performances,
and most of the estimations were within a one time standard deviation of the observed Re;
(2) the estimation errors of Re were smaller than that that at nighttime (e.g., MAD, RMSE);
thus, it may be caused by that σobs (observed Re) decreased with the increase in sampling
number (i.e., from 16,836 to 31,606 for 2013–2016). Data quality of observed Re at daytime
and nighttime, as well as only at nighttime in 2016, were the worst with the largest standard
deviations (σobs, Tables 5–10), which caused larger simulation errors in 2016 than in other
years. The best Re estimates were performed for nighttime and daytime + nighttime Re in
2014 than in other years. It reveals that better observational data are very necessary for
accurate Re evaluations.
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For the consistency, the units used for the hourly, daily, monthly, and annual sums of
Re were the same as mgCO2 m−2 s−1. A coefficient can be multiplied by (3600 × 12/44)/
1000≈ 0.982 to convert the hourly sums of Re to the widely used unit (gC m−2) for monthly
and annual sums of Re.

Based on the above results, the Re values calculated by the EMRe model (Re (DDR)
method) were multiplied by a factor 1.1 to best fit the hourly, daily, monthly, and annual Re
values in averages and sums for each year and four years 2013–2016, so as to reduce the
estimation error in the extrapolation of the respiration from nighttime to daytime; therefore,
the updated Re estimates were improved at different time scales to some extent. As a
brief summary, the ratios of the mean calculated to the observed Re were 1.000, 1.003,
1.001, and 1.001 for hourly, daily, monthly, and annual sums, respectively, from 2013 to2016.
Then, the updated EMRe (i.e., using a modified coefficient 1.1) was applied in the later
Re calculations.

3.2.3. Daytime and Nighttime Re Simulations Using Re (LDR) Method

As an alternative, daytime and nighttime Re values from 22 May 2013 to 31 Decem-
ber 2016 were computed using the 3-factor and 2-factor Re (LR) and Re (DR) methods
(Equations (2) and (3)), respectively. This Re (LDR) method was applied to compute hourly
Re in a whole day. The statistical metrics for the averages of the hourly sum of Re are
shown in Tables 11 and 12 and Figure 10. The ratios of the calculated to the observed Re
values for the daily, monthly, and annual sums of Re were similar to that of the hourly
sum (not given for saving space). Generally, the calculated Re values underestimated the
observations by about 13% for the mean hourly and annual sums in 4 years.

Table 11. Same as Table 8, but for mean hourly daytime and nighttime Re during each year and
2013–2016 using 3-factor Re (LR). (Re (LDR) method).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013–2014 103.31 1.555 0.214 0.072 0.90 13,893 0.111 72.37 0.182 118.44

2015 77.37 1.165 0.202 0.062 0.97 8754 0.110 67.33 0.174 106.38

2016 78.60 1.401 0.208 0.083 0.73 8724 0.121 64.07 0.191 101.11

2013–2016 88.91 1.375 0.209 0.074 0.87 31,611 0.113 68.19 0.182 109.40

Table 12. Same as Table 11, but for using 2-factor Re (LR) (Re (LDR) method).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013–2014 104.24 1.530 0.210 0.072 0.86 13,893 0.106 69.30 0.176 114.70

