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Abstract: There has been an insurgence of allergic respiratory diseases such as asthma and rhinitis in
industrialized countries in the last few decades as a result of the interaction between air pollutants
and pollen, which has become a global and dramatic health problem. Air pollutants such as nitrogen
dioxide, sulfur dioxide, ozone, and carbon dioxide affect the physical, chemical and biological
properties of pollen such as the pollen content, production, and allergenicity, exacerbating symptoms
in vulnerable subjects. When investigating these interactions and their effects, the environmental
impact of climate change, weather variables and urbanization should be taken into account as well
as the pollen species, type of pollutant, conditions of exposure, and individual susceptibility. Up
to 25% of asthma adult cases are work-related, because several categories of workers in different
sectors are exposed to aeroallergens and outdoor air pollutants. Thus, in this study, we evaluated the
significant impacts of occupational allergies on worker’s health and quality of life. In summary, to
assess the effect of interactions between air pollutants and pollen on public and occupational health,
all the factors that play a role in this context will be investigated, including environmental factors,
individual susceptibility in relation to pollen species, type of pollutants, and conditions of exposure.

Keywords: pollen; air pollutants; climate change; weather factors; urbanization; public health;
occupational health

1. Introduction

In the atmosphere, there are several outdoor pollutants of different origin that es-
pecially in high concentrations may cause adverse impacts on human health and the
environment, particularly the development of respiratory diseases [1,2]. The main air
pollutants derived by anthropogenic activities are carbon monoxide (CO), carbon dioxide
(CO2), nitrogen oxides (NOx), and particulate matter (PMx), which includes bioaerosols
(i.e., pollen, fungal spore, bacteria, viruses, etc.) and chemical particles such as sulfur
dioxide (SO2) and ozone (O3). The high concentrations of bioaerosols in the atmosphere,
especially airborne allergens derived from plant pollen, may increase and exacerbate al-
lergic respiratory symptoms and diseases [3,4]. During the last few decades, allergic and
respiratory diseases such as asthma and allergic rhinitis have increased rapidly and globally
in adults and children, which is probably also due to rapid industrial development and
traffic emissions [4–9]. The development of allergies is a complex multifactorial process that
involves various factors influencing the individual susceptibility and immune response,
and the development of allergic diseases depends on exposure to allergens, environmental
and lifestyle factors [10]. A relevant issue to consider is the rising trend in sensitization
to pollen and respiratory symptoms/disorders in people living in urban areas than in
rural environments [6,11,12]. Therefore, atmospheric concentration and human exposure to
bioaerosol and aeroallergens are affected by climate change and meteorological conditions
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that influence vegetation patterns and plant physiology through spatial and temporal
changes in air temperature, humidity, rainfall and wind speed [10,13–16]. Meteorological
factors such as air temperature, humidity, wind speed, and rainfall may influence signif-
icantly the concentration, release, distribution, long-range transport and seasonality of
pollen in the atmosphere [13,16]. Airborne pollen of different plants has been shown to
be a sensitive bio-indicator of climate change and environmental variations [17,18]. Many
authors proposed pollen grains as good indicators of the state of the environment, as they
have been found to be sensitive to air pollutants [19,20]. Different studies nowadays advise
to take into account both pollen types and specific air pollutants for the epidemiological
assessment of environmental factors in respiratory allergies [21–23]. In this regard, cu-
mulative research data indicate that pollen grains and air pollution reciprocally interact,
and environmental pollution may cause morphological, ultrastructural, biochemical, and
physiological changes on pollen [14,24]. The direct effect of air pollution on pollen and on
its allergenic potential is currently a critical scientific area of interest. Air pollutants increase
the allergen content of pollen and damage its surface, releasing more allergens [25]. In
fact, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins,
exacerbating symptoms in sensitized subjects and the incidence of pollen allergy [25–29].
Atmospheric pollutants interact with pollen, causing changes in its fertility and affecting
the reproductive cycle of seed plants [30]. At the cellular level, air pollutants provoke
damage of the membrane structures and interfere with cellular mechanisms as well as
the gene expression. The adverse effects of air pollutants on the biological properties
of pollen such as viability and fertility are usually detected during pollen germination.
At the molecular level, air pollutants have a relatively strong oxidative role that affects
biomolecules such as proteins (consisting of their nitration and oxidation), lipids (change in
content, composition and quantitative properties) and nucleic acids (mutation in the genetic
material), interfering with pollen germination and elongation of the pollen tube [31–33].
In the literature, several studies highlight that each plant species may have a different
susceptibility/tolerance to the atmosphere’s pollution levels such as NO2 and O3, and
each species (i.e., Betula, Ambrosia, Birch, Quercus) shows different reactions depending on
the pollutant type and concentration [4,24,34–36]. However, these effects of air pollutants
on pollen species must also be considered in the context of vegetation and the influence
of meteorological conditions [14,34]; therefore, the sensitivity of people in different areas
changes with pollen species [13,37]. To this purpose, in this work, we have investigated,
with attention especially on the most recent studies, the effects of air pollutants on pollen
grains to understand how the interactions between pollen and air pollutants affect public
and occupational health in relation to the factors (i.e., climate change, urbanization, pol-
lens species) that play a role in this context. Therefore, the impact of climate change on
pollen concentrations and air pollutants levels that significantly affect air quality deserves
particular attention.

