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1 Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco,
Rua Dom Manoel de Medeiros s/n, Dois Irmãos, Recife 52171-900, Brazil; tastosic@gmail.com (T.S.);
borkostosic@gmail.com (B.S.)

2 Institute for Meteorology, Faculty of Physics, University of Belgrade, 11000 Belgrade, Serbia;
milica.tosic@ff.bg.ac.rs (M.T.); irida.lazic@ff.bg.ac.rs (I.L.); vdj@ff.bg.ac.rs (V.D.)

* Correspondence: itosic@ff.bg.ac.rs

Abstract: We investigate multifractal properties of daily means of air temperature over the territory of
Serbia, by using Multifractal detrended fluctuation analysis. Temperature anomalies in two periods
1961–1990 and 1991–2020 are calculated from the E-OBSv26.0e gridded dataset with 0.10◦ (~12 km)
resolution, totaling 1278 daily temperature series for each period. The MFDFA parameters: position of
the maximum of the spectrum α0, width of the spectrum W and asymmetry r, obtained from the total
of 2556 MFDFA runs are interpolated to yield their spatial distribution across Serbia in the two periods.
We found several patterns in both the spatial distribution, and changes from first to second period.
All series showed multifractal properties with overall persistent long-term correlations (α0 > 0.5)
and the dominance of small fluctuations (r > 0). The persistence is weaker (smaller α0 values) and
multifractality is stronger (larger width W) in southern mountainous regions. In the second period the
values of α0 increased indicating stronger persistence of temperature dynamics, while multifractality
became stronger (larger W) in northern region and weaker (smaller W) in southern region. In both
periods the contribution to multifractality was dominated by small fluctuations (r > 0) that become
stronger in the second period, indicated by the increase of the values of r over most of the country’s
area. These changes in the values of multifractal parameters indicate the increase of complexity of
temperature dynamics in the second 30 years period which could be related to climate change.

Keywords: air temperature; time series; multifractal analysis; spatial interpolation

1. Introduction

The complexity of climate system emerges as the result of multiple interactions be-
tween many different components [1]. Climate variables such as temperature, precipitation
and wind exhibit temporal and spatial fluctuations over wide range of scales as a re-
sult of complex nonlinear underlying processes which understanding requires the use
of new concepts such as chaos theory [2,3], fractals and multifractals [4–8], information
content [9,10] and complex networks [11,12]. The knowledge of these properties has
shown useful for development and validation of new more reliable climate models on
local and regional scales [13–15]. Multifractality of atmospheric processes is well known
and documented in scientific literature [16]. Multifractal dynamics is found in time se-
ries of air temperature [17–19], rainfall [20–23] humidity [24], wind speed [25–27], solar
radiation [28,29] and global climate indices [30,31]. Air temperature and precipitation are
the principal variables used in detection of climate change [32] which is considered the
most challenging problem in climate studies due to increased evidence of the influence of
anthropogenic factors [33,34].

