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Abstract: The ability of soil moisture (SM) to affect precipitation (P) is a vital part of the water-
energy cycles. Accurately quantifying this coupling enhances the ability to predict hydroclimatic
extremes like floods and droughts. In this study, the ability of soil moisture to affect precipitation
(SM-P) is characterized by two parts: the influence of soil moisture on evapotranspiration (SM-ET),
and the influence of evapotranspiration on precipitation (ET-P). We determined localized ET-P by
incorporating the coupling between latent heat flux (LH) and LCL height, to optimize the estimation
of the SM-P. This approach links SM more closely to P by considering the influence of surface fluxes.
The results indicate that CMIP6 models exhibited the anticipated hotspot patterns for the three
coupling metrics in transition regions. However, we observed that climate models generally exhibit
weaker SM-P coupling compared to reanalysis models. Both SM-ET and SM-P showcase higher
values wherein wet climate regions during dry years, and the converse occurs in dry regions. Due
to sensitivity to climate change, the ET-P exhibits a more pronounced upward trend in the future.
This study helps understand P’s response to SM shifts in climate models, crucial for predicting
hydrological extremes and coupled global warming impact.

Keywords: land surface–atmosphere interactions; soil moisture–precipitation feedback; the lifting
condensation level; CMIP6

1. Introduction

Land surface is second only to the oceans as a major climate driver [1,2]. In this
context, soil moisture (SM) has been demonstrated to be a crucial variable [3–5]. SM is
a slowly changing variable of land surface [6], which can influence weather and climate
change by impacting the water and energy cycles [7,8]. In this regard, the interaction
between SM and precipitation (P) has always remained one of the central questions in
climate research [9,10]. Previous studies have indicated a coupling feedback relationship
between SM and P, which results in changes in P anomalies and either reinforces SM or
leads to soil desiccation [9,11–14]. This interaction involves a two-way process: (1) from
P to SM, with a direct effect of P on SM, although regional and seasonal differences exist
in its sensitivity [15–17]. (2) The effect of SM on P is more intricate and challenging to
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observe or measure [18,19]. In theory, evapotranspiration (ET) serves as an intermediate
and essential process that mediates the impact of SM on P. Consequently, this effect could
be separated into two components: the influence of SM on ET, and the sensitivity of P
to the changes in ET [2]. The relationship between ET and SM is intuitive and relatively
easier to quantify [13,20]. However, the influence of ET on P is uncertain due to complex
atmospheric processes, which have sparked intense debate [14,21–23].

Numerous attempts have been undertaken to explore the interplay between SM and P.
For example, Koster et al. [6] established a multi-model average description of the global
distribution of the coupled soil moisture–precipitation strength via numerical experiments
involving multi-model simulations. Guo et al. [20] divided the ability of SM to affect P into
two stages to elucidate the factors affecting changes in coupling strength, showing that
higher coupling strength typically occurred when evaporation rates varied strongly and
consistently with SM. Liu et al. [24] also partitioned the interaction between the land surface
and the atmosphere into terrestrial and atmospheric segments and utilized probability
density functions to enhance the exploration of coupling mechanisms. Koukoula et al. [25]
conducted a numerical-simulation-based study to investigate the feedback between SM and
P. The findings revealed that the feedback characteristics varied across different climatic
and meteorological conditions. Using convergent cross-mapping (CCM), Wang et al. [14]
explored the cause-and-effect connection between SM and P at low and mid-latitudes
in the Northern Hemisphere. Their study revealed a robust causal link between the
effect of SM on evapotranspiration, the impact of ET on P, and the effect of SM on P.
These finding supported the notion that SM influences P primarily through its impact on
evapotranspiration and contributes to the exploration of coupling mechanisms.

In this study, the ability of soil moisture to affect precipitation (SM-P) is character-
ized by two parts: the influence of soil moisture on evapotranspiration (SM-ET), and the
influence of evapotranspiration on precipitation (ET-P). A positive correlation between
SM-ET implies a co-varying relationship between SM and ET, wherein SM might act as
the determining factor while ET responds accordingly. This phenomenon is commonly
observed when SM is insufficient. In regions with a wet climate and ample SM, ET is
primarily governed by net radiation [6]. In such scenarios of sufficient SM, the dominant
control is exerted by available energy, leading to a negative correlation [26]. In a broader
context, ET influences P through various potential pathways. Among these, the ET-P
local coupling is considered a particularly meaningful mechanism by which ET influences
P [2,27,28]. Moreover, existing research has indicated that the causal connection between
the local SM-P is stronger compared to non-local effects [13].

Considering local impacts, Dirmeyer et al. [29] observed a significant correlation
between precipitation errors and errors in latent heat flux. The surface heat flux plays
a pivotal role in SM-P [30]. Research conducted by Lawston-Parker et al. [31] revealed
that in relatively moist soil conditions, the proportion of latent heat flux (LH) intensifies,
consequently lowering the lifting condensation level (LCL) height and creating a favorable
environment for precipitation. Expanding on this notion, the second part of the study
incorporates the coupling mechanism between LH and LCL height into the calculation of
ET-P. The LCL height is closely linked to changes in mean cloud base height and can serve
as a reasonable approximation of the boundary layer growth required for convection to
occur (which serves as an indicator of the probability of P) [32]. While prior investigations
have acknowledged the significance of surface fluxes and LCL, the direct incorporation
of LCL into the SM-P framework had not been observed in empirical practice until the
present study. Through the consideration of latent heat flux and LCL effects, we have
taken a substantial stride towards elucidating the intricate relationship between SM and P,
particularly concerning kinetic and thermodynamic aspects. This pioneering approach not
only furnishes us with more profound and comprehensive insights but also facilitates the
enhanced comprehension by scientists of the atmospheric distribution of water vapor and
energy, as well as the mechanisms of exchange, and their direct influence on precipitation
patterns. Understanding how different models quantify this continuum is vital for enhanc-
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ing model parameterization schemes and ultimately improving predictions of associated
extreme events.

