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Abstract: The ability of soil moisture (SM) to affect precipitation (P) is a vital part of the water-

energy cycles. Accurately quantifying this coupling enhances the ability to predict hydroclimatic 

extremes like floods and droughts. In this study, the ability of soil moisture to affect precipitation 

(SM-P) is characterized by two parts: the influence of soil moisture on evapotranspiration (SM-ET), 

and the influence of evapotranspiration on precipitation (ET-P). We determined localized ET-P by 

incorporating the coupling between latent heat flux (LH) and LCL height, to optimize the estimation 

of the SM-P. This approach links SM more closely to P by considering the influence of surface fluxes. 

The results indicate that CMIP6 models exhibited the anticipated hotspot patterns for the three cou-

pling metrics in transition regions. However, we observed that climate models generally exhibit 

weaker SM-P coupling compared to reanalysis models. Both SM-ET and SM-P showcase higher 

values wherein wet climate regions during dry years, and the converse occurs in dry regions. Due 

to sensitivity to climate change, the ET−-P exhibits a more pronounced upward trend in the future. 

This study helps understand P’s response to SM shifts in climate models, crucial for predicting hy-

drological extremes and coupled global warming impact. 

Keywords: land surface–atmosphere interactions; soil moisture–precipitation feedback; the lifting 

condensation level; CMIP6 

 

1. Introduction 

Land surface is second only to the oceans as a major climate driver [1,2]. In this con-

text, soil moisture (SM) has been demonstrated to be a crucial variable [3–5]. SM is a 

slowly changing variable of land surface [6], which can influence weather and climate 

change by impacting the water and energy cycles [7,8]. In this regard, the interaction be-

tween SM and precipitation (P) has always remained one of the central questions in cli-

mate research [9,10]. Previous studies have indicated a coupling feedback relationship 

between SM and P, which results in changes in P anomalies and either reinforces SM or 

leads to soil desiccation [9,11–14]. This interaction involves a two-way process: (1) from P 
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to SM, with a direct effect of P on SM, although regional and seasonal differences exist in 

its sensitivity [15–17]. (2) The effect of SM on P is more intricate and challenging to observe 

or measure [18,19]. In theory, evapotranspiration (ET) serves as an intermediate and es-

sential process that mediates the impact of SM on P. Consequently, this effect could be 

separated into two components: the influence of SM on ET, and the sensitivity of P to the 

changes in ET [2]. The relationship between ET and SM is intuitive and relatively easier to 

quantify [13,20]. However, the influence of ET on P is uncertain due to complex atmos-

pheric processes, which have sparked intense debate [14,21–23]. 

Numerous attempts have been undertaken to explore the interplay between SM and 

P. For example, Koster et al. [6] established a multi-model average description of the 

global distribution of the coupled soil moisture–precipitation strength via numerical ex-

periments involving multi-model simulations. Guo et al. [20] divided the ability of SM to 

affect P into two stages to elucidate the factors affecting changes in coupling strength, 

showing that higher coupling strength typically occurred when evaporation rates varied 

strongly and consistently with SM. Liu et al. [24] also partitioned the interaction between 

the land surface and the atmosphere into terrestrial and atmospheric segments and uti-

lized probability density functions to enhance the exploration of coupling mechanisms. 

Koukoula et al. [25] conducted a numerical-simulation-based study to investigate the 

feedback between SM and P. The findings revealed that the feedback characteristics varied 

across different climatic and meteorological conditions. Using convergent cross-mapping 

(CCM), Wang et al. [14] explored the cause-and-effect connection between SM and P at 

low and mid-latitudes in the Northern Hemisphere. Their study revealed a robust causal 

link between the effect of SM on evapotranspiration, the impact of ET on P, and the effect 

of SM on P. These finding supported the notion that SM influences P primarily through 

its impact on evapotranspiration and contributes to the exploration of coupling mecha-

nisms. 

In this study, the ability of soil moisture to affect precipitation (SM-P) is characterized 

by two parts: the influence of soil moisture on evapotranspiration (SM-ET), and the influ-

ence of evapotranspiration on precipitation (ET-P). A positive correlation between SM-ET 

implies a co-varying relationship between SM and ET, wherein SM might act as the deter-

mining factor while ET responds accordingly. This phenomenon is commonly observed 

when SM is insufficient. In regions with a wet climate and ample SM, ET is primarily 

governed by net radiation [6]. In such scenarios of sufficient SM, the dominant control is 

exerted by available energy, leading to a negative correlation [26]. In a broader context, 

ET influences P through various potential pathways. Among these, the ET-P local cou-

pling is considered a particularly meaningful mechanism by which ET influences P 

[2,27,28]. Moreover, existing research has indicated that the causal connection between the 

local SM-P is stronger compared to non-local effects [13]. 

Considering local impacts, Dirmeyer et al. [29] observed a significant correlation be-

tween precipitation errors and errors in latent heat flux. The surface heat flux plays a piv-

otal role in SM-P [30]. Research conducted by Lawston-Parker et al. [31] revealed that in 

relatively moist soil conditions, the proportion of latent heat flux (LH) intensifies, conse-

quently lowering the lifting condensation level (LCL) height and creating a favorable en-

vironment for precipitation. Expanding on this notion, the second part of the study incor-

porates the coupling mechanism between LH and LCL height into the calculation of ET-

P. The LCL height is closely linked to changes in mean cloud base height and can serve as 

a reasonable approximation of the boundary layer growth required for convection to oc-

cur (which serves as an indicator of the probability of P) [32]. While prior investigations 

have acknowledged the significance of surface fluxes and LCL, the direct incorporation of 

LCL into the SM-P framework had not been observed in empirical practice until the pre-

sent study. Through the consideration of latent heat flux and LCL effects, we have taken 

a substantial stride towards elucidating the intricate relationship between SM and P, par-

ticularly concerning kinetic and thermodynamic aspects. This pioneering approach not 

only furnishes us with more profound and comprehensive insights but also facilitates the 
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enhanced comprehension by scientists of the atmospheric distribution of water vapor and 

energy, as well as the mechanisms of exchange, and their direct influence on precipitation 

patterns. Understanding how different models quantify this continuum is vital for en-

hancing model parameterization schemes and ultimately improving predictions of asso-

ciated extreme events. 