With the objective to contribute to better understanding of climate variability and
climate change in this work we investigate the multifractal dynamics of daily temperature
in Serbia, its spatial distribution, and the degree of change between two standard normal
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periods of 30 years. We apply Multifractal Detrended Fluctuation Analysis (MDFA) [35] to
long term (1961–2020) high resolution gridded dataset of daily temperature over Serbia
and calculate multifractal parameters (that quantify the position of maximum, width, and
asymmetry of multifractal spectrum) which are related to different properties of temper-
ature fluctuations (persistence, degree of multifractality and dominance of small/large
fluctuations). By comparing the spatial distribution of these parameters over Serbia for two
periods of 30 years (1961–1990 and 1991–2020) we investigate how possible climate change
affects temperature fluctuations. Previous studies on air temperature in Serbia include
analysis of annual and seasonal temperature trends [36], trends of extreme temperature
indices [37–40] and analysis of cold and heat waves [41]. Bajat et al. [36] analyzed mean
annual and seasonal temperature series in Serbia based on monthly data from 64 stations
recorded over the period 1961–2010. For most stations they identified 1989 as change
year and found that mean annual temperature displayed significant negative trend for
10 stations before change year, and positive significant trend for almost all stations after
the change year. By analyzing trends of seasonal temperature, they found that the summer
season had the largest contribution to annual trends. Unkašević and Tošić [39] analyzed
the trends of six climate indices based on 61 years (1949–2009) of daily maximum and
minimum temperature from 15 stations distributed across Serbia. They found the warmer
tendency of Serbian climate with the most significant trends in the summer season. Ruml
et al. [37] analyzed trends of 18 indices based on daily maximum and minimum tempera-
ture recorded in 26 stations during the period 1961–2010. They compared the results for
two sub-periods (1961–1980 and 1981–2010) and found that hot indices exhibited cooling
tendency in the first sub-period and warming tendency in the second sub-period, while
cold indices displayed warming tendency over entire period. Recently, Tošić et al. [40] per-
formed the comprehensive analysis of changes in mean and extreme temperature indices in
Serbia using same high resolution daily gridded temperature dataset during the period of
1951–2020. They found increasing trend for both, mean maximum temperature and mean
minimum temperature, all indices based on maximum temperature, while among indices
based on minimum temperature, negative trend was found for cool days and cool nights.
They also analyzed correlation between temperature indices and large-scale circulation
patterns and found that East Atlantic (EA) pattern was strongly correlated with temperature
indices (positive correlation with warm indices and negative correlation with cold indices).

Considering this evidence of climate change in Serbia which is in agreement with
results obtained on global and European scale, in this work we performed multifractal
analysis (using MFDFA) on 1278 daily temperature series from a high-resolution gridded
dataset E-OBS. This is the first study using MFDFA in this part of Europe. We analyzed
two sub-periods (1961–1990 and 1991–2020) that totals 2556 MFDFA runs which produced
the spatial distribution of multifractal parameters for each sub-period. We investigate
the relation of these parameters with terrain topology and changes from first to second
sub-period. We also compare our results with the results of studies for other countries

2. Data and Methodology
2.1. Study Area and Dataset

Serbia is continental country located on the Balkan Peninsula, in the southeast of
Europe, within the temperate climate zone between latitudes 41◦50′ and 46◦10′ N (Figure 1).
Its relief gradually changes from northern part with flat and low elevation terrain situated
within Pannonian plain, toward central and southern part which is covered by hills and
mountains surrounding river valleys. The climate varies from moderate continental in
northern part to continental in central part and modified Mediterranean in southern and
southwestern part due to Mediterranean influence which is modified because the Dinaric
Mountain range (that stretches through the west and southwest of the country) prevent
humid air masses to move in from west [36,42]. The mean annual temperature varies
between 3 ◦C in regions with altitude above 1500 m and 12 ◦C in the lowlands. The mean
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annual rainfall increases with altitude: 600 mm in northern region and between 800 mm
and 1000 mm in the mountainous region [38].
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In this work we used the data from the E-OBS gridded dataset version 26.0e, for daily
mean temperature (TG), with a horizontal resolution of 0.1◦, for the period of 1961–2020.
The E-OBS dataset represents one of the most comprehensive datasets for Europe, obtained
by interpolating the collection of available station data [43]. The validation of temperature
data for Serbia is performed by calculating the following scores: Bias, Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and Correlation Coefficient (CC). Scores are
calculated using daily observations from 57 stations and daily temperature from E-OBS
dataset. We obtained a good agreement between the mean annual observed temperature
(10.7 ◦C) and temperature from EOBS data (10.2 ◦C), as well as a Bias (−0.47), MAE (0.93),
RMSE (1.12) and CC (0.99).