The primary objective of this study is to conduct a sensitivity analysis of precipitation
to soil moisture using a novel framework and explore future changes. To comprehensively
understand the potential uncertainties in representing SM-P, we conducted a comparative
analysis between CMIP6 multi-modal data and reanalysis data sets (ERA5 and MERRA2).
In the first place, the analysis stemming from the framework of SM-P has deepened our
comprehension of sensitivity variations under distinct climatic conditions, thus enhancing
our understanding of the feedback loop between SM and P. Furthermore, several studies
have pinpointed the intensified land–atmosphere coupling under climate change, under-
scoring the significance of investigating future sensitivity changes [33]. We used CMIP6
model data to compare SM-ET, ET-P, and SM-P calculations derived from 35 years of his-
torical records with the last 35 years of the 21st century. This comparison allowed us to
discuss potential alterations in the SM-P over time. This study provides valuable insights
into the interplay between SM and P, shedding light on current dynamics and potential
future shifts.

2. Materials and Methods
2.1. Climate Models

The Coupled Model Intercomparison Project (CMIP) [34,35] involves multiple climate
model experiments and is currently in its sixth phase (CMIP6). The primary goal is to
improve modeling and future projections to better understand our past, present, and future
climate [35,36]. In this study, 16 CMIP6 model output data were chosen based on three
specific criteria, as detailed in Table 1. Models’ selection was contingent upon meeting
the following comprehensive conditions: temporal coverage spanning from 1980 to 2014
and from 2066 to 2100, the presence of the complete array of required variables, and the
availability of both historical and future pathway data. To maintain alignment with the
temporal scope of the two reanalysis data sets, 35 years’ worth of data (1980–2014) were
employed for the historical analysis. Correspondingly, the future analysis encompassed the
concluding 35 years (2066–2100) of the 21st century. For the examination of forthcoming
changes under diverse carbon emissions scenarios, two shared socio-economic pathways
(SSP) were opted for: SSP1-2.6 (SSP126) and SSP5-8.5 (SSP585). These pathways encapsu-
late alternative visions of human progress, with SSP126 portraying an optimistic realm of
sustainable practices, and SSP585 portraying a future hinging on energy-intensive, fossil-
fuel-based economies [34]. Boreal summer (referred to collectively as JJA) and Northern
Hemisphere winter (referred to collectively as DJF) were chosen for comparative seasonal
analysis. All models were derived from r1i1p1f1. Computations were initially performed
at their original resolutions and then resampled to a 0.5 × 0.5 grid for the sake of ease in
analysis and comparison. Some of the CMIP6 model output data lacking dew point temper-
ature information were obtained through correlation conversions of relative humidity and
air temperature [37]. Unless otherwise stated, all results are taken from the multi-model
ensemble averages of the CMIP6 models.

Table 1. Details of the 16 CMIP6 Models.

Model Name Institute Variant Label Resolution (Latitude × Longitude)

ACCESS-CM2 CSIRO, Canberra, Australia r1i1p1f1 1.25◦ × 1.875◦

ACCESS-ESM1-5 CSIRO, Canberra, Australia r1i1p1f1 1.241◦ × 1.875◦

CESM2-WACCM NCAR, Boulder, CO, USA r1i1p1f1 0.9375◦ × 1.25◦

CMCC-CM2-SR5 CMCC, Lecce, Italy r1i1p1f1 0.9375◦ × 1.25◦

CMCC-ESM2 Euro-Mediterranean Centre,
Lecce, Italy r1i1p1f1 0.9375◦ × 1.25◦

EC-Earth3 EC-Earth Consortium,
Norrkoping, Sweden r1i1p1f1 0.703125◦ × 0.703125◦
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Table 1. Cont.

Model Name Institute Variant Label Resolution (Latitude × Longitude)

EC-Earth3-Veg-LR EC-Earth-Consortium,
Norrkoping, Sweden EU r1i1p1f1 1.125◦ × 1.125◦