The primary objective of this study is to conduct a sensitivity analysis of precipitation 

to soil moisture using a novel framework and explore future changes. To comprehensively 

understand the potential uncertainties in representing SM-P, we conducted a comparative 

analysis between CMIP6 multi-modal data and reanalysis data sets (ERA5 and MERRA2). 

In the first place, the analysis stemming from the framework of SM-P has deepened our 

comprehension of sensitivity variations under distinct climatic conditions, thus enhancing 

our understanding of the feedback loop between SM and P. Furthermore, several studies 

have pinpointed the intensified land–atmosphere coupling under climate change, under-

scoring the significance of investigating future sensitivity changes [33]. We used CMIP6 

model data to compare SM-ET, ET-P, and SM-P calculations derived from 35 years of his-

torical records with the last 35 years of the 21st century. This comparison allowed us to 

discuss potential alterations in the SM-P over time. This study provides valuable insights 

into the interplay between SM and P, shedding light on current dynamics and potential 

future shifts. 

2. Materials and Methods 

2.1. Climate Models 

The Coupled Model Intercomparison Project (CMIP) [34,35] involves multiple cli-

mate model experiments and is currently in its sixth phase (CMIP6). The primary goal is 

to improve modeling and future projections to better understand our past, present, and 

future climate [35,36]. In this study, 16 CMIP6 model output data were chosen based on 

three specific criteria, as detailed in Table 1. Models’ selection was contingent upon meet-

ing the following comprehensive conditions: temporal coverage spanning from 1980 to 

2014 and from 2066 to 2100, the presence of the complete array of required variables, and 

the availability of both historical and future pathway data. To maintain alignment with 

the temporal scope of the two reanalysis data sets, 35 years’ worth of data (1980–2014) 

were employed for the historical analysis. Correspondingly, the future analysis encom-

passed the concluding 35 years (2066–2100) of the 21st century. For the examination of 

forthcoming changes under diverse carbon emissions scenarios, two shared socio-eco-

nomic pathways (SSP) were opted for: SSP1-2.6 (SSP126) and SSP5-8.5 (SSP585). These 

pathways encapsulate alternative visions of human progress, with SSP126 portraying an 

optimistic realm of sustainable practices, and SSP585 portraying a future hinging on en-

ergy-intensive, fossil-fuel-based economies [34]. Boreal summer (referred to collectively 

as JJA) and Northern Hemisphere winter (referred to collectively as DJF) were chosen for 

comparative seasonal analysis. All models were derived from r1i1p1f1. Computations 

were initially performed at their original resolutions and then resampled to a 0.5 × 0.5 grid 

for the sake of ease in analysis and comparison. Some of the CMIP6 model output data 

lacking dew point temperature information were obtained through correlation conver-

sions of relative humidity and air temperature [37]. Unless otherwise stated, all results are 

taken from the multi-model ensemble averages of the CMIP6 models. 

Table 1. Details of the 16 CMIP6 Models. 

Model Name Institute Variant Label 
Resolution (Latitude × Longi-

tude) 

ACCESS-CM2 CSIRO, Canberra, Australia r1i1p1f1 1.25° × 1.875° 

ACCESS-ESM1-5 CSIRO, Canberra, Australia r1i1p1f1 1.241° × 1.875° 

CESM2-WACCM NCAR, Boulder, CO, USA r1i1p1f1 0.9375° × 1.25° 

CMCC-CM2-SR5 CMCC, Lecce, Italy r1i1p1f1 0.9375° × 1.25° 
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CMCC-ESM2 
Euro-Mediterranean Centre, 

Lecce, Italy 
r1i1p1f1 0.9375° × 1.25° 

EC-Earth3 
EC-Earth Consortium, Norr-

koping, Sweden 
r1i1p1f1 0.703125° × 0.703125° 

EC-Earth3-Veg-LR 
EC-Earth-Consortium, Norr-

koping, Sweden EU 
r1i1p1f1 1.125° × 1.125° 

FGOALS-g3 CAS, Beijing, China r1i1p1f1 2.25° × 2° 

GFDL-ESM4 
NOAA-GFDL, Princeton, NJ, 

USA 
r1i1p1f1 1° × 1.2857° 

IPSL-CM6A-LR IPSL, Guyancourt, France r1i1p1f1 1.259° × 2.5° 

KACE-1-0-G 
NIMS-KMA, Jeju City, Republic 

of Korea 
r1i1p1f1 1.25° × 1.875° 

MIROC6 MIROC, Marugame, Japan r1i1p1f1 1.40625° × 1.40625° 

MPI-ESM1-2-HR DKRZ, Hamburg, Germany r1i1p1f1 0.9375° × 0.9375° 

MPI-ESM1-2-LR MPI-M, Hamburg, Germany r1i1p1f1 1.875° × 1.875° 

MRI-ESM2-0 MRI, Tokyo, Japan r1i1p1f1 1.125° × 1.125° 

NorESM2-LM NCC, Oslo, Norway r1i1p1f1 1.875° × 2.5° 

2.2. Reanalysis Models 

Reanalysis data sets offer consistent spatial and temporal climate variables through 

the integration of observational data and models [38]. ERA5 stands as the most recent 

iteration of atmospheric reanalysis, developed by the European Centre for Medium-range 