2. Interaction between Air Pollutants and Pollen
2.1. Effects of Air Pollutants on Physical and Chemical Properties of Pollen

Because of the specific sculpture of the pollen wall and exine lipophilicity, different
types of pollutants, including gaseous compounds and fractions of particulate matter, may
adhere to the pollen surface (Figure 1) [16].

Atmospheric pollutants such as PMx, NO2, SO2, and CO have a direct effect on the
physical and chemical properties of pollen grains, modifying the characteristics of the pollen
surface, its allergenic potential, allergens/proteins release from pollen and the molecular
structure of proteins [3,38–42]. To this purpose, morphological analysis of the pollen grains
is very important. Several studies showed changes in the morphological structure of the cell
wall such as shrinkage, thinning, rupture of exine, dilatation of the intine wall and in the
pollen wall’s constituents such as sporopollenin that can be determinant in the resistance
of pollen grains to environmental pollution [34,43–45] (Figure 2).
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Figure 1. Examples of Poaceae pollen grains, with particulate matter adhered to the external surface:
(a) integer pollen grain, (b) deformed pollen grain with attached fungal spores. Pollen grains have
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Figure 2. Examples of damaged, cracked or ruptured pollen grains: (a) Cupressus sempervirens,
(b) Ailanthus altissima, (c) Vitis vinifera, (d) Olea europaea. Pollen grains have been stained with
basic fuchsine.