FGOALS-g3 CAS, Beijing, China r1i1p1f1 2.25◦ × 2◦

GFDL-ESM4 NOAA-GFDL, Princeton,
NJ, USA r1i1p1f1 1◦ × 1.2857◦

IPSL-CM6A-LR IPSL, Guyancourt, France r1i1p1f1 1.259◦ × 2.5◦

KACE-1-0-G NIMS-KMA, Jeju City,
Republic of Korea r1i1p1f1 1.25◦ × 1.875◦

MIROC6 MIROC, Marugame, Japan r1i1p1f1 1.40625◦ × 1.40625◦

MPI-ESM1-2-HR DKRZ, Hamburg, Germany r1i1p1f1 0.9375◦ × 0.9375◦

MPI-ESM1-2-LR MPI-M, Hamburg, Germany r1i1p1f1 1.875◦ × 1.875◦

MRI-ESM2-0 MRI, Tokyo, Japan r1i1p1f1 1.125◦ × 1.125◦

NorESM2-LM NCC, Oslo, Norway r1i1p1f1 1.875◦ × 2.5◦

2.2. Reanalysis Models

Reanalysis data sets offer consistent spatial and temporal climate variables through the
integration of observational data and models [38]. ERA5 stands as the most recent iteration
of atmospheric reanalysis, developed by the European Centre for Medium-range Weather
Forecasts (ECMWF). It combines prior predictions with newly available observations to
provide improved estimations of the climate’s state. The Modern-ERA Retrospective
Analysis for Research and Applications, Version 2 (MERRA2) [39], uses observation-based
P data as a forcing mechanism for land surface parameterization, to incorporate additional
observations and enhance the representation of climate conditions. Although certain
regional studies have demonstrated a stronger land–atmosphere coupling in MERRA2 [40],
we include it in this analysis to explore the global implications of this pronounced coupling.
Both ERA5 and MERRA2 exhibit high spatial and temporal resolution, providing global
coverage. ERA5 boasts a spatial resolution of 0.25 × 0.25, while MERRA2 uses a resolution
of 0.5 × 0.625. In this study, our objective is to examine precipitation sensitivities within
these reanalysis frameworks (ERA5 and MERRA2) and to compare them with the historical
CMIP6 data sets, aiming to comprehend the uncertainties inherent in these global climate
models. The different model setups, parameterization schemes, and sensitivities collectively
contribute to achieve a deeper understanding of the wide-ranging impacts of SM on P
within these frameworks. In this context, we build upon prior studies that have already
shed light on certain identified issues within these model frameworks. For instance,
MERRA-2 has shown a robust land–atmosphere coupling [41], ERA5 has exhibited P
overestimation in specific regions [42], and certain biases have been identified in CMIP6
soil moisture and precipitation variables, particularly in high latitude regions [43,44]. While
these recognized issues have been observed at regional scales, their global consistency
remains uncertain. The units of reanalysis data sets and CMIP6 model data were matched
for better comparative analysis.

2.3. Calculation of Local SM-P

SM-P is denoted as the sensitivity of P to SM. However, this straightforward represen-
tation is inadequate for the computation of SM-P. This is because P can directly influence
SM, and the causal connection between them cannot be readily discerned solely through
differentiation [3,13]. As a result, we deconstruct SM-P as delineated below.

∂P
∂SM

· σ(SM)

SM-P

=

[
∂ET
∂SM

· σ(SM)

]
SM-ET

·
[

∂P
∂ET

· ρ(LH, LCL)
]

ET-P

(1)

Figure 1 illustrates a schematic of the SM-P framework. The local SM-P value for each
grid pixel is calculated by multiplying SM-ET with ET-P, and the significance of SM-P arises
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only if both SM-ET and ET-P are substantial. Following the approach of Wei et al. [13],
SM-ET is estimated here as the product of the sensitivity of ET to SM and the standard
deviation of SM, showing the characteristic effect of SM on ET [45]. ET-P is influenced by
local boundary layer processes governing convective initiation and moisture transport,
rendering the attribution of P more intricate [20]. We exclusively consider the portion of
LH that could potentially influence LCL height and the sensitivity of P to ET for the ET-P
component. Thus, we combine the positive correlation from LH-LCL with the positive
derivative of P with respect to ET to derive ET-P. Notably, SM-ET shares the same units
as ET, while both ET and P share identical units, leading to ET-P being dimensionless. All
statistical significances are derived from correlations, achieving a statistical significance of
5%. The calculation of LCL involves the utilization of 2 m air temperature (T2m) and dew
point temperature (TDP) [40]:

LCL = 125 · (T2m − TDP) (2)
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SM-ET (the first part of the r.h.s of (1)) can be easily comprehended using the water
balance perspective: elevated soil moisture levels result in increased ET under equivalent
temperature circumstances [46]. Adequately capturing SM-ET requires examining the
correlation between SM and ET and establishing a connection with the standard deviations
of SM. Positive derivatives or correlations of SM-ET manifest in regions where variations in
ET are responsive to changes in SM, underscoring SM as a pivotal determinant of ET [13].
In contrast, adverse derivatives or correlations usually manifest when soil moisture is
considerably abundant and energy-dictated [45]. This suggests that alterations in soil
moisture have a minimal effect on ET, meaning soil moisture does not drive changes in ET.
Conversely, changes in ET can lead to changes in soil moisture. Dirmeyer [45] highlighted
that even substantial correlations or derivatives between SM and ET can yield spurious
impacts on ET if SM remains relatively constant, as evidenced by small standard deviations.
To address this, we adopt the approach of Dirmeyer [45] and Wei et al. [13] introducing
the standard deviation of SM into the initial component. Incorporating SM variations in
regions characterized by high standard deviations enables the influence of these variations
on ET changes, subsequently exerting an impact on P [20].

As parcels of humid air rise and reach the altitude where condensation occurs, they
become saturated, leading to cloud formation and subsequent precipitation. This elevation
corresponds to the LCL height and is commonly employed in investigations on land–
atmosphere interactions [40,47]. LH involves the exchange of latent heat between the
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Earth’s surface and the atmosphere, facilitated by the effects of turbulent air movement.
In this study, we enhance ET-P analysis by incorporating the LH-LCL. This augmentation
enables a more tangible exploration of SM’s characteristic impact on P, elucidating the role
of subsurface–atmosphere heat exchange.

To explore the diverse influences of varying climates, distinct periods, and differing
climatic conditions, we examine the SM-P across space and time. Initially, the three coupling
metrics were computed for two seasons: June-July-August (JJA) and December-January-
February (DJF). After analyzing the global distribution of the sensitivity of the three
coupling metrics, we proceeded to divide the 35 years of historical and future data sets
into three climate conditions based on SM climatology: dry, medium, and wet. The SM is
standardized (SMn). A grid is considered a dry year when SMn < −1, and a wet year when
SMn > 1. Where SMn is between −1 and 1, we regard it as medium years. From there, we
compute the three coupling metrics based on the three climate conditions which are binned
over mean SM. To gain a more comprehensive understanding of these dynamics from a
regional context, an analysis of changes in the coupling metrics is conducted by subtracting
historical components from future SM-P. Since ET-P can exhibit non-local effects, a crucial
consideration within SM-P involves assessing local and remote impacts. While many
prior studies predominantly posited that SM-P is primarily local, Wei et al. [13] contrasted
the consequences of local SM with those of neighboring grid points on P. Their findings
demonstrated that when SM impacts held significant, local SM exerted a more pronounced
effect on P than remote SM impacts, thereby validating the assumption of prevalent local
impacts. With this insight, the subsequent sections of this paper concentrate on local effects.