2.2. Multifractal Detrended Fluctuation Analysis

Fractal processes are characterized by a single scaling exponent that characterizes long-
term correlations in terms of persistence (if large fluctuations are more likely to be followed
by large fluctuations, and small fluctuations by other small fluctuations) or antipersistance
(if large fluctuations are more likely to be followed by small fluctuations, and vice versa). A
multifractal time series can be understood as a composition of interwoven subsets with
small and large fluctuations that scale differently, and the analysis of long-term correlations
requires a hierarchy of scaling exponents [35]. Multifractal analysis of temporal series
has been addresses using different methods, such as wavelet transform modulus maxima
(WTMM) method [44], multifractal detrended fluctuation analysis (MF-DFA) method [35]
and multifractal detrending moving average method (MF-DMA) [45]. In this work we
employ MF-DFA that was shown to produce reliable results [46] and has been widely used
to analyze physiological signals [47], geophysical data [48], weather data [49], hydrological
records [50], and financial time series [51].

The implementation of the MF-DFA algorithm goes as follows [35]. The first step is
usually the integration of original fluctuation series x(i), i = 1, . . ., N, in order to produce
the “profile”

X(k) = ∑k
i=1[x(i)− 〈x〉], k = 1, . . . , N

where 〈x〉 = 1
N ∑k

i=1 x(i) is the average. If the original series represents random fluctuations,
integrating the series produces a “profile” that increases as square root of “time” (index k),
and departure from this square root behavior is the object of this analysis.
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Next, the profile X(k) is divided into bN/nc non-overlapping segments of length n
starting from X(1) (here b·c stands the floor function), and another bN/nc segments of
size n starting from X(N − nbN/nc+ 1), so that the last segment ends at X(N) (to account
for the end of the series), the total number of segments now being Nn = 2bN/nc. In each
segment ν = 1, . . . , Nn the local trend Xn,ν(k) (linear or higher order polynomial least
square fit) is estimated and subtracted from X(k) to calculate the detrended variance

F2(n, ν) =
1
n∑νn

k=(ν−1)n+1[X(k)− Xn,ν(k)]
2

for each segment. Finally, an independent parameter q that can assume any real value
except zero is introduced to find the so called qth order fluctuation function

Fq(n) =
{

1
Nn

∑Nn
ν=1

[
F2(n, ν)

]q/2
}1/q

.

Parameter q serves as a “magnifying glass”, where positive values of q enhance
large fluctuations, and negative values enhance small fluctuations. Consider for example
two segments where fluctuation F(n, ν1) ≡

[
F2(n, ν1)

]1/2 of the first segment has twice
the magnitude of the fluctuation F(n, ν2) of the second segment. Then, for q = 10 the
contribution in the above sum

[
F2(n, ν1)

]q/2 of the segment ν1 is 1024 times larger than
that of ν2, and for q = −10 the role is reversed: contribution of ν1 is 1024 times smaller than
that of ν2.

This calculation is repeated for different box sizes to provide the relationship between
fluctuation function Fq(n) and box size n. If long-term correlations are present, Fq(n)
increases with n according to a power law Fq(n) ∼ nh(q), and the scaling exponent h(q)
is obtained as the slope of the linear regression of log Fq(n) versus log n. This power law
exponent h(q) is called the generalized Hurst exponent, and for stationary time series h(2)
corresponds to the well-known Hurst exponent H [52,53]. As shown in the above example,
h(q) describes the scaling behavior of large fluctuations for positive values of q, and it
describes the scaling behavior of small fluctuations for negative values of q. For monofractal
time series there is a single scaling exponent so that h(q) is a constant independent of q,
while for multifractal time series h(q) is a decreasing function of q.

Generalized Hurst exponent h(q) are related to the Renyi exponent τ(q) defined by
the standard partition function-based multifractal formalism as τ(q) = qh(q) − 1. For
monofractal signals τ(q) is a linear function of q (as h(q) = const.), and for multifractal
signals τ(q) is a nonlinear function of q. It is often more convenient to characterize a
multifractal process by the singularity spectrum f (α) which is related to τ(q) through the
Legendre transform

α(q) =
dτ(q)

dq
,

f (α(q)) = qα(q)− τ(q),

where f (α) is the fractal dimension of the support of singularities with Lipschitz-Holder
exponent α. The singularity spectrum of a monofractal signal is represented by a single
point in the f (α) plane, whereas multifractal process yields a single humped function