In an interesting study, the researchers demonstrated the shrinkage of exine of many
species of pollen (Cyperus rotundus, Syzygium cumini, Hyptis suaveolens, Cocos nucifera,
Acacia nilotica, Eucalyptus tereticornis, Azadirachta indica and Zea mays) that had been exposed
to high concentrations of some pollutants of anthropogenic origin (PMx particles, SO2 and
NOx) [46]. In this regard, as suggested by some papers, pollen with thinner exine may
result in higher susceptibility to deformation, fragility or rupture [47,48]. The fragility of
exine varies significantly among pollen species/families; for instance, Cupressaceae pollen
exine, which is rather thin, is clearly more easily fragilized than other pollen types [38,49],
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and Platanus orientalis pollen became swollen after several hours of fumigation with NO2,
or SO2 [14,40]. Therefore, the exine rupture seems to be faster and higher in polluted pollen
grains [49], resulting in an increased number of allergens or sub-pollen particles containing
allergens released into the environment [50]. Such particles of small size (~2.5 microns
or less) may be easily inhaled and then penetrate more deeply into the lower respiratory
system, contributing to enhance pollen spreading and allergenicity, causing an exacerbation
of symptoms in sensitized individuals [24,38]. To this purpose, the particulate matter is
a mixture of solid and liquid particles suspended in air, and it can differ in sizes, shapes
and composition. The particle size influences significantly the ability of the particulate to
pervade deeply in the lung [22]. Ultrafine particles (PM < 0.1 mm) can access the alveolar
region, resulting in more aggressive and dangerous effects than other breathable fractions
of larger size both at the respiratory level (especially in vulnerable subjects) and at the
molecular level. Different studies demonstrated that particulate matter can act as a carrier
of allergens and could bind with airborne pollen through micrometer-sized aggregates,
modifying their allergen content and composition [16]. In some research studies, pollen
of a non-polluted area was observed with normal size and structure [44]. Nevertheless,
other papers found no significant variations between polluted and non-polluted pollen,
which may be due to differences in the pollen grain species and the conditions of exposure
to gas pollutants [38,51]. Therefore, chemical modification by air pollution may influence
the biochemical composition and content of pollen [32,34] and promote alterations in the
structure of proteins in the pollen cell wall (i.e., amino acid oxidation, conformational
changes, crosslinking, oligomerization, degradation of protein), affecting protein stability,
the polypeptide profile and some properties such as hydrophobicity and the acidity of
binding sites [10,31,52]. Many studies detected a general decreasing trend of protein content
in pollen (i.e., Birch pollen) exposed to O3, SO2 [31,47,53], and the pollen collected from a
polluted area contained a lower content of soluble proteins [54]. On the contrary, according
to other authors [55], atmospheric pollutants may increase the total protein content of
pollen under stress conditions as a mechanism of the plant’s defense system [56]. In a
specific research study, the results highlighted that the protein content of Acer negundo was
lower in SO2-exposed pollen samples and slightly higher in NO2-exposed pollen compared
to the control sample [55]. Therefore, the same pollutant gas may interact with each specific
allergen and cause various effects (more or less relevant) due to differences in pollutants
(NO2 and O3) and pollen interspecies variations [14,57]. Previous results confirm that
the pollen species present different behavior in terms of the total soluble protein (TSP)
concentration when exposed to pollutant gases, and the reaction is not always positively
correlated with concentration [34]. The more common post-translational modifications of
proteins include their nitration and oxidation, which may alter the allergenic potency of the
pollen and molecular structure of their protein, such as Pla a 3 [25,58–60]. Gases like ozone
and NO2 are oxidant compounds, which can activate and increase reactive oxygen species
(ROS) production by the pollen grain in response to stress conditions, affecting the structural
and conformational changes of proteins [61,62]. Some authors evidenced that the defense
mechanism reaction toward the oxidative stress and its efficiency can change between
different pollen species much like the pollen size or cell wall. In one study, B. pendula and
C. avellana pollen behave in a similar way, where the pollutants seemed to activate less
ROS production than in the case of A. negundo and Q. robur [34]. For instance, ROS attack
proteins to form carbonyls and can react with nitrogen species then to form nitrotyrosine
with tyrosine and with lipids to generate ethane and isoprostanes. These reactions could
have an impact on membrane organization. The ROS such as hydroxyl-free radical (neutral
form of hydroxide ion OH−), superoxide anion (O2−), and hydrogen peroxide (H2O2) are
highly toxic and can damage proteins, resulting in their dysfunction [38] (Figure 3).
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Figure 3. Pollen grains of Chamaerops humilis damaged due to exposure to an oxidative agent
(hydrogen peroxide) with spillage of the cellular content.