3. Results
3.1. Dissecting the SM-P Coupling

In Figure 2, the outcomes of local SM-ET are presented for two distinct seasons
(JJA and DJF). The shaded regions, referred to as the hotspot regions, indicate a positive
correlation between SM and ET. Evidently, ET is influenced by SM, establishing SM as the
controlling factor and ET as the responsive factor. As anticipated, JJA exhibits a broader
array of hotspot regions in the northern hemisphere as compared to DJF. However, this
disparity does not necessarily imply a greater sensitivity. For instance, in North America,
JJA demonstrates a more extensive range of hotspot regions compared to DJF, highlighting
a heightened ET sensitivity to SM. Furthermore, the equatorial regions display a stronger
sensitivity during DJF than during JJA. The distribution of regions with pronounced values
in JJA and DJF also differs. Notably, there seems to be a southward shift of hotspot regions
during DJF in comparison to JJA.

In addition, the collective potency of SM-ET in CMIP6 models is weaker than in
reanalysis data sets. This observation might indicate diminished sensitivities of ET to SM
within the CMIP6. In contrast, ERA5 portrays a narrower and more widely scattered array
of hotspot regions compared to the other two data sets. The three data sets predominantly
share a similar distribution pattern concerning regions with substantial SM-ET. Our findings
indicate that regions displaying pronounced SM-ET primarily exist within the transition
regions. This outcome aligns with prior investigations that have emphasized the increased
sensitivity of ET to SM in these transition regions [13,14,26]. In wet climates characterized
by ample SM, ET is not predominantly constrained by SM levels but by the net radiation
balance [6,26,48]. In such scenarios, surface radiation primarily drives ET, rendering it the
principal governing factor. Within these regions, the influence of SM on P is not expected.
Distinct dissimilarities emerge among the three data sets concerning the regional dispersion
of SM-ET. To illustrate, within the southeastern coastal region of China, ERA5 and MERRA2
demonstrate feeble or even absent signals, whereas CMIP6 exhibits robust feedback in
this specific region. Additionally, CMIP6 showcases pronounced SM-ET at high latitudes,
starkly contrasting the absence of such signals in the reanalysis data sets. Moreover, our
analysis also reveals that MERRA2 exhibits the most pronounced SM-ET in mid-latitudinal
regions, surpassing both ERA5 and CMIP6 in strength.
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Following our investigation into SM-ET, we shifted our focus to the atmospheric
component, ET-P, which constitutes the second part of SM-P. It can be argued that a lower
(higher) LCL height implies reduced (elevated) cloud cover, leading to augmented (dimin-
ished) moisture, and subsequently, increased (decreased) precipitation as well [40]. This
concept connects surface fluxes to atmospheric conditions and facilitates a more compre-
hensive exploration of ET-P. Consequently, we analyze the derivative of P concerning ET
(ET_pre), which further underscores the sensitivity of precipitation to ET variations. We
amalgamate LH-LCL and ET_pre to quantitatively assess ET-P.

The LH-LCL analysis presented here examines the correlation between LH and LCL
height. Under wet climatic conditions, changes in LH predominantly respond to alterations
in cloud masses and downward solar radiation linked variations in with LCL height.
This situation is depicted in regions where the LH-LCL correlation is positive. In these
regions, shifts in LH exert relatively minor influence on LCL, primarily indicating the
impact of LCL on LH (associated with the energy-limited ET mechanism). Conversely, in
semi-arid climatic conditions, a strong negative correlation exists between LH and LCL
due to interrelated water and energy fluxes. This establishes a feedback loop that leads to
an inverse LH-LCL. In this context, a negative correlation between LH and LCL signifies
that LH has the potential to influence LCL height, particularly under water-limited ET
conditions [40]. Given this understanding, our ET-P calculations predominantly consider
scenarios with negative LH-LCL correlations.

Notably, in Figure 3a, positive correlations dominate in high latitudes, particularly
in northern Russia. Negative correlations prevail in semi-arid regions and the transition
regions. Comparatively, MERRA2 displays the largest negative correlation region and a
smaller positive correlation region concentrated at high latitudes. For instance, concerning
Southeast China, ERA5 and CMIP6 exhibit mainly positive LH-LCL correlations, whereas
MERRA2 predominantly showcases negative correlations. This outcome aligns with the
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results from Wei et al. [40], who also utilized MERRA2. Additionally, the region of positive
LH-LCL correlation expands and shifts southward from JJA to DJF.
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Figure 3. The LH-LCL across the three data sets during JJA and DJF. Red areas denote positive
LH-LCL correlation and the blue areas indicate negative LH-LCL correlation. Shaded areas pass
the significant test at 5% level. (a) Represents the spatial distribution of LH-LCL. (b) Represents the
correlation of LH-LCL against mean precipitation.

Based on the LH-LCL findings, its spatial arrangement appears to be connected with
the spatial distribution of mean P and humidity. The LH-LCL correlation tends to transition
from negative to positive as P increases. This observation suggests that negative correlations
prevail in dry and transition regions, whereas positive correlations dominate in wetter
locales. The results from CMIP6 models align closely with this pattern, mirroring those of
ERA5. In contrast, MERRA2 displays notably lower positive LH-LCL correlations compared
to ERA5 and CMIP6, with an overall prevalence of negative correlations. This alignment
with the results in Figure 3a implies heightened sensitivity in MERRA2, potentially leading
to more widely dispersed significant SM-P. Notably, some CMIP6 models exhibit similar
patterns to MERRA2, particularly in JJA of Figure 3b, which could impact the ensemble
mean while introducing more diverse SM-P signals globally.