Multifractal spectrum reflects the level of complexity of the underlying stochas-
tic process and can be characterized by a set of three parameters: (i) the position of
maximum α0, (ii) width of the spectrum W = αmax − αmin, and (iii) the skew param-
eter r = (αmax + αmin−2α0)/(α max − αmin) [54,55], where r = 0 for symmetric shapes,
0 < r ≤ 1 for right-skewed shapes, and −1 ≤ r < 0 for left-skewed shapes. If α0 > 0.5, the
underlying process is overall persistent (larger value of α0 indicates stronger persistency),
and if α0 < 0.5 the process is overall antipersistent (smaller value of α0 indicates stronger
antipersistency). The width W of the spectrum measures the degree of multifractality of
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the process (the wider the range of the fractal exponents, the “richer” the structure of the
process). The skew parameter r indicates which fractal exponents are dominant. If f (α)
spectrum is right-skewed (r > 0) the process is characterized by “fine structure” (large
scaling exponents describing small fluctuations), and if the f (α) spectrum is left-skewed
(r < 1) the process is dominated by the scaling of large fluctuations (small scaling expo-
nents). In summary, a signal with a high value of α0, a wide range W of fractal exponents
(higher degree of multifractality), and a right-skewed shape (r > 0) may be considered
more complex than those with opposite characteristics [54].

To deal with a large number of MFDFA runs necessary for the current analysis, we
have developed an optimized program in C language.

3. Results and Discussion

Descriptive statistics (mean and standard deviation) was calculated for all 1278 grid
cells, interpolated and presented on Figure 2.
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The mean annual temperatures between 9 and 11 ◦C prevailed in Serbia during the
period 1961–1990 (Figure 2). The highest temperatures (around 12 ◦C) are recorded in the
wider Belgrade area, and in valleys along the Sava and Velika Morava River (Figure 1), from
1961 to 1990. The lowest temperatures, below 6 ◦C, are observed in the mountain regions of
southwestern and southeastern Serbia. The region with the lowest temperatures retained
only at the mountains in southwestern Serbia during the period 1991–2020 (Figure 2). Mean
annual temperatures between 9 and 11 ◦C are recorded in central and southern Serbia from
1991 to 2020. Temperatures above 11.5 ◦C prevailed in northern and eastern Serbia, and
along Velika Morava River. The highest temperatures above 13 ◦C are recorded in the wider
Belgrade area from 1991 to 2020.

Like a mean temperature, a standard deviation increased in Serbia in the second
considered period (1991–2020). A standard deviation in value of 8 ◦C prevailed in Serbia
during the period 1961–1990. The lowest values (7.5 ◦C) are recorded in southwestern
Serbia, while the highest one at the far east (Figure 2). During the second period (1991–2020),
values of standard deviation were above 8 ◦C in the wider Belgrade area and northern
Serbia, with the highest values above 9 ◦C at the far east of Serbia (Figure 2).

3.1. Multifractal Analysis

The MFDFA method was applied on deseasonalized series (anomalies). For the
two periods 1961–1990 and 1991–2020, for each calendar day i temperature anomalies
are calculated as zi,j =

(
xi,j − µi

)
/σi, where xi,j is mean temperature on day i of year j

of the period, µi is the mean and σi is standard deviation over the years of the period.
We applied MFDFA method on anomaly temporal series for all the 1278 grid cells for
the two periods (1961–1990 and 1991–2020), totaling 2556 MFDFA runs using the range
of q from −10 to +10, with a step of 0.1. The multifractal spectrum for a sample grid
point at latitude 44.15 and longitude 21.35, corresponding to the central Serbia region
close to the city of Kragujevac for the period 1961–1990, is shown in Figure 3 together
with the corresponding spectrum for shuffled anomaly series. The shuffling procedure
used implements 10,000× N transpositions (N = 10,957) and was repeated here 100 times
with different random number generator seeds in order to obtain the mean and standard
deviation. The fact that the spectrum for shuffled data becomes narrower and is shifted
leftwards, centered about α = 0.5 demonstrates that the observed multifractality is mainly
due to long-range correlations, rather than to a broad probability density function [35].