The reaction of nitration resulting from some gases such as NO2 and O3 at atmospheric
concentrations, with the addition of nitro groups to the aromatic rings of tyrosine residues
in the polypeptide chain, can increase the allergic potential of many proteins and cause
differences in recognition by changing protein activity and function [52,59]. Other funda-
mental components such as pollen lipids play also an important role in the development
and in the biochemistry of allergies [63–66]. Some authors observed a modification of lipid
content (reduction in fatty acids and phospholipids) in pine pollen (Pinus sylvestris) of
industrial areas and a significant reduction in the degree of unsaturation of fatty acids [54].
Other papers showed that in conditions of elevated levels of ozone, the lipid composi-
tion of birch pollen was altered (decrease in the glycerolipids concentrations), inducing a
modulated immune response [27,51,67,68] and modifications of other constituents such as
unsaturated fatty acids, which have important binding activities with the allergenic protein
Bet v 1 [64,69,70]. Modification of the lipidic fraction of Pinus halepensis pollen has been
evidenced in experimental condition of exposure to ozone [71]. The pollen can act as a
carrier of lipids with adjuvant effects on the immune response to allergenic proteins [65]. To
better understand the influence of lipids with the immune system in allergy development,
it is important to investigate by experimentation the modifications of pollen lipidomes
induced by air pollutants [64].

2.2. Effects of Air Pollutants on Biological Properties of Pollen

Numerous atmospheric pollutants interact with pollen and may cause biological ef-
fects on the pollen viability, germination rate and fertility, as shown in several studies on a
wide variety of pollen exposed to different levels of some gases such as CO, CO2, O3, and
SO2 [31,38,72,73]. Pollen viability and germination rate are critical factors directly in-
fluencing plant reproductive function. These parameters are the simplest and most
widely used biological parameters to evidence the effect on pollen exposed to air pol-
lutants [38]. The evaluation of pollen viability after exposure to pollutants, in vivo or in
experimental conditions, has been investigated by many studies to highlight the direct
effects of pollution on pollen [74–76]. In a study performed under controlled conditions, the
Betula pendula pollen after exposure to elevated levels of some pollutants (CO, O3, SO2)
showed a significant lowering in viability (about 14%) and germination rate (about 36%),
while a minor effect was revealed at the lowest pollutants concentration [31]. Other in vitro
and in vivo studies evidenced a significant decrease in germination rate and/or viability
(up to 50%) in Iridaceae pollen species exposed to different concentrations of O3 and CO in
Lepidium virginicum, Pinus nigra and Pinus pinea exposed to SO2 [72,77,78]. Another research
tested the pollen viability of different species in a fumigation chamber, and the highest
decrease in pollen viability was evidenced for C. avellana (average of 15% when exposed
to O3 and 11% to NO2) followed by B. pendula (average of 9% when exposed to O3 and
13% when exposed to NO2), Q. robur (average of 5% when exposed to O3 and 7% when
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exposed to NO2) and finally A. negundo (average of 8% when exposed to NO2). The more
evident effect on viability was detected for C. avellana when exposed to both and Q. robur
when exposed to NO2, while A. negundo was more tolerant to pollutants compared to the
other tested species. The percentage loss varied depending on pollen species, type and
concentration of pollutants tested [34]. Therefore, pollen tolerance to pollutants seems to be
higher when the grains are exposed in vivo compared to experimental conditions, which is
due to the protective role of the anther [74] (Figure 4).
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Figure 4. Examples of vital (left) and non-vital (right) pollen grains (Melilotus italicus). Note that the
vital pollen grain has a well-developed pollen tube, while the non-vital one has no visible cellular
content. Pollen grains have been stained with basic fuchsine.