2015 76.57 1.083 0.194 0.062 0.91 8754 0.103 63.09 0.162 99.32

2016 77.31 1.300 0.200 0.083 0.69 8724 0.112 59.17 0.179 94.93

2013–2016 88.65 1.309 0.202 0.074 0.83 31,611 0.107 64.17 0.173 103.93

3.2.4. Daytime and Nighttime Re Simulations Using Re (LDDR) Method

In view of the systemic underestimations of Re using the Re (LDR) method, dark
respiration (Re (DR)) was considered in daytime Re simulation, i.e., using Re (LR) and
Re (DR) methods to calculate daytime Re, respectively, and Re (DR) to calculate night Re.
This method is named as Re (LDDR). The calculated results for the averages of the hourly
sum of Re are displayed in Tables 13 and 14 and Figure 11. The ratios of the calculated
to the observed Re values for daily, monthly, and annual sums of Re were also similar
to that of hourly sum and not shown. In general, the simulated Re displayed evident
seasonal variations, much higher in summer and lower in winter than the observations.
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The calculated Re values overestimated that measured by ~30% for mean hourly and
annual sums in 4 years.
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Figure 10. Observed and calculated monthly sums of daytime and nighttime Re using 3-factor and
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Table 13. Same as Table 11, but for mean hourly daytime and nighttime Re during each year and
2013–2016 using 3-factor Re (LDR) (Re (LDDR) method).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013–2014 112.13 1.586 0.256 0.072 1.40 13,891 0.144 93.82 0.223 149.16

2015 87.19 1.429 0.252 0.062 1.41 8753 0.141 86.01 0.232 141.95

2016 81.58 1.199 0.243 0.083 1.08 8722 0.137 72.86 0.214 113.53

2013–2016 96.61 1.414 0.251 0.074 1.31 31,606 0.141 85.06 0.226 135.86

Table 14. Same as Table 12, but for using 2-factor Re (LDR) (Re (LDDR) method).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013–2014 112.52 1.516 0.251 0.072 1.36 13,891 0.141 91.67 0.220 143.75

2015 86.10 1320 0.244 0.062 1.35 8753 0.136 83.33 0.218 133.48

2016 81.26 1.117 0.237 0.083 1.04 8722 0.134 70.87 0.204 107.93

2013–2016 96.46 1.333 0.245 0.074 1.26 31,606 0.138 82.92 0.216 129.77Atmosphere 2023, 14, x FOR PEER REVIEW 14 of 24 
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Several studies report the annual respiration biases of ~6% [62], 9.7% [31], and 20% [63,64],
respectively. In general, the EMRe exhibited reasonable simulations of respiration.

3.3. NEP Simulations under All Sky Conditions during 2013–2016

The hourly net ecosystem productivity was calculated using the GPP-Re, EMGPP
(3-factor and 2-factor, respectively, [45]) and EMRe models (i.e., Re (DDR), RE (LDR), Re
(LDDR)), along with the observed PAR and water vapor pressure. To obtain better NEP
estimates, several NEP calculation methods were used.

3.3.1. GPP Simulations Using EMGPP Model

Firstly, the hourly GPP estimates using the 3-factor and 2-factor EMGPP models are
presented briefly in Tables 15 and 16 [45]. Generally, the EMGPP model showed reasonable
performance and overestimation of GPPs by ~30%.

Table 15. Same as Table 1, but for mean hourly GPP (mgCO2 m−2) simulations (S/Q = 0–1) using
3-factor EMGPP during one year and 2013–2016.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 117.15 0.490 0.374 0.291 1.15 2493 0.287 59.43 0.535 111.05

2014 148.47 0.612 0.392 0.295 1.37 4181 0.301 71.90 0.549 130.99

2013–2016 142.74 0.586 0.381 0.300 1.31 14,748 0.318 70.03 0.398 87.60

Table 16. Same as Table 15, and for mean hourly GPP (mgCO2 m−2) simulations (S/Q = 0–1) using
2-factor EMGPP.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013 112.71 0.496 0.369 0.291 1.17 2493 0.281 58.31 0.530 110.00

2014 140.95 0.557 0.376 0.295 1.34 4181 0.289 69.00 0.536 127.94

2013–2016 135.55 0.538 0.366 0.300 1.29 14,748 0.303 66.62 0.378 83.23

3.3.2. NEP Simulations Using EMGPP and Re (DDR) Models

Secondly, the hourly NEPs were computed using EMGPP and Re (DDR) (with a
modified factor 1.1). Generally, the ratios of the mean calculated to the measured Re in 2013,
2014, 2015, 2016, and 2013–2016 were 1.45, 1.89, 2.78, 3.12, and 2.25 for using the 3-factor
EMNEP, and 1.54, 1.78, 2.60, 2.94, and 2.15 for using the 2-factor EMNEP. Similar ratios of
the mean daily, monthly, and annual sums were also obtained. Thus, the NEP values were
overestimated by a factor of 2.3 (ranged from 1.45 to 3.12).