In the context of the water cycle, ET contributes to moisture within the atmospheric
boundary layer, inducing moist convection and subsequently enhancing the likelihood
of P. However, being a primary moisture source does not inherently guarantee a strong
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influence of ET on P. Due to the intricate interplay of atmospheric components and moisture
origins, the anticipated positive impact of ET on P may not always materialize, and in some
cases, even leads to a negative correlation. Focusing on the positive ET_pre component
in Figure 4, we observe its spatial distribution generally aligns with the negative LH-LCL
component. This consistency is a result of the interconnectedness between ET and LH, as
well as the relationship between the LCL height and P. ET and LH are interconvertible, and
shifts in LCL height contribute to changes in P. The figure reveals that the negative ET_pre
component is predominantly concentrated in high latitudes of northern Asia, Europe,
and northern North America. In contrast, most other regions display positive ET_pre
component, particularly pronounced in MERRA2 and CMIP6 data sets. This pattern
suggests potentially more diverse ET-P and SM-P, which could affect the distribution of
significant regions. As a product of the two components, ET_pre and LH-LCL are used as
necessary but insufficient conditions for ET-P. Here, ET is assumed to be the controlling
factor, and P is the responding factor. In Figure 5, hotspot regions are mainly found in dry
regions and transition regions. ET-P continues to have significant seasonal variability.

The SM-P feedback mechanisms differ under different conditions. Primarily, SM plays
a vital role in generating precipitation through ET under specific circumstances. SM serves
as a direct water vapor source for atmospheric P, thereby becoming integral to the water
cycle dynamics [2,49]. Wet soils produce high ET and provide water vapor for P [46].
However, the effect of low ET rates on P could be limited [6]. In addition, another indirect
interaction of SM and P has been noted in regions where the SM changes the atmospheric
boundary layer conditions for cloud-forming rainfall [50–54]. This feedback mechanism
underscores the indirect influence of soil moisture, distinct from the inherent dynamics of
the water cycle [55,56].
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Figure 4. The ET_pre during JJA and DJF for ERA5, MERRA2, and CMIP6. The (a,c,e) indicate the
derivative results during JJA for ERA5, MERRA2, and CMIP6, respectively. The (b,d,f) indicate the
derivative results during DJF for ERA5, MERRA2, and CMIP6, respectively. Shaded areas pass the
significant test at 5% level.
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Figure 5. The ET-P during JJA and DJF for ERA5, MERRA2, and CMIP6. The (a,c,e) indicate the
ET-P results during JJA for ERA5, MERRA2, and CMIP6, respectively. The (b,d,f) indicate the ET-P
results during DJF for ERA5, MERRA2, and CMIP6, respectively. Shaded areas pass the significant
test at 5% level.

SM-P is derived from the interaction of SM-ET and ET-P components (Figure 6).
The significant regions in the figure show where the sensitivity of P to SM is significant.
The SM-ET and ET-P exhibit coherent fluctuations when both SM is adequate for ET
and the atmosphere contains sufficient water vapor to support precipitation, altering
the atmospheric state to foster cloud formation and subsequent rainfall under certain
conditions [4,57]. Significantly, the significance of SM-P emerges only when both SM-ET
and ET-P exhibit significance. This observation suggests that in scenarios where ET-P
lacks significance, the propagation of signals from SM to ET is not sufficient. For instance,
during JJA in the Middle East, SM-ET exhibits significance (though weaker in ERA5), yet
the combined effect breaks down due to the second component, ET-P. The notable SM-P
hotspots are primarily situated in intermediate transition regions and display conspicuous
seasonal variability. During JJA, elevated SM-P values are concentrated in southern North
America, the Central Asian belt (weaker in ERA5), Eastern Australia, and across the
Sahelian belt.

In DJF, the hotspot regions shift southwards, as expected, compared to JJA and in-
tensify in some regions (southern South America, the Middle East, Northern Australia,
and Southern Africa). The seasonal variability of SM-P is also indicated by the increase in
some regions (southern South America, Middle East, Northern Australia, Southern Africa).
Collectively, the SM-P appears weaker in CMIP6 than in the reanalysis data sets, despite
being more dispersed, extending to certain wet regions within high-latitude regions of the
Northern Hemisphere. Similar to JJA, MERRA2 demonstrates the strongest SM-P among
the three data sets in most regions. This mainly reflects the large variation in P sensitivity to
SM among the data. As noted earlier, we expect more spread in MERRA2 and CMIP6 due
to the strong correlations between LH and LCL, which is seen in the SM-P distributions
in Figure 6.
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Figure 6. The SM-P during JJA and DJF for ERA5, MERRA2, and CMIP6. The (a,c,e) indicate the
SM-P results during JJA for ERA5, MERRA2, and CMIP6, respectively. The (b,d,f) indicate the SM-P
results during DJF for ERA5, MERRA2, and CMIP6, respectively. Shaded areas pass the significant
test at 5% level.

3.2. Variation of SM-P with SM

Studies have shown that the strengths and distribution of SM-P influence and are
influenced during anomalously wet and dry conditions. The results for ERA5 are mainly
shown in Figure 7, while DJF for ERA5 and both seasons for the CMIP6 and MERRA2
data sets are shown in the Appendix A (Figures A1–A5). All grid points are divided
into dry and wet years according to SM. The findings reveal that SM-ET has a greater
sensitivity of ET to SM in wet regions in dry years (Northern South America, Southeast
Asia, Southeast Australia) and a greater sensitivity of ET to SM in dry regions in wet years
(Central Australia, North Africa, the Middle East). Furthermore, the most prominent signals
are concentrated in transition regions where SM plays a substantial role in influencing P
patterns. This underscores the significance of comprehending regions with robust SM-P
connections. Moreover, the outcomes suggest that under these anomalous SM conditions,
SM-P is primarily driven by SM-ET rather than ET-P. The results for JJA and DJF in the two
reanalysis data sets are also presented in Figures A1–A5. These additional figures reveal
that precipitation sensitivity to soil moisture in CMIP6 extends to more locations during
both dry and wet years compared to the reanalysis data sets.