The seeds’ development and composition change in relation to the pollutant concen-
trations; in conditions of elevated O3, the seeds had far less stored carbohydrate, lipids,
and proteins, which are fundamental for pollen germination, elongation of the pollen tube
and growth rate. In this regard, the reduction in lipids content and the change in their
composition due also to metabolic process resulted in germination pollen decline [73,79,80].
On the contrary, according to the results of other studies, the presence of elevated CO2
levels affects chemical pollen composition and seed development (increase in carbohydrate,
lipids, and proteins content in seed), and it may enhance significantly the germination
rate, favoring pollen production [81,82]. At the cellular level, air pollutants, due to their
oxidative properties, may damage the cell structures, provoke organelle disconnection and
the release of pollen cytoplasmic granules, and interfere with cellular mechanisms as well
as with the gene sequence and expression [83–86]. In this regard, the higher frequency
of discrete and point mutations in pollen grains collected in urban polluted areas caused
changes in the gene sequences’ expression, influencing the proteins’ function and their aller-
gen content and potential [23,41,87]. The oxidative properties of air pollutants may damage
biomolecules such as proteins, lipids and nucleic acids that constitute the main material
pollen reservoir, affecting pollen germination and elongation of the pollen tube [88,89].
Air pollutants can interact indirectly with epithelial surfaces, inducing inflammations and
increasing epithelial permeability, and they can also act directly as adjuvants, promoting
the production of some cytokines in airway epithelial cells and pro-allergic immune reac-
tions such as IgE-mediated responses, enhancing the expression of allergenic proteins in
pollen grains [6,10,90].

Therefore, oxidative degradation of the protein and the formation of amide and
carbonyl groups decrease the recognition of allergenic proteins; otherwise, other chemical
modifications, such as nitration or crosslinking, may enhance the allergenic potential of
molecules, as shown in several studies that examine the nitration of the Bet v 1 allergen of
birch pollen [59,60]. These post-translational allergens modifications may induce adverse
effects on their stability, affecting the immune reactions in several processes such as the
duration of exposure times to cellular receptors and the process of antigen presentation via
major histocompatibility complex (MHC) class II [10]. Some of the mentioned mechanisms,
including an increased deposition of allergen in the airways due to carriage by air pollutants,
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may increase sensitization to allergens, which in a genetically predisposed individual could
cause and exacerbate clinical manifestations such as asthma [91].

3. Air Pollutants, Pollen and Human Health
3.1. Air Pollutants, Pollen and Public Health

The prevalence of allergic disorders such as asthma and rhinitis, especially in devel-
oped and industrialized countries, has become a dramatic health problem in the last few
decades, increasing considerably over time [92–94] (approximately 10% to 30% of the global
population and 30% to 40% of the European population) [1,95,96]. According to the World
Health Organization (WHO), several million people around the world suffer from rhinitis,
and over 260 million suffer from asthma [95,97].

Some studies show that this percentage is higher in industrialized countries, although
the diffusion represents a critical health problem also in developing countries because of
the interaction between air pollution and pollen that may exacerbate asthma and other
allergic manifestations [93,98–100]. Other studies agree that the prevalence and incidence
of allergic diseases such as asthma and atopic dermatitis increased worldwide, especially
in high-income countries, and the temporal trend variation of their burden depends on
numerous factors (geographical, social, individual, environmental) [93,95]. Therefore, in
contrast, few studies showed a reduction in the incidence of allergic diseases such as asthma
and allergic rhinitis, which can be due to an improvement in air quality of the urban area
where the participants lived [96]. In this complex context, the advent and the rise of green
technologies based on renewable energy such as wind, solar, and geothermal may produce
positive effects in reducing pollution and allergic diseases, improving people’s quality of
life in different parts of the world. Different studies highlighted that combined exposure to
allergens like pollen and outdoor air pollutants like NO2 and O3 amplify allergenic airway
disease and enhance inflammatory response with the recruitment of inflammatory cells,
cytokines and interleukins for those predisposed, vulnerable populations [101,102].

Children are vulnerable subjects because of differences in their breathing rates and
patterns. They inhale a volume of air containing a higher level of pollen and other pollutants
per body weight than adults; therefore, they are more affected by pollutant environments [100].

There is clear evidence in the literature that asthma is the most common respiratory
chronic disease in children, which is often characterized by underlying inflammation [103].