Weather Forecasts (ECMWF). It combines prior predictions with newly available observa-

tions to provide improved estimations of the climate’s state. The Modern-ERA Retrospec-

tive Analysis for Research and Applications, Version 2 (MERRA2) [39], uses observation-

based P data as a forcing mechanism for land surface parameterization, to incorporate 

additional observations and enhance the representation of climate conditions. Although 

certain regional studies have demonstrated a stronger land–atmosphere coupling in 

MERRA2 [40], we include it in this analysis to explore the global implications of this pro-

nounced coupling. Both ERA5 and MERRA2 exhibit high spatial and temporal resolution, 

providing global coverage. ERA5 boasts a spatial resolution of 0.25 × 0.25, while MERRA2 

uses a resolution of 0.5 × 0.625. In this study, our objective is to examine precipitation 

sensitivities within these reanalysis frameworks (ERA5 and MERRA2) and to compare 

them with the historical CMIP6 data sets, aiming to comprehend the uncertainties inher-

ent in these global climate models. The different model setups, parameterization schemes, 

and sensitivities collectively contribute to achieve a deeper understanding of the wide-

ranging impacts of SM on P within these frameworks. In this context, we build upon prior 

studies that have already shed light on certain identified issues within these model frame-

works. For instance, MERRA-2 has shown a robust land–atmosphere coupling [41], ERA5 

has exhibited P overestimation in specific regions [42], and certain biases have been iden-

tified in CMIP6 soil moisture and precipitation variables, particularly in high latitude re-

gions [43,44]. While these recognized issues have been observed at regional scales, their 

global consistency remains uncertain. The units of reanalysis data sets and CMIP6 model 

data were matched for better comparative analysis. 

2.3. Calculation of Local SM-P 

SM-P is denoted as the sensitivity of P to SM. However, this straightforward repre-

sentation is inadequate for the computation of SM-P. This is because P can directly influ-

ence SM, and the causal connection between them cannot be readily discerned solely 

through differentiation [3,13]. As a result, we deconstruct SM-P as delineated below. 
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Figure 1 illustrates a schematic of the SM-P framework. The local SM-P value for each 

grid pixel is calculated by multiplying SM-ET with ET-P, and the significance of SM-P 

arises only if both SM-ET and ET-P are substantial. Following the approach of Wei et al. 

[13], SM-ET is estimated here as the product of the sensitivity of ET to SM and the standard 

deviation of SM, showing the characteristic effect of SM on ET [45]. ET-P is influenced by 

local boundary layer processes governing convective initiation and moisture transport, 

rendering the attribution of P more intricate [20]. We exclusively consider the portion of 

LH that could potentially influence LCL height and the sensitivity of P to ET for the ET-P 

component. Thus, we combine the positive correlation from LH-LCL with the positive 

derivative of P with respect to ET to derive ET-P. Notably, SM-ET shares the same units 

as ET, while both ET and P share identical units, leading to ET-P being dimensionless. All 

statistical significances are derived from correlations, achieving a statistical significance of 

5%. The calculation of LCL involves the utilization of 2 m air temperature (T2m) and dew 

point temperature (TDP) [40]: 

( )2
=125

m DP
LCL T T －  (2) 

SM-ET (the first part of the r.h.s of (1)) can be easily comprehended using the water 

balance perspective: elevated soil moisture levels result in increased ET under equivalent 

temperature circumstances [46]. Adequately capturing SM-ET requires examining the cor-

relation between SM and ET and establishing a connection with the standard deviations 

of SM. Positive derivatives or correlations of SM-ET manifest in regions where variations 

in ET are responsive to changes in SM, underscoring SM as a pivotal determinant of ET 

[13]. In contrast, adverse derivatives or correlations usually manifest when soil moisture 

is considerably abundant and energy-dictated [45]. This suggests that alterations in soil 

moisture have a minimal effect on ET, meaning soil moisture does not drive changes in 

ET. Conversely, changes in ET can lead to changes in soil moisture. Dirmeyer [45] high-

lighted that even substantial correlations or derivatives between SM and ET can yield spu-

rious impacts on ET if SM remains relatively constant, as evidenced by small standard 

deviations. To address this, we adopt the approach of Dirmeyer [45] and Wei et al. [13] 

introducing the standard deviation of SM into the initial component. Incorporating SM 

variations in regions characterized by high standard deviations enables the influence of 

these variations on ET changes, subsequently exerting an impact on P [20]. 

As parcels of humid air rise and reach the altitude where condensation occurs, they 

become saturated, leading to cloud formation and subsequent precipitation. This eleva-

tion corresponds to the LCL height and is commonly employed in investigations on land–

atmosphere interactions [40,47]. LH involves the exchange of latent heat between the 

Earth’s surface and the atmosphere, facilitated by the effects of turbulent air movement. 

In this study, we enhance ET-P analysis by incorporating the LH-LCL. This augmentation 

enables a more tangible exploration of SM’s characteristic impact on P, elucidating the 

role of subsurface–atmosphere heat exchange. 
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Figure 1. Schematic diagram of the SM-P framework. 