The spatial distribution of multifractal parameters of over the Serbian territory for
two periods (1961–1990 and 1991–2020) is shown in Figure 4 where we observed following
patterns. The temperature series exhibit long-term persistent correlations (α0> 0.5), with
weaker persistence (lower α0 value) in mountainous regions with higher elevation (western
and southeastern regions, Figure 1) and lower temperature (Figure 2). In the second
period when the temperature increased in all regions, the values of α0 also increased
indicating that temperature dynamics become more persistent. Putniković [56], applying
an objective classification scheme of atmospheric circulation over Serbia, pointed out that
the anticyclonic weather type, which is the most persistent circulation type, dominated in all
seasons with a positive trend except for autumn. The width W of the spectrum also shows
marked spatial variability: larger width (higher degree of multifractality) in mountainous
regions (southern part, Figure 1) that decreased in the second period indicating loss of
“richness” in scaling exponents of temperature fluctuations and consequently weaker
multifractality. In northern parts with lower elevations, the multifractality of temperature
series become stronger in the second period indicated by the increase of spectrum width.
Thus contrary of what was observed for α0 for which the direction of change from the first
to second period was consistent (increasing) for all regions preserving the north-south
gradient (higher α0 values in northern part), the clear positive north-south gradient of W
values that was observed in the first period was inverted in the second period: the width
of the spectrum decreased from northern to central region and then increased in southern
region, but it is still lower than in norther part. These changes can be better understood by
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analyzing skew parameter r. The values of r are positive indicating that small fluctuations
contribute more to the multifractality of the process. In the second period these values
stay positive and become larger in northern and smaller in central regions following the
change of the width of f (α) spectrum. This indicates that the change in the width of
the spectrum in these areas is due to the change in the dominance of small fluctuations
(described by the right side of the spectrum). In the southern region the width of the
spectrum decreased while the skew parameter increased, indicating that while dominance
of small fluctuations become stronger widening the right side of f (α) spectrum in the
second period, the contribution of large fluctuations to multifractality of temperature series
(described by left side of the spectrum) become weaker, leading to the overall shorter
spectrum width and lower degree of multifractality. Considering that a signal with a
high value of α0, a wide range W of fractal exponents (higher degree of multifractality),
and a right-skewed shape (r > 0) may be considered more complex than those with
opposite characteristics [52], the observed changes of multifractal parameters (Figure 4)
indicated that in the second period overall complexity of temperature series increased
in northern part of country, and decreased in southern part. Mimić et al. [57] analyzed
the complexity of daily maximum and minimum temperature and daily precipitation
from seven station on Serbia (recorded during the period 1951–2010) using information
theory measures Kolmogorov complexity and Sample entropy. They found that for all
stations both measures (calculated for 1year periods) exhibit positive trend for maximum
temperature indicating the increase in complexity. The results of the multifractal analysis of
mean temperature in Serbia from 1278 grid cells of E-OBS dataset also indicate the increase
in complexity in northern part of the country.

Atmosphere 2023, 14, x FOR PEER REVIEW 6 of 13 
 

 

retained only at the mountains in southwestern Serbia during the period 1991–2020 (Fig-
ure 2). Mean annual temperatures between 9 and 11 °C are recorded in central and south-
ern Serbia from 1991 to 2020. Temperatures above 11.5 °C prevailed in northern and east-
ern Serbia, and along Velika Morava River. The highest temperatures above 13 °C are rec-
orded in the wider Belgrade area from 1991 to 2020. 

Like a mean temperature, a standard deviation increased in Serbia in the second con-
sidered period (1991–2020). A standard deviation in value of 8 °C prevailed in Serbia dur-
ing the period 1961–1990. The lowest values (7.5 °C) are recorded in southwestern Serbia, 
while the highest one at the far east (Figure 2). During the second period (1991–2020), 
values of standard deviation were above 8 °C in the wider Belgrade area and northern 
Serbia, with the highest values above 9 °C at the far east of Serbia (Figure 2). 