The rising trend of air pollutants due to industrial activities and motor vehicles
depends on global warming and influences each individual’s response to changes in
living environments [104].

Climate change (i.e., the presence of elevated levels of CO2, heatwaves) and weather
variables significantly influence the production, concentration, diffusion, and bioavailabil-
ity of allergens as well as the timing, intensity and duration of the pollen season, affecting
health outcomes such as aeroallergen sensitization prevalence, hospitalizations and recov-
ery for asthma attacks [18,26,105,106]. Global warming modifies the onset, duration, and
intensity of the pollen season as well as the allergenicity of the pollen. In conditions of
high atmospheric levels of CO2, plants exhibit enhanced reproductive effects and increased
pollen production [107]. Climate change causes extreme events such as heatwaves and
drought that can provoke adverse effects such as stress and respiratory diseases [92]. In
the literature, there is clear evidence of interactions between aeroallergens and extreme
meteorological events such as thunderstorms. During the pollen season, rapid changes in
the weather factors such as rain, humidity, temperature may favor the hydration of pollen
grains and also their fragmentation after rupture by osmotic shock, which generates atmo-
spheric biological aerosols carrying elevated levels of allergens such as pollen, [108,109],
including inhalable allergen-carrying cytoplasmic starch granules (<5 µm) or other paucimi-
cronic components. Such small particles may penetrate into the lower respiratory system
and provoke asthma in vulnerable subjects [110].

Thunderstorms can induce epidemic thunderstorm asthma (ETSA), and it sometimes
can also induce severe asthma crises and deaths in patients that are sensitized and more
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vulnerable. Due to constant climate change, future thunderstorm asthma (TA) events are
likely to become more common and more unpredictable; as a consequence, it is fundamental
to investigate this topic to prevent and/or reduce asthma attacks [109].

In the same way, weather variables such as air temperature, sunlight, and rainfall
together with CO2 are among the main factors modifying the dynamics of pollen release
and production by plant [111,112]. Temperature and air humidity impact the amount of
pollen released during flowering; air temperature is the most important meteorological
factor that correlated positively to daily pollen concentration, and the effect of temperature
is stronger on the spring and early summer flowering plants [16,113,114]. In conditions
of air humidity, in particular, some types of pollen absorb water and increase in weight
until they burst. On the contrary, dry air favors anther dehiscence in several anemophilous
species [115]. An important factor that affects flowering intensity and pollen concentrations
is rainfall; in conditions of abundant precipitation, the pollen content decreases [116,117].
In addition, also the wind speed influences the movement, release and dispersion of all
aeroallergens in the atmosphere [118].

In combination with climate change and extreme weather conditions, industrialized
and developed countries are facing an increased frequency of respiratory allergic diseases
and asthma, as urbanization is associated with poorer air quality as well as high levels
of pollutants and aeroallergens [119]. By 2050, it is predicted that 68% of the world’s
population will be living in urban centers [102], and currently, 80% of people living in
urban areas are exposed to air pollution levels that exceed WHO guidelines [92].

Some studies have shown that people of many countries living in urban areas are
more sensitive to respiratory allergies, and as a consequence, the prevalence of pollinosis
is increasing, especially in polluted cities [120–122]. Pollen taxa may differ in urban and
rural environments [12]. As suggested by the hygiene hypothesis, increased urbanization
in industrialized countries has reduced microbial exposure in early life, which resulted in
the increased prevalence of allergic sensitization and disease [123,124].