To explore the diverse influences of varying climates, distinct periods, and differing 

climatic conditions, we examine the SM-P across space and time. Initially, the three cou-

pling metrics were computed for two seasons: June-July-August (JJA) and December-Jan-

uary-February (DJF). After analyzing the global distribution of the sensitivity of the three 

coupling metrics, we proceeded to divide the 35 years of historical and future data sets 

into three climate conditions based on SM climatology: dry, medium, and wet. The SM is 

standardized (SMn). A grid is considered a dry year when SMn < −1, and a wet year when 

SMn > 1. Where SMn is between −1 and 1, we regard it as medium years. From there, we 

compute the three coupling metrics based on the three climate conditions which are 

binned over mean SM. To gain a more comprehensive understanding of these dynamics 

from a regional context, an analysis of changes in the coupling metrics is conducted by 

subtracting historical components from future SM-P. Since ET-P can exhibit non-local ef-

fects, a crucial consideration within SM-P involves assessing local and remote impacts. 

While many prior studies predominantly posited that SM-P is primarily local, Wei et al. 

[13] contrasted the consequences of local SM with those of neighboring grid points on P. 

Their findings demonstrated that when SM impacts held significant, local SM exerted a 

more pronounced effect on P than remote SM impacts, thereby validating the assumption 

of prevalent local impacts. With this insight, the subsequent sections of this paper concen-

trate on local effects. 

3. Results 

3.1. Dissecting the SM-P Coupling 

In Figure 2, the outcomes of local SM-ET are presented for two distinct seasons (JJA 

and DJF). The shaded regions, referred to as the hotspot regions, indicate a positive cor-

relation between SM and ET. Evidently, ET is influenced by SM, establishing SM as the 

controlling factor and ET as the responsive factor. As anticipated, JJA exhibits a broader 

array of hotspot regions in the northern hemisphere as compared to DJF. However, this 

disparity does not necessarily imply a greater sensitivity. For instance, in North America, 

JJA demonstrates a more extensive range of hotspot regions compared to DJF, highlight-

ing a heightened ET sensitivity to SM. Furthermore, the equatorial regions display a 

stronger sensitivity during DJF than during JJA. The distribution of regions with pro-

nounced values in JJA and DJF also differs. Notably, there seems to be a southward shift 

of hotspot regions during DJF in comparison to JJA. 
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Figure 2. The SM-ET during JJA and DJF for ERA5, MERRA2, and CMIP6. The (a,c,e) indicate the 

SM-ET results during JJA for ERA5, MERRA2, and CMIP6, respectively. The (b,d,f) indicate the SM-

ET results during DJF for ERA5, MERRA2, CMIP6, respectively. Shaded areas pass the significant 

test at 5% level. 

In addition, the collective potency of SM-ET in CMIP6 models is weaker than in rea-

nalysis data sets. This observation might indicate diminished sensitivities of ET to SM 

within the CMIP6. In contrast, ERA5 portrays a narrower and more widely scattered array 

of hotspot regions compared to the other two data sets. The three data sets predominantly 

share a similar distribution pattern concerning regions with substantial SM-ET. Our find-

ings indicate that regions displaying pronounced SM-ET primarily exist within the tran-

sition regions. This outcome aligns with prior investigations that have emphasized the 

increased sensitivity of ET to SM in these transition regions. [13,14,26]. In wet climates 

characterized by ample SM, ET is not predominantly constrained by SM levels but by the 

net radiation balance [6,26,48]. In such scenarios, surface radiation primarily drives ET, 

rendering it the principal governing factor. Within these regions, the influence of SM on 

P is not expected. Distinct dissimilarities emerge among the three data sets concerning the 

regional dispersion of SM-ET. To illustrate, within the southeastern coastal region of 

China, ERA5 and MERRA2 demonstrate feeble or even absent signals, whereas CMIP6 

exhibits robust feedback in this specific region. Additionally, CMIP6 showcases pro-

nounced SM-ET at high latitudes, starkly contrasting the absence of such signals in the 

reanalysis data sets. Moreover, our analysis also reveals that MERRA2 exhibits the most 

pronounced SM-ET in mid-latitudinal regions, surpassing both ERA5 and CMIP6 in 

strength. 

Following our investigation into SM-ET, we shifted our focus to the atmospheric 

component, ET-P, which constitutes the second part of SM-P. It can be argued that a lower 

(higher) LCL height implies reduced (elevated) cloud cover, leading to augmented (di-

minished) moisture, and subsequently, increased (decreased) precipitation as well [40]. 

This concept connects surface fluxes to atmospheric conditions and facilitates a more com-

prehensive exploration of ET-P. Consequently, we analyze the derivative of P concerning 

ET (ET_pre), which further underscores the sensitivity of precipitation to ET variations. 

We amalgamate LH-LCL and ET_pre to quantitatively assess ET-P. 
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The LH-LCL analysis presented here examines the correlation between LH and LCL 

height. Under wet climatic conditions, changes in LH predominantly respond to altera-

tions in cloud masses and downward solar radiation linked variations in with LCL height. 

This situation is depicted in regions where the LH-LCL correlation is positive. In these 

regions, shifts in LH exert relatively minor influence on LCL, primarily indicating the im-

pact of LCL on LH (associated with the energy-limited ET mechanism). Conversely, in 

semi-arid climatic conditions, a strong negative correlation exists between LH and LCL 

due to interrelated water and energy fluxes. This establishes a feedback loop that leads to 

an inverse LH-LCL. In this context, a negative correlation between LH and LCL signifies 

that LH has the potential to influence LCL height, particularly under water-limited ET 

conditions [40]. Given this understanding, our ET-P calculations predominantly consider 

scenarios with negative LH-LCL correlations. 