3.1. Multifractal Analysis 
The MFDFA method was applied on deseasonalized series (anomalies). For the two 

periods 1961–1990 and 1991–2020, for each calendar day 𝑖 temperature anomalies are cal-
culated as 𝑧௜,௝ = ൫𝑥௜,௝ − 𝜇௜൯/𝜎௜, where 𝑥௜,௝ is mean temperature on day 𝑖 of year 𝑗 of the 
period, 𝜇௜ is the mean and 𝜎௜ is standard deviation over the years of the period. We ap-
plied MFDFA method on anomaly temporal series for all the 1278 grid cells for the two 
periods (1961–1990 and 1991–2020), totaling 2556 MFDFA runs using the range of q from 
−10 to +10, with a step of 0.1. The multifractal spectrum for a sample grid point at latitude 
44.15 and longitude 21.35, corresponding to the central Serbia region close to the city of 
Kragujevac for the period 1961–1990, is shown in Figure 3 together with the corresponding 
spectrum for shuffled anomaly series. The shuffling procedure used implements 10,000× 
N transpositions (N = 10,957) and was repeated here 100 times with different random 
number generator seeds in order to obtain the mean and standard deviation. The fact that 
the spectrum for shuffled data becomes narrower and is shifted leftwards, centered about 𝛼 = 0.5 demonstrates that the observed multifractality is mainly due to long-range corre-
lations, rather than to a broad probability density function [35]. 

 
Figure 3. Multifractal spectra for the original and the shuffled anomaly series for a sample grid point 
at latitude 44.15 and longitude 21.35, corresponding to the central Serbia region close to the city of 
Kragujevac. The shuffled spectra correspond to mean values for 100 surrogate shuffled series, and 
the error bars to plus minus two standard deviations (the 𝑞 parameter resolution was reduced here 
to Δ𝑞 = 0.5 for better visualization). 

Figure 3. Multifractal spectra for the original and the shuffled anomaly series for a sample grid point
at latitude 44.15 and longitude 21.35, corresponding to the central Serbia region close to the city of
Kragujevac. The shuffled spectra correspond to mean values for 100 surrogate shuffled series, and
the error bars to plus minus two standard deviations (the q parameter resolution was reduced here
∆q = 0.5 for better visualization).
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the distribution of parameters values is quite different in two periods: (i) for all parameters
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the distributions become narrower in the second period; (ii) the frequencies of higher
values of α0 and lower values of W increased in the second period indicating that overall
the temperature fluctuations become more persistent with lower degree of multifractality;
(iii) the distribution of skew parameter r changes from bimodal in the first period (due
to the well separated southern region with lower values of r) to unimodal in the second
period with increased frequencies of higher values, indicating the stronger dominance of
small fluctuations.
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The histograms of shuffled series (shuffling was performed here only once, for each
of the 1278 grid points) show the changes in multifractal parameters (the values of α0
approaches 0.5, the width of the spectrum W decreases and the assimetry parameter r
assumes both positive and negative values.