In the same way, urban children have a higher prevalence of allergic diseases and
atopy than children living in rural areas, which is probably due to the effect of air pollution
on the onset and development of allergic disorders [96,125]. Evidence suggests that 13% of
global incidence of asthma in children could be attributable to traffic-related air pollution,
and air pollution has a negative effect on asthma outcomes in both adult and pediatric
populations [90]. As described previously, children are more vulnerable than adults, and a
study conducted in an urban population evidenced that the association between asthma
morbidity and air pollution was stronger in children than in adolescents and adults [126].
Another study evidenced that approximately 40% of children in Poland suffer from allergies,
and children aged 6–7 who live in cities have a 5-fold increase in the risk of allergic diseases
compared to children of the same age group living in rural environments [127]. The
urban heat island (UHI) is a well-investigated phenomenon in the literature, which is
characterized by elevated ambient temperatures, reduced levels of relative air humidity
and specific thermal winds, and increased levels of different air pollutants such as NO2,
SO2, CO2, and O3, all of which are responsible for an increase in allergen content and
production [5,128,129]. Therefore, the urbanization affects pollen season timing, which
starts earlier and ends later compared to corresponding rural areas [130,131].

Therefore, the results of different studies highlighted that airborne pollen concentra-
tions are higher in rural areas than in urban areas [12,132]. In fact, in urban environments,
the vegetal biomass and floral biodiversity are reduced, and pollen sources may be rela-
tively small, although some pollen species may be more numerous [131]. The qualitative
and quantitative composition of airborne pollen grains differs in rural and urban areas
and depends on many critical aspects such as the degree of urbanization, size and cover
of vegetation areas, distance to pollen source in relation to pollen transport and diffusion,
presence of ornamental vegetation, climate, weather factors and geographical conditions. A
further and critical factor to consider is the sensitization of the individuals that, especially
for vulnerable subjects, may exacerbate the pollinosis [12,132].
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Although peaks may be less elevated in urban areas than in rural areas, the dynamic
of hourly variations shows that the number of hours in the day that sensitized people are
exposed to pollen levels is still higher in urban areas [130,132]. The overexposure to high
levels of pollen during the day in the urban area could potentially lower the quality of life
of allergic people [133].

3.2. Air Pollutants, Pollen and Occupational Health

Numerous categories of workers may be exposed to different biological, chemical,
and physical agents that may trigger and/or exacerbate allergic disorders in sensitized
subjects [134–136]. Occupational immune diseases are among the most common illnesses
that affect workers; they can cause adverse effects on worker’s health and impacts on
quality and capacity of work, resulting in economics losses [137].

Occupational asthma is the most common occupational respiratory disorder in indus-
trialized countries; up to 25% of adult asthma cases are work-related, which represents
a significant issue worldwide [138–140]. Work-related asthma (WRA) is used to define
both asthma caused by the presence of a specific agent in the workplace, i.e., occupational
asthma (OA), and pre-existing asthma that is worsened by exposure to non-specific stimuli
at work but not caused by it, i.e., work-exacerbated asthma (WEA) [139,141]. Therefore,
worldwide, asthma exacerbations provoke a large proportion of asthmatic individuals to
miss work each year: 17% in western Europe, 23% in central and eastern Europe, 27%
in the Asia-Pacific region and 30% in Japan [142]. WEA is known to be more preva-
lent in particular among specific working categories such as healthcare, education and
service workers [143].

In the literature, there are still a few studies concerning occupational allergies that
may potentially have a negative impact on occupational health related to polluted urban
environments. Some authors have investigated potential exposure to agents responsible for
allergic diseases such as asthma, allergic contact dermatitis, urticaria, and allergic rhinitis in
different working sectors (i.e., construction, agriculture, fishing, hunting, park maintenance,
farming, and operators in urban and suburban environments) in association with outdoor
environmental pollutants [144,145]. Some studies evidenced a higher prevalence of allergic
respiratory symptoms and allergic sensitization in specific groups of workers (traffic war-
dens, traffic policemen) exposed, for a big part of their working time, to outdoor pollutants
in areas with high traffic intensity. The results of clinical and allergological tests of these
studies showed a prevalence of positive results (~60%) in the exposed workers compared
to the controls. These results highlight that allergological tests should be included in the
health surveillance protocols for workers exposed to outdoor pollutants [145,146].