Figure 8 shows the results for JJA and DJF in Figure A6. SM-ET and SM-P exhibit
a characteristic rising and falling structure, both peaking at intermediate SM levels. For
wet years, the values of SM-ET and SM-P are elevated in dry regions which contrasts dry
years having higher values in wet regions. The strength of the dry-mid-wet couplings of
ET-P is influenced by LH-LCL, with high values occurring in regions of lower SM and
lower values of ET-P the higher the SM. ET-P showed a gradual decrease from dry to wet
regions, with MERRA2 showing a tendency to rise first at low SM. This was particularly
evident at DJF, where high values of ET-P occurred in the transition regions. The reason for
this is probably because the LH-LCL of MERRA2 is dominated by negative values in both
dry and wet regions (Figure 3). As a result, ET-P is less limited by the LH-LCL and this
variation is mainly attributed to ET_pre (Figure 4). Furthermore, ET-P consistently exhibits
higher values during wet years compared to dry years. This discrepancy is potentially



Atmosphere 2023, 14, 1531 12 of 31

attributed to the greater influence of ground fluxes on the atmospheric state (mainly lifting
condensation level, LCL) under drier conditions. Regardless of JJA and DJF, the SM-P
structure in the three data sets is closer to SM-ET.
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Figure 7. The SM-ET, ET-P, and SM-P against mean soil moisture change during JJA for ERA5 in dry
and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the colored
part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On the
basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for
dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET in wet and dry years,
respectively. (c,d) indicate the ET-P in wet and dry years, respectively. (e,f) indicate the SM-P in wet
and dry years, respectively.
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Figure 8. The SM-ET, ET-P, and SM-P in wet, medium, dry years against mean soil moisture change
during JJA for ERA5, MERRA2, and CMIP6. Criteria for dry, medium, and wet years: The SM is
standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1 are
taken as dry years and SMn > 0 are taken as wet years. (a–c) indicate the SM-ET for ERA5, MERRA2,
and CMIP6, respectfully. (d–f) indicate the ET-P for ERA5, MERRA2, and CMIP6, respectfully.
(g–i) indicate the SM-P for ERA5, MERRA2, and CMIP6, respectfully.

3.3. The SM-P’s Future Changes

So far, the study has focused on the historical period; however, it is also crucial to
identify the impact of global warming on the SM-P. The CMIP6 archives make it possible to
identify the impact of different pathways of warming on the coupling and its components.
Figure 9 depicts the three coupling metrics using data for the last 35 years of the century
(2066–2100), compared to the historical 35 years (1980–2014), and uses a sliding window to
observe trends. Figure 9a shows the global average of the three coupled metrics (excluding
Antarctica and Greenland) calculated using Equation (1). We chose two scenarios, SSP126
and SSP585, as future scenarios to study future changes under different carbon emissions.
In DJF, there is a clear upward trend from the historical analysis to the future scenarios,
indicating that the sensitivity of precipitation (P) to soil moisture (SM) increases with
increasing emissions. Moreover, the SM-P increases in DJF seem to be more strongly
determined by changes in ET-P than changes in SM-ET, which are smaller. Berg et al. [58,59]
recently found that changes in atmospheric components of land–atmosphere feedback are
more strongly impacted than the land component. These earlier findings offer insight into
why we observe comparatively smaller changes in SM-ET as opposed to ET-P.
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Figure 9. The global average of SM-ET, ET-P, and SM-P during JJA and DJF across the histori-
cal period, SSP126, and SSP585 for CMIP6. (a) represents multi-year average results; (b) depicts
time-varying results.

On the other hand, during JJA, although there is an increase in the future, these changes
are relatively similar for both SSP126 and SSP585. In addition, the changes observed during
JJA are minimal compared to DJF. This regional perspective aids in uncovering the varying
patterns of sensitivity across different regions under different emission scenarios and sea-
sons. Our investigation revealed distinct patterns of enhancement and attenuation for the
three coupling metrics across various regions. Notably, the SSP585 scenario demonstrated
a tendency toward strengthening these metrics. Regions where SSP126 showed weakening
tendencies also experienced even greater weakening under SSP585, and similarly, regions
that strengthened under SSP126 exhibited further amplification in their coupling metrics
under SSP585. These dynamics collectively contribute to a more subdued alteration in
the three coupling metrics when evaluated through global average analysis. These ob-
servations could potentially be linked to recent findings concerning anticipated changes
in atmospheric circulation patterns under different warming pathways, as reported by
Chemke et al. [60] and Lachmy [61]. These shifts in atmospheric circulation consequently
impact ET-P, resulting in changes within the SM-P. In Figure 9b, the three coupling metrics
are computed using a sliding window of 11 years. The graph illustrates that SM-ET and
SM-P do not exhibit significant changes over time, whereas ET-P displays a more distinct
upward trend. The pattern of change observed in SM-P closely mirrors that of SM-ET.
However, it is essential to recognize that the strength of these changes may differ when
employing various sliding window lengths.