3.3.3. NEP Simulations Using EMGPP and Re (LDR) Models

Thirdly, the hourly NEPs were calculated using EMGPP and Re (LDR) (with the 3-
factor and 2-factor methods). The ratios of the mean calculated to the observed Re in 2013,
2014, 2015, 2016, and 2013–2016 were 1.94, 2.32, 2.97, 3.89, and 2.68 for using the 3-factor
EMGPP and Re (LDR) models, and 2.04, 2.36, 3.01, 3.92, and 2.73 for using the 2-factor
models. Thus, the hourly NEPs overestimated the observations by a factor of 2.7 (ranged
from 1.94 to 3.92). Similar (but a little smaller) ratios of mean daily, monthly, and annual
sums were also obtained.

3.3.4. NEP Simulations Using EMGPP and Re (LDDR) Models

Thirdly, the hourly NEPs were calculated using EMGPP and Re (LDDR) (with the
3-factor and 2-factor methods) and Tables 17 and 18, and Figures 12 and 13 gives the results.
Similar ratios were found for the mean daily, monthly, and annual sums. The estimated
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NEPs in different time scales overestimated the observations by a factor of 1.22 (relative bias
22%) and 1.27 (relative bias 27%) for using the 3-factor and 2-factor models, respectively.
The calculated standard deviation (0.251 mgCO2 m−2 s−1) was less than that observed
(0.299 mgCO2 m−2 s−1) during 2013–2016 for using the 3-factor model, and the calculated
standard deviation value was 0.254 mgCO2 m−2 s−1 when using the 2-factor model.

Table 17. Same as Table 13, but for mean hourly NEP during each year and 2013–2016 (using 3-factor
EMGPP and Re (LDDR) methods).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013–2014 755.05 9.008 0.245 0.293 0.93 13,894 0.108 174.46 0.178 288.95

2015 352.87 10.944 0.248 0.288 1.37 8760 0.106 238.23 0.173 387.05

2016 244.45 18.583 0.262 0.316 1.96 8777 0.131 392.98 0.202 604.30

2013–2016 497.35 11.281 0.251 0.299 1.22 31,671 0.114 230.34 0.183 371.58

Table 18. Same as Table 15, but for using 2-factor EMGPP and Re (LDDR) methods).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013–2014 778.04 8.889 0.250 0.293 0.99 13,894 0.109 176.10 0.183 296.89

2015 361.45 10.906 0.251 0.288 1.41 8760 0.108 241.62 0.175 391.68

2016 246.72 19.059 0.263 0.316 1.97 8777 0.133 397.46 0.204 612.15

2013–2016 510.26 11.277 0.254 0.299 1.27 31,671 0.115 232.88 0.187 378.42
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4. Discussion 
4.1. PAR Balance Principle 

The emissions of the biogenic volatile organic compounds (BVOCs) from vegetation 
are part of carbon emissions, and play important roles in the atmosphere, biosphere, and 
climate change [66–77]. Similar to the CO2 flux, BVOC emissions are controlled by key 
driving factors, PAR, air/leaf temperature, water, etc., and are suggested to be considered 
in carbon balance. 

EMRe expresses PAR balance and usage above a canopy level, associating with the 
PAR attenuation of the equivalent CO2 for respiration, GLPs’ (except CO2) absorption and 
use of PAR, and GLPs scattering of PAR. Based on the above Re and NEP simulations in 
different time scales, including Re simulations in daytime and nighttime, further appli-

Figure 12. Observed and calculated monthly sums of NEP using the 3-factor and 2-factor EMGPP
and EMRe models (NEPobs, NEPcal 3F, and NEPcal 2F, respectively) with error bars showing 2 times
standard deviations of the observed NEP during 2013–2016 (S/Q = 0–1).
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EMRe models (NEPobs, NEPcal 3F and NEPcal 2F, respectively) with error bars showing 2 times
standard deviations of the observed NEP during 2013–2016 (S/Q = 0–1).
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It was found that the Re and GPP simulations captured the monthly variations well,
but the NEP simulations did not show a better performance than Re and GPP, and further
studies are needed. The estimates of the annual sums of NEP were in reasonable agreement
with the observed NEPs, and most of them were within 2 σobs, except 2016.