Notably, in Figure 3a, positive correlations dominate in high latitudes, particularly 

in northern Russia. Negative correlations prevail in semi-arid regions and the transition 

regions. Comparatively, MERRA2 displays the largest negative correlation region and a 

smaller positive correlation region concentrated at high latitudes. For instance, concerning 

Southeast China, ERA5 and CMIP6 exhibit mainly positive LH-LCL correlations, whereas 

MERRA2 predominantly showcases negative correlations. This outcome aligns with the 

results from Wei et al. [40], who also utilized MERRA2. Additionally, the region of positive 

LH-LCL correlation expands and shifts southward from JJA to DJF. 
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Figure 3. The LH-LCL across the three data sets during JJA and DJF. Red areas denote positive LH-

LCL correlation and the blue areas indicate negative LH-LCL correlation. Shaded areas pass the 

significant test at 5% level. (a) Represents the spatial distribution of LH-LCL. (b) Represents the 

correlation of LH-LCL against mean precipitation. 

Based on the LH-LCL findings, its spatial arrangement appears to be connected with 

the spatial distribution of mean P and humidity. The LH-LCL correlation tends to transi-

tion from negative to positive as P increases. This observation suggests that negative cor-

relations prevail in dry and transition regions, whereas positive correlations dominate in 

wetter locales. The results from CMIP6 models align closely with this pattern, mirroring 

those of ERA5. In contrast, MERRA2 displays notably lower positive LH-LCL correlations 

compared to ERA5 and CMIP6, with an overall prevalence of negative correlations. This 

alignment with the results in Figure 3a implies heightened sensitivity in MERRA2, poten-

tially leading to more widely dispersed significant SM-P. Notably, some CMIP6 models 

exhibit similar patterns to MERRA2, particularly in JJA of Figure 3b, which could impact 

the ensemble mean while introducing more diverse SM-P signals globally. 

In the context of the water cycle, ET contributes to moisture within the atmospheric 

boundary layer, inducing moist convection and subsequently enhancing the likelihood of 

P. However, being a primary moisture source does not inherently guarantee a strong in-

fluence of ET on P. Due to the intricate interplay of atmospheric components and moisture 

origins, the anticipated positive impact of ET on P may not always materialize, and in 

some cases, even leads to a negative correlation. Focusing on the positive ET_pre compo-

nent in Figure 4, we observe its spatial distribution generally aligns with the negative LH-

LCL component. This consistency is a result of the interconnectedness between ET and 

LH, as well as the relationship between the LCL height and P. ET and LH are intercon-

vertible, and shifts in LCL height contribute to changes in P. The figure reveals that the 

negative ET_pre component is predominantly concentrated in high latitudes of northern 

Asia, Europe, and northern North America. In contrast, most other regions display posi-

tive ET_pre component, particularly pronounced in MERRA2 and CMIP6 data sets. This 

pattern suggests potentially more diverse ET-P and SM-P, which could affect the distribu-

tion of significant regions. As a product of the two components, ET_pre and LH-LCL are 

used as necessary but insufficient conditions for ET-P. Here, ET is assumed to be the con-

trolling factor, and P is the responding factor. In Figure 5, hotspot regions are mainly 

found in dry regions and transition regions. ET-P continues to have significant seasonal 

variability. 
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Figure 4. The ET_pre during JJA and DJF for ERA5, MERRA2, and CMIP6. The (a,c,e) indicate the 

derivative results during JJA for ERA5, MERRA2, and CMIP6, respectively. The (b,d,f) indicate the 

derivative results during DJF for ERA5, MERRA2, and CMIP6, respectively. Shaded areas pass the 

significant test at 5% level. 

 

Figure 5. The ET-P during JJA and DJF for ERA5, MERRA2, and CMIP6. The (a,c,e) indicate the ET-

P results during JJA for ERA5, MERRA2, and CMIP6, respectively. The (b,d,f) indicate the ET-P 

results during DJF for ERA5, MERRA2, and CMIP6, respectively. Shaded areas pass the significant 

test at 5% level. 
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The SM-P feedback mechanisms differ under different conditions. Primarily, SM 

plays a vital role in generating precipitation through ET under specific circumstances. SM 

serves as a direct water vapor source for atmospheric P, thereby becoming integral to the 

water cycle dynamics [2,49]. Wet soils produce high ET and provide water vapor for P 

[46]. However, the effect of low ET rates on P could be limited [6]. In addition, another 

indirect interaction of SM and P has been noted in regions where the SM changes the at-

mospheric boundary layer conditions for cloud-forming rainfall [50–54]. This feedback 

mechanism underscores the indirect influence of soil moisture, distinct from the inherent 

dynamics of the water cycle [55,56]. 

SM-P is derived from the interaction of SM-ET and ET-P components (Figure 6). The 

significant regions in the figure show where the sensitivity of P to SM is significant. The 

SM-ET and ET-P exhibit coherent fluctuations when both SM is adequate for ET and the 

atmosphere contains sufficient water vapor to support precipitation, altering the atmos-

pheric state to foster cloud formation and subsequent rainfall under certain conditions 

[4,57]. Significantly, the significance of SM-P emerges only when both SM-ET and ET-P 

exhibit significance. This observation suggests that in scenarios where ET-P lacks signifi-

cance, the propagation of signals from SM to ET is not sufficient. For instance, during JJA 

in the Middle East, SM-ET exhibits significance (though weaker in ERA5), yet the com-

bined effect breaks down due to the second component, ET-P. The notable SM-P hotspots 

are primarily situated in intermediate transition regions and display conspicuous seasonal 

variability. During JJA, elevated SM-P values are concentrated in southern North America, 

the Central Asian belt (weaker in ERA5), Eastern Australia, and across the Sahelian belt. 