To facilitate better comparison, historical SM data were retained for use in the future
analysis. The similarity between the curves of the two future indicators (SSP126, SSP585)
and the historical data is clearly evident in Figure 10. Both SM-ET and SM-P showcase
higher values wherein wet climate regions during dry years, and the converse occurs in dry
regions. This also indicates a high degree of consistency with history in regions sensitive
to future P. The main strength differences exist among the historical SSP126 and SSP585.
Against the historical JJA, SM-ET and SM-P are significantly enhanced mainly in the middle
years of the transition regions. Additionally, SSP585 shows even greater enhancement
compared to SSP126. In Figure A9 (Appendix A), the overall enhancement of SM-ET
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is more pronounced compared to the historical DJF. Once again, SSP585 demonstrates
greater enhancement in comparison to SSP126, reflecting the substantial impact of future
high carbon emissions on land–atmosphere interactions. Conversely, the strength of ET-
P displays only minor variations in the future during both JJA and DJF. Moreover, the
structure of SM-P largely remains under the control of SM-ET, maintaining consistency
with historical patterns.

Atmosphere 2023, 14, x FOR PEER REVIEW 16 of 33 
 

 

To facilitate be�er comparison, historical SM data were retained for use in the future 

analysis. The similarity between the curves of the two future indicators (SSP126, SSP585) 

and the historical data is clearly evident in Figure 10. Both SM-ET and SM-P showcase 

higher values wherein wet climate regions during dry years, and the converse occurs in 

dry regions. This also indicates a high degree of consistency with history in regions sensi-

tive to future P. The main strength differences exist among the historical SSP126 and 

SSP585. Against the historical JJA, SM-ET and SM-P are significantly enhanced mainly in 

the middle years of the transition regions. Additionally, SSP585 shows even greater en-

hancement compared to SSP126. In Figure A9 (Appendix A), the overall enhancement of 

SM-ET is more pronounced compared to the historical DJF. Once again, SSP585 demon-

strates greater enhancement in comparison to SSP126, reflecting the substantial impact of 

future high carbon emissions on land–atmosphere interactions. Conversely, the strength 

of ET-P displays only minor variations in the future during both JJA and DJF. Moreover, 

the structure of SM-P largely remains under the control of SM-ET, maintaining con-

sistency with historical pa�erns. 

 

Figure 10. The SM-ET, ET-P, and SM-P in wet, medium, and dry years against mean SM change 

during JJA for SSP126 and SSP585 of CMIP6. Criteria for dry, medium, and wet years: The SM is 

standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1 are 

taken as dry years and SMn > 0 are taken as wet years. (a,b) indicate the SM-ET for SSP126 and 

SSP585, respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the 

SM-P for SSP126 and SSP585, respectfully. 

4. Discussion 

The current study analyzes global hotspots of SM-P as a function of the sensitivity of 
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atmospheric components within the SM-P framework. Additionally, we explored how 

Figure 10. The SM-ET, ET-P, and SM-P in wet, medium, and dry years against mean SM change
during JJA for SSP126 and SSP585 of CMIP6. Criteria for dry, medium, and wet years: The SM is
standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1
are taken as dry years and SMn > 0 are taken as wet years. (a,b) indicate the SM-ET for SSP126 and
SSP585, respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the
SM-P for SSP126 and SSP585, respectfully.

4. Discussion

The current study analyzes global hotspots of SM-P as a function of the sensitivity
of P to changes in SM. We sought to unravel the distinct contributions of the terrestrial
and atmospheric components within the SM-P framework. Additionally, we explored how
these three coupling metrics vary with different climate conditions. The uniqueness of
this study is that it relies on the LCL height as an integral part of the SM-P continuum.
The LCL height serves as a close proxy for mean cloud base height and can be used as
a good approximation or indicator of precipitation probability [32]. Thus, by including
it, we fill in the gaps of earlier SM-P coupling studies and aim to understand how this is
represented in multiple climate models. We include three different families of data sets
from different sources in the analysis, two sets of which are reanalysis data sets and the
third, multiple climate models of the CMIP framework. By comparing the SM-P coupling
based on Equation (1), we aim to understand the different representations of the coupling in
these data sets. It is imperative to recognize that SM-P interactions are influenced by many
complex factors, and their mutual interactions are intricate. This complexity has posed
formidable challenges in establishing robust cause-and-effect relationships. Our research,
at its current stage, has delved into the positive feedback loops associated with SM-P
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coupling, but the exploration of negative feedback loops warrants deeper investigation.
It is our intention that future studies in this field will extend their focus beyond the local
effects and delve into the intricacies of non-local effects. This expansion of research scope
will enable a more comprehensive understanding of the multifaceted dynamics governing
SM-P interactions, ultimately contributing to advancing our knowledge in this critical area
of study.

In the context of global warming, future changes in land–atmosphere interactions are
also an issue of concern. Therefore, we use CMIP6 models output variables to investigate
future SM-P. The reasons regarding future changes are perhaps complex. Certain studies
have proposed that the expansion of the Hadley circulation is anticipated in the 21st century,
predominantly under anthropogenic influence [62–64]. In contrast, at mid-latitudes, non-
adiabatic heating (the process of heat exchange between the system and the outside world)
is evident within the ascending branch of the Ferrel Cell [65]. This phenomenon leads
to a clockwise, lower tropospheric circulation of the Ferrel Cell that intensifies and shifts
poleward in light to climate change [61]. From our findings, it is evident that there is a
significant amplification of SM-P interactions, particularly within the atmospheric segment,
in mid-latitude regions. This means that with climate change, we must take into account
the influence of circulation factors on the atmospheric state and land surface atmospheric
interactions when analyzing future long-term changes and thus the mechanisms of change.
Incorporating these insights into climate models and adaptation strategies will be essential
for addressing the complex and dynamic challenges of a changing climate in mid-latitude
regions and beyond.