3.2. Comparison with Studies from Other Countries

Qualitatively, our results agree well with the results obtained for other European coun-
tries. Multifractality of air temperature series were found for Spain [58,59], Greece [60,61],
Poland [62,63] and England [64] with the same specific features as for Serbia: persistent
long-term correlations (α0 > 0.5) and the dominance of small fluctuations (right-skewed
spectrum). Gos et al. [63] compared multifractal properties of air pressure, air temperature
and wind speed in Poland, from ground base data (35 meteorological stations) and reanal-
ysis gridded MERRA-2 dataset, for the period 2007–2016 on hourly and daily resolution.
They found high similarity between multifractal parameters obtained from ground base
and MERRA-2 data, for both hourly and daily series. For air temperature and air pressure
the position of maximum of multifractal spectrum is strongly correlated with altitude:
increases for air pressure and decreases for air temperature indicating that at higher al-
titudes the fluctuations of air temperature are less persistent. Our results also indicated
that temperature fluctuations are less persistent in the mountainous regions. There are two
studies that investigated possible influence of climate change. Gómez-Gómez et al. [58]
analyzed four temperature variables (daily maximum, minimum, mean, and diurnal tem-
perature range) by applying MFDFA on data recorded in 10 meteorological stations in
Spain and compared multifractal spectrum parameters for two 30 years periods: 1960–1989
and 1990–2019. They found that all variables showed multifractal properties that changed
in the second period and suggested that this was related to the climate change. For mean
temperature, similar results for Serbia are obtained. In the second period the position of
maximum of multifractal spectrum shifts to the right (the value of α0 increases indicating
stronger persistence) and the width of the spectrum decreased indicating lower degree of
multifractality. Rahmani and Fattahi [64] investigated the influence of climate change on
multifractal properties of precipitation and temperatures in central England (recorded in
11 stations) by applying MFDFA on daily and monthly data for two subperiods (1931–1989
and 1990–2019). They found that climate change induces shift in multifractal strength
for all analyzed variables: on daily scale, the increase in multifractality for precipitation
and maximum temperature and decrease in multifractality for minimum temperature, on
monthly scale all variables display weaker multifractality which decreased for precipitation
and increased for temperature in the second period. For Serbia the multifractality of daily
mean temperature decreased in the second period in the regions with higher elevation.

Multifractal properties of air temperature were also found in other regions in
world [17–19]. It is worth to compare our results with those of Da Silva et al. [18]. They
applied MFDFA on daily temperature series recorded in 265 stations in Brazil during the
period from 1990 to 2017. They found that all series showed multifractal properties with
persistent long-term correlations and the dominance of large fluctuations. In southern re-
gion with higher elevation the temperature fluctuations display weaker persistency (lower
α0 values) and stronger multifractality (larger width W of multifractal spectrum). It is qual-
itatively similar as obtained for temperature series for Serbia in both considered periods:
dominance of small fluctuations (right skewed f (α) spectrum) and weaker persistence
(lower α0 values) in mountainous regions.

4. Conclusions

The multifractality of air temperature in Serbia for two 30 years periods (1961–1990
and 1991–2020) was analyzed by applying Multifractal detrended fluctuation analysis
(MFDFA) on high resolution daily gridded dataset. The obtained values of multifractal
parameters (position of maximum α0, width of the spectrum W and skew parameter r)
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indicate that for both periods all series exhibit multifractal properties characterized by
persistent long-term correlations, and dominance of small fluctuations.

By analyzing the spatial distribution of multifractal parameters for the first sub-period
we found clear gradient of persistence and degree of multifractality in the direction from
northern lowland to southern mountainous part of country: lower values of α0 (weaker
persistence) and higher values of W (stronger multifractality) in southern mountainous re-
gions.

In the second period temperature series become more persistent (the values of α0
increased in all regions, preserving the north-south gradient), while the change in W was
not consistent: multifractality become stronger (larger W) in northern region and weaker
(smaller W) in southern region.

The skew parameter r was positive in both periods, indicating the dominance of small
fluctuations, that become stronger in the second period (the values of r increased in most of
the country’s area).

These changes in the values of multifractal parameters from first to second sub-period
indicate that in the second period the underlying stochastic process that govern temperature
fluctuations become more complex which could be attributed to climate change.

Similar results were found for Spain and England [58,64], indicating that multifractal
analysis could be useful (along with classical statistical methods) in evaluation of climate
change impact on air temperature fluctuations. By providing the information about the
nature of underlying process (described by the parameters of multifractal spectrum) it
could also be useful for validation of global and regional climate models, since a valid
model should explain empirically detected scaling properties in observed data. Current
results should be compared with model-generated data for spatial locations (longitude and
latitude) that correspond to the locations of grid cells used in this work.
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