 

Figure 6. The SM-P during JJA and DJF for ERA5, MERRA2, and CMIP6. The (a,c,e) indicate the 

SM-P results during JJA for ERA5, MERRA2, and CMIP6, respectively. The (b,d,f) indicate the SM-

P results during DJF for ERA5, MERRA2, and CMIP6, respectively. Shaded areas pass the significant 

test at 5% level. 

In DJF, the hotspot regions shift southwards, as expected, compared to JJA and in-

tensify in some regions (southern South America, the Middle East, Northern Australia, 

and Southern Africa). The seasonal variability of SM-P is also indicated by the increase in 

some regions (southern South America, Middle East, Northern Australia, Southern Africa). 
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Collectively, the SM-P appears weaker in CMIP6 than in the reanalysis data sets, despite 

being more dispersed, extending to certain wet regions within high-latitude regions of the 

Northern Hemisphere. Similar to JJA, MERRA2 demonstrates the strongest SM-P among 

the three data sets in most regions. This mainly reflects the large variation in P sensitivity 

to SM among the data. As noted earlier, we expect more spread in MERRA2 and CMIP6 

due to the strong correlations between LH and LCL, which is seen in the SM-P distribu-

tions in Figure 6. 

3.2. Variation of SM-P with SM 

Studies have shown that the strengths and distribution of SM-P influence and are 

influenced during anomalously wet and dry conditions. The results for ERA5 are mainly 

shown in Figure 7, while DJF for ERA5 and both seasons for the CMIP6 and MERRA2 

data sets are shown in the Appendix A (Figures A1–A5). All grid points are divided into 

dry and wet years according to SM. The findings reveal that SM-ET has a greater sensitiv-

ity of ET to SM in wet regions in dry years (Northern South America, Southeast Asia, 

Southeast Australia) and a greater sensitivity of ET to SM in dry regions in wet years (Cen-

tral Australia, North Africa, the Middle East). Furthermore, the most prominent signals 

are concentrated in transition regions where SM plays a substantial role in influencing P 

patterns. This underscores the significance of comprehending regions with robust SM-P 

connections. Moreover, the outcomes suggest that under these anomalous SM conditions, 

SM-P is primarily driven by SM-ET rather than ET-P. The results for JJA and DJF in the 

two reanalysis data sets are also presented in Figures A1–A5. These additional figures 

reveal that precipitation sensitivity to soil moisture in CMIP6 extends to more locations 

during both dry and wet years compared to the reanalysis data sets. 
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Figure 7. The SM-ET, ET-P, and SM-P against mean soil moisture change during JJA for ERA5 in 

dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the col-

ored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On 

the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for 

dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET in wet and dry years, 

respectively. (c,d) indicate the ET-P in wet and dry years, respectively. (e,f) indicate the SM-P in wet 

and dry years, respectively. 

Figure 8 shows the results for JJA and DJF in Figure A6. SM-ET and SM-P exhibit a 

characteristic rising and falling structure, both peaking at intermediate SM levels. For wet 

years, the values of SM-ET and SM-P are elevated in dry regions which contrasts dry years 

having higher values in wet regions. The strength of the dry-mid-wet couplings of ET-P 

is influenced by LH-LCL, with high values occurring in regions of lower SM and lower 

values of ET-P the higher the SM. ET-P showed a gradual decrease from dry to wet regions, 

with MERRA2 showing a tendency to rise first at low SM. This was particularly evident 

at DJF, where high values of ET-P occurred in the transition regions. The reason for this is 

probably because the LH-LCL of MERRA2 is dominated by negative values in both dry 

and wet regions (Figure 3). As a result, ET-P is less limited by the LH-LCL and this varia-

tion is mainly attributed to ET_pre (Figure 4). Furthermore, ET-P consistently exhibits 

higher values during wet years compared to dry years. This discrepancy is potentially 

attributed to the greater influence of ground fluxes on the atmospheric state (mainly lifting 
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condensation level, LCL) under drier conditions. Regardless of JJA and DJF, the SM-P 

structure in the three data sets is closer to SM-ET. 

 

Figure 8. The SM-ET, ET-P, and SM-P in wet, medium, dry years against mean soil moisture change 

during JJA for ERA5, MERRA2, and CMIP6. Criteria for dry, medium, and wet years: The SM is 

standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1 are 

taken as dry years and SMn > 0 are taken as wet years. (a–c) indicate the SM-ET for ERA5, MERRA2, 

and CMIP6, respectfully. (d–f) indicate the ET-P for ERA5, MERRA2, and CMIP6, respectfully. (g–

i) indicate the SM-P for ERA5, MERRA2, and CMIP6, respectfully. 

3.3. The SM-P’s Future Changes 

So far, the study has focused on the historical period; however, it is also crucial to 

identify the impact of global warming on the SM-P. The CMIP6 archives make it possible 

to identify the impact of different pathways of warming on the coupling and its compo-

nents. Figure 9 depicts the three coupling metrics using data for the last 35 years of the 

century (2066–2100), compared to the historical 35 years (1980–2014), and uses a sliding 

window to observe trends. Figure 9a shows the global average of the three coupled met-

rics (excluding Antarctica and Greenland) calculated using Equation (1). We chose two 

scenarios, SSP126 and SSP585, as future scenarios to study future changes under different 

carbon emissions. In DJF, there is a clear upward trend from the historical analysis to the 

future scenarios, indicating that the sensitivity of precipitation (P) to soil moisture (SM) 

increases with increasing emissions. Moreover, the SM-P increases in DJF seem to be more 

strongly determined by changes in ET-P than changes in SM-ET, which are smaller. Berg 

et al. [58,59] recently found that changes in atmospheric components of land–atmosphere 

feedback are more strongly impacted than the land component. These earlier findings of-

fer insight into why we observe comparatively smaller changes in SM-ET as opposed to 

ET-P. 
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Figure 9. The global average of SM-ET, ET-P, and SM-P during JJA and DJF across the historical 

period, SSP126, and SSP585 for CMIP6. (a) represents multi-year average results; (b) depicts time-

varying results. 