Another interesting multicenter study highlighted that workers employed in 13 different
occupations (i.e., office staff, attendants, blue-collar workers, drivers, businessmen, farmers,
school members) and different regions of China that were screened for common allergens,
including weed pollen mix and tree pollen mix, showed distinctive sensitization patterns of
asthma. The workers with the highest positive rates to pollen occurred among blue-collar
workers employed in different sectors (i.e., construction workers, railway workers, coal
mine workers) and drivers (taxi and bus drivers). In this regard, some occupations such
as drivers may have a higher exposure to air pollutants such as traffic emissions during
their outdoor activities. Therefore, the combined effect of smoking and air pollution may
be a worsening factor of asthma and other allergic diseases. The study evidenced that the
pattern of asthma distribution depends on many factors including geographical features,
cover of vegetation, meteorological factors, and the habits of daily living in the different
regions. To this purpose, subjects recruited from regions in the northeast of China with no
history of smoking had the highest rate of sensitization to tree pollen and weed pollen due
to climatic regional conditions (dry and windy, with less precipitation in springs and falls,
and hot and humid in summers) and higher pollen content in these areas, which could
promote the diffusion and inhalation of allergens. Then, in the same paper, the researchers
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underlined that several factors such as air pollutants, allergens, and smoking, especially
combined, are important causes of severe asthma [147].

Therefore, the synergic effects due to environmental and occupational exposure to
allergens, air pollutants, climate change and individual sensitization should be taken into
account in the management of these diseases [144,148]. To this purpose, strategies for
control and prevention should be applied in relation to conditions of exposure, especially
the characteristics of occupational settings, to identify and protect workers in high-risk
categories.

4. Conclusions

The prevalence of allergic disorders such as asthma and rhinitis, also because of the
interaction between air pollution and pollen, has become a critical health problem in the
last few decades. Cumulative data in the literature indicate that airborne allergens such
as pollen grains interact significantly with many air pollutants (i.e., O3, PM, NO2, SO2),
resulting in different effects on pollen content, production, and allergenicity [149,150].
Air pollutants affect the morphological and physical properties of the pollen surface (i.e.,
deformation, rupture of pollen wall), resulting in an increased bioavailability of allergen
or sub-pollen particles containing allergens released into the environment. The oxida-
tive properties of air pollutants may modify the composition and chemical properties of
macromolecules such as proteins, lipids, and nucleic acids, affecting the germination and
elongation of the pollen tube as well as the modulation of immune response in many cellu-
lar and molecular processes. The exposure to air pollutants also influences the biological
properties of pollen such as the viability and germination rate (i.e., reduction in viability and
germination rate), which are critical factors for plant reproductive function [73]. All effects
of air pollutants on pollen species depend on environmental factors such as climate change,
meteorological conditions, and urbanization as well as individual factors such as sensiti-
zation to allergens in relation to conditions of exposure, pollen and pollutants types [4].
Climate change and weather factors influence significantly the production, concentration,
diffusion, bioavailability of allergens and pollen seasonality, affecting aeroallergen sensi-
tization prevalence and respiratory diseases. Moreover, the effect of urbanization has to
be taken into account in this context. In fact, as shown in the literature, the urban heat
island (UHI) effect may affect levels of chemical air pollutants and be responsible for an
increase in allergen content and production. Furthermore, pollen species may be different
in urban and rural environments [120,148]. Although there are still few studies regarding
occupational allergies in relation to air pollutants, they may have a negative and significant
impact on worker’s health and quality of life in different categories of workers in many
sectors (i.e., construction, agriculture, farming, health care), resulting in economic losses
and a high prevalence of allergic respiratory diseases [145,147]. In summary, in this work,
we have investigated the effects of interactions between air pollutants and pollen grains to
understand the outcomes on public and occupational health in relation to all the factors (i.e.,
climate change, weather variables, urbanization, individual sensitization) that play a role
in this context. More studies will be promoted to investigate the role of several factors and
biochemical mechanisms involved in the responses to different environmental exposures.
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