Given there were problems in CO2 flux measurements in 2016 summer, the observa-
tional data in 2013–2015 were used for further comparisons; the ratios of the mean annual
sum of the calculated to observed values were 1.07 and 1.12 for NEP using the 3-factor and
2-factor methods, respectively, 1.41 and 1.36 for Re, and 1.07 and 1.12 for GPP. So, EMNEP
models displayed improved performances for NEP. The NEP simulations exhibited the
largest uncertainty than GPP and Re; this feature was also found in other studies, e.g., the
Yale Interactive terrestrial Biosphere (YIBs model) [65], because NEP has the positive and
negative values and the smallest values compared to GPP and Re, and the most impor-
tant reason is that NEP is associated with many complex processes and current limited
understanding.

According to the high NEP in the summer of 2013–2015, the measured low NEP in
2016 summer should be corrected, and the simulated NEP values can be used as a reference.

4. Discussion
4.1. PAR Balance Principle

The emissions of the biogenic volatile organic compounds (BVOCs) from vegetation
are part of carbon emissions, and play important roles in the atmosphere, biosphere, and
climate change [66–77]. Similar to the CO2 flux, BVOC emissions are controlled by key
driving factors, PAR, air/leaf temperature, water, etc., and are suggested to be considered
in carbon balance.

EMRe expresses PAR balance and usage above a canopy level, associating with the PAR
attenuation of the equivalent CO2 for respiration, GLPs’ (except CO2) absorption and use of
PAR, and GLPs scattering of PAR. Based on the above Re and NEP simulations in different
time scales, including Re simulations in daytime and nighttime, further applications of PAR
balance and EMBE were acceptable. In summary, PAR energy and its use play significant
roles in the processes of CO2 and BVOCs, i.e., PAR controls the processes of GPP, Re,
and NEP in different ways/contributions, which are exhibited and represented by each
coefficient and constant in the empirical models/energy relationships. Therefore, PAR
provides a basic and vital energy for all biogenic activities and processes. Furthermore,
PAR simultaneously interacts with all physical, chemical, and biological processes in the
atmosphere-vegetation-land system, i.e., not in only one direction but in two directions
and several directions among the processes in the atmosphere, vegetation, and land [45,55].
Namely, direct and/or indirect PAR use is applicable to the study of BVOCs, GPP, Re, and
NEP, and one basic principle of PAR utilization runs through them all.

PAR energy method is a universal and practical method and deserved to be investi-
gated in the future. It describes main processes through energy and saves time to deal with
numerous specific processes in the atmosphere-vegetation-land system. The advantage
is that this method can reveal multiple interactions and the mechanisms associated with
CO2 and BVOCs and their main driving factors (temperature, PAR, water, scattering of
solar radiation S/Q). As an example, the universality of PAR energy use/method was
also exhibited in the Re empirical model development that extrapolated form daytime to
nighttime (Equations (2) and (3), Section 3).

4.2. The Application of Re (DR) Model and Calibration of Longwave Radiation Sensor

The PAR balance equation can be obtained from EMGPP (Equation (1)) by replac-
ing GPP with isoprene (one dominant species of BVOCs), or converted from the EMBE
(Section 5.4 in [55]):

PAR = C1e−a1ISOm × cos(Z) + C2e−kWm × cos(Z) + C3e−S/Q + C0 (4)
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The computed PAR at the top of the atmosphere (TOA) is C1+ C2+ C3 + |C0| and is
equal to the PAR at the TOA measured by the satellites and airplanes (PARTOA). This method
can be used to calibrate the PAR sensor by the ratio of PARTOA/(C1+ C2+ C3 + |C0|).