On the other hand, during JJA, although there is an increase in the future, these 

changes are relatively similar for both SSP126 and SSP585. In addition, the changes ob-

served during JJA are minimal compared to DJF. This regional perspective aids in uncov-

ering the varying patterns of sensitivity across different regions under different emission 

scenarios and seasons. Our investigation revealed distinct patterns of enhancement and 

attenuation for the three coupling metrics across various regions. Notably, the SSP585 sce-

nario demonstrated a tendency toward strengthening these metrics. Regions where 

SSP126 showed weakening tendencies also experienced even greater weakening under 

SSP585, and similarly, regions that strengthened under SSP126 exhibited further amplifi-

cation in their coupling metrics under SSP585. These dynamics collectively contribute to 

a more subdued alteration in the three coupling metrics when evaluated through global 

average analysis. These observations could potentially be linked to recent findings con-

cerning anticipated changes in atmospheric circulation patterns under different warming 

pathways, as reported by Chemke et al. [60] and Lachmy [61]. These shifts in atmospheric 

circulation consequently impact ET-P, resulting in changes within the SM-P. In Figure 9b, 

the three coupling metrics are computed using a sliding window of 11 years. The graph 

illustrates that SM-ET and SM-P do not exhibit significant changes over time, whereas ET-

P displays a more distinct upward trend. The pattern of change observed in SM-P closely 

mirrors that of SM-ET. However, it is essential to recognize that the strength of these 

changes may differ when employing various sliding window lengths. 

To facilitate better comparison, historical SM data were retained for use in the future 

analysis. The similarity between the curves of the two future indicators (SSP126, SSP585) 

and the historical data is clearly evident in Figure 10. Both SM-ET and SM-P showcase 

higher values wherein wet climate regions during dry years, and the converse occurs in 
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dry regions. This also indicates a high degree of consistency with history in regions sensi-

tive to future P. The main strength differences exist among the historical SSP126 and 

SSP585. Against the historical JJA, SM-ET and SM-P are significantly enhanced mainly in 

the middle years of the transition regions. Additionally, SSP585 shows even greater en-

hancement compared to SSP126. In Figure A9 (Appendix A), the overall enhancement of 

SM-ET is more pronounced compared to the historical DJF. Once again, SSP585 demon-

strates greater enhancement in comparison to SSP126, reflecting the substantial impact of 

future high carbon emissions on land–atmosphere interactions. Conversely, the strength 

of ET-P displays only minor variations in the future during both JJA and DJF. Moreover, 

the structure of SM-P largely remains under the control of SM-ET, maintaining con-

sistency with historical patterns. 

 

Figure 10. The SM-ET, ET-P, and SM-P in wet, medium, and dry years against mean SM change 

during JJA for SSP126 and SSP585 of CMIP6. Criteria for dry, medium, and wet years: The SM is 

standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1 are 

taken as dry years and SMn > 0 are taken as wet years. (a,b) indicate the SM-ET for SSP126 and 

SSP585, respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the 

SM-P for SSP126 and SSP585, respectfully. 

4. Discussion 

The current study analyzes global hotspots of SM-P as a function of the sensitivity of 

P to changes in SM. We sought to unravel the distinct contributions of the terrestrial and 

atmospheric components within the SM-P framework. Additionally, we explored how 

these three coupling metrics vary with different climate conditions. The uniqueness of this 

study is that it relies on the LCL height as an integral part of the SM-P continuum. The 

LCL height serves as a close proxy for mean cloud base height and can be used as a good 

approximation or indicator of precipitation probability [32]. Thus, by including it, we fill 
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in the gaps of earlier SM-P coupling studies and aim to understand how this is represented 

in multiple climate models. We include three different families of data sets from different 

sources in the analysis, two sets of which are reanalysis data sets and the third, multiple 

climate models of the CMIP framework. By comparing the SM-P coupling based on equa-

tion (1), we aim to understand the different representations of the coupling in these data 

sets. It is imperative to recognize that SM-P interactions are influenced by many complex 

factors, and their mutual interactions are intricate. This complexity has posed formidable 

challenges in establishing robust cause-and-effect relationships. Our research, at its cur-

rent stage, has delved into the positive feedback loops associated with SM-P coupling, but 

the exploration of negative feedback loops warrants deeper investigation. It is our inten-

tion that future studies in this field will extend their focus beyond the local effects and 

delve into the intricacies of non-local effects. This expansion of research scope will enable 

a more comprehensive understanding of the multifaceted dynamics governing SM-P in-

teractions, ultimately contributing to advancing our knowledge in this critical area of 

study. 

In the context of global warming, future changes in land–atmosphere interactions are 

also an issue of concern. Therefore, we use CMIP6 models output variables to investigate 

future SM-P. The reasons regarding future changes are perhaps complex. Certain studies 

have proposed that the expansion of the Hadley circulation is anticipated in the 21st cen-

tury, predominantly under anthropogenic influence [62–64]. In contrast, at mid-latitudes, 

non-adiabatic heating (the process of heat exchange between the system and the outside 

world) is evident within the ascending branch of the Ferrel Cell [65]. This phenomenon 

leads to a clockwise, lower tropospheric circulation of the Ferrel Cell that intensifies and 

shifts poleward in light to climate change [61]. From our findings, it is evident that there 

is a significant amplification of SM-P interactions, particularly within the atmospheric seg-

ment, in mid-latitude regions. This means that with climate change, we must take into 

account the influence of circulation factors on the atmospheric state and land surface at-

mospheric interactions when analyzing future long-term changes and thus the mecha-

nisms of change. Incorporating these insights into climate models and adaptation strate-

gies will be essential for addressing the complex and dynamic challenges of a changing 

climate in mid-latitude regions and beyond. 