5. Conclusions

This study employs a novel SM-P framework to delve into its feedback mechanisms.
The results indicated that the hotspot regions of SM-P are predominantly situated within
the transition regions, with significant seasonal variations. In wet climate regions, both
SM-ET and SM-P showed elevated levels during dry years compared to wet years, while
the reverse was also true in dry climate regions. This demonstrates that SM exerts a
stronger influence on P over intermediate transition regions, consistent with previous
studies [4,6,13,14]. Both SM-ET and SM-P demonstrated their peak values within these
transition regions, thereby revealing a spatial pattern similarity between the two. Upon
partitioning the years into wet and dry categories, it became apparent that SM-P and SM-ET
exhibited comparable temporal variability. Significantly, the SSP585 scenario exhibited
a notable inclination toward enhancing these metrics. Areas where the SSP126 scenario
indicated a weakening trend experienced even more pronounced weakening under SSP585.
Conversely, regions that displayed strengthened coupling metrics under SSP126 exhibited
further amplification of these trends when subjected to SSP585. Due to sensitivity to
climate change, the ET-P exhibits a more pronounced upward trend in the future. This
approach could offer a simplified yet meaningful means of comprehending the intricate
interplay between SM and P within different climate regimes. Future research may benefit
from incorporating additional variables and higher-resolution data to provide a more
comprehensive understanding of SM-P interactions in diverse environmental settings.
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Figure A1. The SM-ET, ET-P, and SM-P against mean soil moisture change during JJA for CMIP6
in dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the
colored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On
the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1
for dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET in wet and dry years,
respectively. (c,d) indicate the ET-P. (e,f) indicate the SM-P.
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Figure A2. The SM-ET, ET-P, and SM-P against mean soil moisture change during DJF for CMIP6
in dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the
colored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On
the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for
dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P.
(e,f) indicate the SM-P.
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Figure A3. The SM-ET, ET-P, and SM-P against mean soil moisture change during DJF for ERA5 in 
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Figure A3. The SM-ET, ET-P, and SM-P against mean soil moisture change during DJF for ERA5 in
dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the colored
part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On the
basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for
dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P.
(e,f) indicate the SM-P.
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Figure A4. The SM-ET, ET-P, and SM-P against mean soil moisture change during JJA for MERRA2
in dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the
colored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On
the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for
dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P.
(e,f) indicate the SM-P.
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Figure A5. The SM-ET, ET-P, and SM-P against mean soil moisture change during DJF for MERRA2
in dry and wet years. The soil moisture is standardized (SMn) and the calculation criteria for the
colored part of the figure are: SMn > 0 are taken as wet years and SMn < 0 are taken as dry years. On
the basis of these divisions the regions where the calculation criteria are >1 for wet years and <−1 for
dry years are highlighted, as indicated by points. (a,b) indicate the SM-ET. (c,d) indicate the ET-P.
(e,f) indicate the SM-P.
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Figure A6. The SM-ET, ET-P, and SM-P against mean soil moisture change in wet, medium, and dry
years during DJF for ERA5, MERRA2, and CMIP6. Criteria for dry, medium and wet years: The SM is
standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1 are
taken as dry years and SMn > 0 are taken as wet years. (a–c) indicate the SM-ET for ERA5, MERRA2,
and CMIP6. (d–f) indicate the ET-P for ERA5, MERRA2, and CMIP6. (g–i) indicate the SM-P for
ERA5, MERRA2, and CMIP6.
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Figure A7. The future (2066–2100) from SSP126 and SSP585 versus historical (1980–2014) differences
in SM-ET, ET-P and SM-P during JJA. The blue color signifies a weakening of sensitivity, whereas
the red color indicates an increase in sensitivity. (a,b) indicate the SM-ET for SSP126 and SSP585,
respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the SM-P for
SSP126 and SSP585, respectfully.
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Figure A8. The future (2066–2100) from SSP126 and SSP585 versus historical (1980–2014) differences
in SM-ET, ET-P, and SM-P during DJF. The blue color signifies a weakening of sensitivity, whereas
the red color indicates an increase in sensitivity. (a,b) indicate the SM-ET for SSP126 and SSP585,
respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the SM-P for
SSP126 and SSP585, respectfully.
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Figure A9. The SM-ET, ET-P, and SM-P against mean soil moisture change in wet, medium, and dry
during DJF for SSP126 and SSP585 of CMIP6. Criteria for dry, medium and wet years: The SM is
standardized (SMn); grids with −1 <= SMn >= 1 are taken as medium years, grids with SMn < −1
are taken as dry years and SMn > 0 are taken as wet years. (a,b) indicate the SM-ET for SSP126 and
SSP585, respectfully. (c,d) indicate the ET-P for SSP126 and SSP585, respectfully. (e,f) indicate the
SM-P for SSP126 and SSP585, respectfully.
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Figure A10. Historical variance of the CMIP6 model for the SM-ET, ET-P, and SM-P, reflecting the 

uncertainty between the models. The (a,c,e) mean the model variance during JJA for historical. The 
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Figure A10. Historical variance of the CMIP6 model for the SM-ET, ET-P, and SM-P, reflecting the
uncertainty between the models. The (a,c,e) mean the model variance during JJA for historical. The
(b,d,f) mean the model variance during DJF for historical.
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Figure A11. SSP126 variance of the CMIP6 model for the SM-ET, ET-P, and SM-P, reflecting the
uncertainty between the models. The (a,c,e) mean the model variance during JJA for SSP126. The
(b,d,f) mean the model variance during DJF for SSP126.



Atmosphere 2023, 14, 1531 28 of 31Atmosphere 2023, 14, x FOR PEER REVIEW 30 of 33 
 

 

 

Figure A12. SSP585 variance of the CMIP6 model for the SM-ET, ET-P, and SM-P, reflecting the 

uncertainty between the models. The (a,c,e) mean the model variance at JJA for SSP585. The (b,d,f) 

mean the model variance at DJF for SSP585. 
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