Similarly, the Re (DR) model (Equation (3)) also exhibited an energy balance at the
canopy level. Based on the Beer–Lambert law, C1 represents the longwave radiation at
the TOA associated with the individual atmospheric GLPs, and C0 represents that emitted
from the surface (i.e., vegetation). The processes and their associated energy are divided
and quantified by separate terms in empirical equations. So, C1 +|C0| = 357.22 and
368.06 W m−2 is the estimated total longwave radiation contributed by the atmosphere and
the surface for 2013 and 2014 night (using half-hour flux and other corresponding data in
this section, n = 4412, 4445, respectively). The detailed meaning of C1 +|C0| is described
in studies [55,78]. It should be noted that the longwave radiation of the GLPs at the TOA
is isotropy. According to the canopy temperature measured at the flux tower (23.6 m),
forest emissivity = 0.95 [79] and Stefan–Boltzmann law, the estimated longwave radiation
emitted by vegetation canopy were 379.87 and 379.91 W m−2 with relative biases of 5.96%
and 3.12% for 2013 and 2014 night, respectively. This estimated longwave radiation can be
used as a reference at TOA, and the ratios of 0.940 and 0.969 can be selected as calibration
factors. Compared this estimated total longwave radiation to that emitted from the canopy
measured at the tower (41.6 m) (398.19 and 399.29 W m−2), their relative biases were 10.28%
and 7.82%, respectively.

The attenuating rates of CO2 and photochemical terms using Equation (3) were 1.39%
and 77.60% for 2013, respectively, and 1.42% and 77.40% for 2014, indicating the longwave
radiation absorption by CO2 was much lower than that of atmospheric components, and
can be neglected, considering its low concentration compared with other GLPs. These were
in good agreement with the studies [80,81].

The annual averages of downward longwave radiation at the canopy level were
computed using Equation (3), and a longwave radiation that was remitted by the at-
mospheric GLPs after they absorb the longwave radiation emitted from the canopy,
|C0| × (1 − e−kWm × cos(Z)) were added. Then, their annual averages were 352.30 and
358.55 Wm−2 for the 2013 and 2014 night, respectively, the corresponding values measured
at 41.6 m were 362.31 and 362.01 Wm−2, respectively. Their relative biases were 0.29% and
1.22% for 2013 and 2014, respectively.

In a summary, the Re (DR) model showed a good performance for the estimations
of the downward and upward longwave radiation. It was a new piece of evidence to
demonstrate the reasonability and potential application of the Re (DR) model.

4.3. EMNEP Model and Its Simulation

The hourly NEPs were calculated by GPP-Re using the 3-factor and 2-factor EMGPP
and EMRe. It is clear that the NEP performance in the hourly, monthly, and annual NEP
simulations were gradually improved when more processes in respiration were considered
(e.g., the bias and RMSE values were decreased, Section 3.3). The purpose of developing
four types of Re empirical models (Section 3.2) was for the better simulation of NEP, one of
the most important factors in carbon exchange, and the best NEP estimations, were found
by using Re (LDDR) and the corresponding GPP models (Section 3.3). Finally, the NEP
empirical model captured most of the hourly, monthly, and annual NEP variational patterns
(within 2 σobs). The CO2 flux measurements in 2016 (July, August, and October) had some
problems and caused many unusual drops in the monthly sums that exceeded 2 σobs;
therefore, the simulated NEPs can be used as a reliable reference for these problematical
periods in the CO2 flux measurements. Generally, the monthly sums of NEP exhibited
overestimates in the summer and underestimates in the winter between 2013 and 2016, and
the annual sums of NEP were in 1 σobs for 2013 and 2014 and 2 σobs for 2015.