5. Conclusions 

This study employs a novel SM-P framework to delve into its feedback mechanisms. 

The results indicated that the hotspot regions of SM-P are predominantly situated within 

the transition regions, with significant seasonal variations. In wet climate regions, both 

SM-ET and SM-P showed elevated levels during dry years compared to wet years, while 

the reverse was also true in dry climate regions. This demonstrates that SM exerts a 

stronger influence on P over intermediate transition regions, consistent with previous 

studies [4,6,13,14]. Both SM-ET and SM-P demonstrated their peak values within these 

transition regions, thereby revealing a spatial pattern similarity between the two. Upon 

partitioning the years into wet and dry categories, it became apparent that SM-P and SM-

ET exhibited comparable temporal variability. Significantly, the SSP585 scenario exhibited 

a notable inclination toward enhancing these metrics. Areas where the SSP126 scenario 

indicated a weakening trend experienced even more pronounced weakening under 

SSP585. Conversely, regions that displayed strengthened coupling metrics under SSP126 

exhibited further amplification of these trends when subjected to SSP585. Due to sensitiv-

ity to climate change, the ET-P exhibits a more pronounced upward trend in the future. 

This approach could offer a simplified yet meaningful means of comprehending the intri-

cate interplay between SM and P within different climate regimes. Future research may 

benefit from incorporating additional variables and higher-resolution data to provide a 

more comprehensive understanding of SM-P interactions in diverse environmental set-

tings. 
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Appendix A 

 

Figure A1. The SM-ET, ET-P, and SM-P against mean soil moisture change during JJA for CMIP6 in 

dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the col-

ored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On 
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the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for 

dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET in wet and dry years, 

respectively. (c,d) indicate the ET-P. (e,f) indicate the SM-P. 

 

Figure A2. The SM-ET, ET-P, and SM-P against mean soil moisture change during DJF for CMIP6 

in dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the 

colored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On 

the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for 

dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P. 

(e,f) indicate the SM-P. 
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Figure A3. The SM-ET, ET-P, and SM-P against mean soil moisture change during DJF for ERA5 in 

dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the col-

ored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On 

the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for 

dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P. 

(e,f) indicate the SM-P. 
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Figure A4. The SM-ET, ET-P, and SM-P against mean soil moisture change during JJA for MERRA2 

in dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the 

colored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On 

the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for 

dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P. 

(e,f) indicate the SM-P. 
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Figure A5. The SM-ET, ET-P, and SM-P against mean soil moisture change during DJF for MERRA2 

in dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the 

colored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On 

the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for 

dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P. 

(e,f) indicate the SM-P. 
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Figure A6. The SM-ET, ET-P, and SM-P against mean soil moisture change in wet, medium, and dry 

years during DJF for ERA5, MERRA2, and CMIP6. Criteria for dry, medium and wet years: The SM 

is standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1 

are taken as dry years and SMn > 0 are taken as wet years. (a–c) indicate the SM-ET for ERA5, 

MERRA2, and CMIP6. (d–f) indicate the ET-P for ERA5, MERRA2, and CMIP6. (g–i) indicate the 

SM-P for ERA5, MERRA2, and CMIP6. 
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Figure A7. The future (2066–2100) from SSP126 and SSP585 versus historical (1980–2014) differences 

in SM-ET, ET-P and SM-P during JJA. The blue color signifies a weakening of sensitivity, whereas 

the red color indicates an increase in sensitivity. (a,b) indicate the SM-ET for SSP126 and SSP585, 

respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the SM-P for 

SSP126 and SSP585, respectfully. 
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Figure A8. The future (2066–2100) from SSP126 and SSP585 versus historical (1980–2014) differences 

in SM-ET, ET-P, and SM-P during DJF. The blue color signifies a weakening of sensitivity, whereas 

the red color indicates an increase in sensitivity. (a,b) indicate the SM-ET for SSP126 and SSP585, 

respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the SM-P for 

SSP126 and SSP585, respectfully. 
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Figure A9. The SM-ET, ET-P, and SM-P against mean soil moisture change in wet, medium, and dry 

during DJF for SSP126 and SSP585 of CMIP6. Criteria for dry, medium and wet years: The SM is 

standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1 are 

taken as dry years and SMn > 0 are taken as wet years. (a,b) indicate the SM-ET for SSP126 and 

SSP585, respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the 

SM-P for SSP126 and SSP585, respectfully. 
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Figure A10. Historical variance of the CMIP6 model for the SM-ET, ET-P, and SM-P, reflecting the 

uncertainty between the models. The (a,c,e) mean the model variance during JJA for historical. The 

(b,d,f) mean the model variance during DJF for historical. 
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Figure A11. SSP126 variance of the CMIP6 model for the SM-ET, ET-P, and SM-P, reflecting the 

uncertainty between the models. The (a,c,e) mean the model variance during JJA for SSP126. The 

(b,d,f) mean the model variance during DJF for SSP126. 
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Figure A12. SSP585 variance of the CMIP6 model for the SM-ET, ET-P, and SM-P, reflecting the 

uncertainty between the models. The (a,c,e) mean the model variance at JJA for SSP585. The (b,d,f) 

mean the model variance at DJF for SSP585. 
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