Under S/Q <0.5 conditions (low GLP loads, low cloud amounts, and aerosol con-
centrations), the constant in the Re (LR) method was close to 0, indicating that the PAR
attenuated by atmospheric substances plays absolute dominant roles in respiration, while
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the scattered PAR does not. Under S/Q ≥ 0.5 conditions (high GLP loads, cloud amounts,
and aerosol concentrations), both the attenuated and scattered PAR by GLPs contribute
respiration, or both the direct and diffuse PAR contribute the respiration and the diffuse
PAR contributes much more than that at S/Q <0.5. A similar result is also reported [82–84].

The respiration is small compared to NEE and GPP, and very difficult to be simulated
accurately. The improved performance in the NEP simulations (hourly to annual sums)
from the Re (LR) to Re (LDDR) method revealed that some factors (dark respiration and
photorespiration, etc.) should be taken into consideration in the respiration and NEP
processes. Based on these Re calculation results, the different NEP estimates can be used as
references to evaluate NEP uncertainties to some extent.

4.4. GPP, Re, and NEP Empirical Models

Re and NEP empirical models captured some basic characteristics of Re and NEP,
which were in line with other studies. It should be noted that GPP, Re, and NEP empiri-
cal models describe a dynamic and multiple-direction energy balance, more specifically,
quantify the relationships between energy (PAR) and atmospheric substances (CO2 and
other absorbing and scattering GLPs). The complicated and interactive CO2 processes in
the atmosphere, biosphere, and land were expressed using PAR and its related energy.
It is an advantage that these PAR energy empirical models can simplify numerous CO2
processes and capture the main variation properties of CO2 (GPP, Re, and NEP). Thus,
we do not need to pay too much attention to specific processes. In the future, to obtain
more reasonable simulations of seasonal NEP, more studies are necessary. It should be
emphasized that solar radiation, atmosphere, biosphere, and land should be considered as
a whole system. The interactions in PAR energy usage between photons, CO2 molecules,
and other GLPs quantum obey the statistical law. It should be noted that there were larger
RMSE values for the simulations of Re in 2016 (e.g., Tables 8–10) than in other time periods,
which was also mainly caused by measurement problems and very low Re. Thus, timely
instrument maintenance is significantly important, and the empirical model can provide
valuable data.

Water vapor is an objective parameter to represent air temperature and humidity (T,
RH), as water vapor is a function of T and RH [85]. Water vapor is also a vital participant
and reactor in chemical and photochemical reactions, associating with OH radicals and
BVOCs, as well as solar radiation [55,86].

The simulated monthly sums of Re and NEP exhibited larger variation ranges than
their observations (Section 3.2), which may reveal some problems in data processing
methods, e.g., spike detection, threshold (u*c) determination of nocturnal friction velocity
(u*), and gap-filling model selection had important impacts on the estimation of annual
NEE [87]. In more detail, the relative estimation deviations of annual gross ecosystem
exchange and ecosystem respiration induced by the uncertainty in data processing were
3.88–11.41% and 6.45–24.91%, respectively [87]. Additionally, more than 50% of the night
data are eliminated using the threshold (u*c) [87]. Large original flux data (e.g., the assumed
abnormal data) removal caused by different methods may result in small variation ranges
in measured Re and NEP and inaccurate understanding. The ratios of the observed annual
sum Re/GPP and NEE/GPP were 0.764 and 0.236, respectively, for 2013–2016. These
small ratios help us to clearly understand the different levels and ranges of GPP, Re, and
NEP. Therefore, more and more strict appreciated data processing methods are required to
improve flux data quality.

4.5. Some Issues Related to the Empirical Models of GPP, Re and NEP

Briefly, PAR absorption and indirect use by atmospheric components through chem-
ical and photochemical reactions mainly associated with excited NO2 (NO2*), H2O, OH
radicals [88] and BVOCs + OH + O3. Thus, the photochemical term expressed the total
PAR used by GLPs. In Equations (1) and (2), the multiple interactions between PAR and
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the terms (photochemical, scattering, Re term in this study instead of BVOC terms) are
explained in EMBE development in more detail [55,89].

The EMGPP showed that the GPP increases with the decrease in S/Q (i.e., the increase
in the scattered PAR by GLPs, including aerosols and clouds) [45], which were also in good
agreement with model studies and observations (the enhanced diffuse radiation caused by
the aerosols results in the enhancement of GPP) [84,90–97]. Considering similar phenomena
for respiration (Section 3.1.1) together, the diffuse radiation associated with the atmospheric
GLP substances, i.e., light use efficiency, how much direct and diffuse PAR is absorbed by
plants, play significant roles in plant growth and model simulations.

To better evaluate the empirical model performance, it is beneficial to understand the
uncertainties in the measurements and popular model predications. A relative uncertainty
of 20–50% for the CO2 eddy covariance measurements is reported in [29]. The annual sums
of NEE are 600 ± 130 gC m−2 year−1, 300 ± 180 gC m−2 year−1 at different forests [26].
Uncertainty for the annual NEE estimation is 12–32% [27]. A range of ±32% for the
annual NEE, GPP, and ecosystem respiration values was used [98]. The annual NEP
estimates using traditional ecological models agree with the flux measurements in 5%,
30%, and 100% [24–26]. The relative error of the PAR sensor is better than ±5% [78].
The yearly non-stability is <2% for global solar radiation sensor and <1% for solar direct
radiation sensor [86]. The averaged relative bias of water vapor is less than 18% [99].
The uncertainties/responses of GPP to its driving factors (PAR, water vapor, and S/Q)
using EMGPP is fully reported in [45] and can be used as a reference for the Re and
NEP simulations.

Using the PAR energy balance method in this coniferous forest, we made applications
of EMBE to GPP, then the Re and NEP simulations. Generally, the reasonable estimates of
Re and NEP were obtained. The GPP, Re, and NEP empirical models are simple, timesaving,
and the input parameters are easily obtained from the weather and solar radiation stations.
They also revealed some basic mechanisms, which agreed with model studies, e.g., GPP,
Re, NEP, and NEE increased with the increases in the diffuse PAR [82,83]. It is an important
application that the Re (DR) model can also be used to calibrate the longwave radiation
sensor (Section 4.2). In all, the empirical models in simulations of BVOCs, GPP, Re, and
NEP are useful and suggested to be investigated at other flux stations for a more thorough
estimation of the total carbon balance [70,100].

5. Conclusions

Application of PAR balance at the canopy level, 3-factor and 2-factor Re empirical
models to describe respirations at different situations were developed at a subtropical
coniferous plantation in China. Reasonable Re simulations were obtained in different time
scales (hourly, daily, monthly, and annual) during 2013–2016. Then, hourly, daily, monthly,
and annual sums of NEPs were calculated using the combined empirical models of GPP
and Re, and the simulated NEPs also reasonably agreed with the measurements (within
2 σobs). The Re and NEP empirical models captured most variation patterns of Re and NEP
in 2013–2016 and have better performances for annual sums of Re and NEP In general. As
an example, in 4 years, the simulated Re values overestimated the observations by about
30% for mean hourly and annual sums. Similarly, the computed NEPs also overestimated
the observations by about 22% and 27% in different time scales for using the 3-factor and
2-factor models, respectively, combined using previously developed 3-factor and 2-factor
GPP empirical models. Empirical model simulations of RE, NEP, and GPP can be used to
fill the gaps of RE, NEP, and GPP caused by the problems in CO2 flux measurements. The
Re (DR) model has another application for the calibration of longwave radiation sensors.

The PAR energy balance well-displayed a “universal” principle for expressing the
energy relationships/main processes associated with Re and NEP, as well as GPP and
BVOCs. It can simplify the complex processes of the CO2 in the atmosphere and biosphere
and estimate our concerned key CO2 parameters. The PAR energy balance method ex-
hibited some advantages, revealed some phenomena and mechanisms associating with
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Re and GPP that were in line with other extensively used models’ studies. It helps us to
understand the complicated and multiple interactions/processes fully and deeply among
solar radiation, atmosphere, biosphere, and land. Extensive studies deserved to be carried
out at this site and other sites in the future.
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