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Abstract: In subtropical regions, heavy rains from cumulonimbus clouds can cause disasters such
as flash floods and mudslides. The accurate prediction of cumulonimbus cloud distribution is
crucial for mitigating such losses. Traditional machine learning approaches have been used on
radar echo data generated by constant altitude plan position indicator (CAPPI) radar systems for
predicting cumulonimbus cloud distribution. However, the results are often too foggy and fuzzy.
This paper proposes a novel approach that integrates graph convolutional networks (GCN) and
trajectory gated recurrent units (TrajGRU) with an attention mechanism to predict cumulonimbus
cloud distribution from radar echo data. Experiments were conducted using the moving modified
National Institute of Standards and Technology (moving MNIST) dataset and real-world radar echo
data, and the proposed model showed a 59.12% improvement in mean square error (MSE) and a
16.26% improvement in structure similarity index measure (SSIM) on average in the moving MNIST
dataset, a 65.40% improvement in MSE, and an 10.29% improvement in SSIM on average in the radar
echo dataset. These results demonstrate the effectiveness of the proposed approach for improving
the prediction accuracy of cumulonimbus cloud distribution.

Keywords: cumulonimbus distribution prediction; radar image; deep learning; graph convolutional
network; attention mechanism

1. Introduction

Rainfall nowcasting is a critical prediction task that relies on radar echo images
and ground sensors [1]. The radar echo image is a type of remote sensing data that
provides information on the distribution of cumulus clouds [2–4], which is crucial for
rainfall nowcasting. The primary objective of this task is to estimate the distribution
of cumulonimbus clouds in a specific area [5]. Cumulonimbus cloud prediction can be
achieved through radar echo images. It requires the ability to extract features from an
image sequence and establish connections between extracted features [6].

Cumulonimbus cloud prediction technology can be categorized into two types: pre-
deep learning methods and deep learning methods [5]. Pre-deep learning methods mainly
include regression [7], autoregressive integrated moving average [8], Kriging method [9],

Atmosphere 2023, 14, 1506. https://doi.org/10.3390/atmos14101506 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14101506
https://doi.org/10.3390/atmos14101506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-0000-5365
https://orcid.org/0000-0003-4394-2770
https://orcid.org/0000-0002-9531-7355
https://doi.org/10.3390/atmos14101506
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14101506?type=check_update&version=1


Atmosphere 2023, 14, 1506 2 of 18

and optical flow methods [10]. Since AlexNet won the ImageNet large-scale visual recogni-
tion challenge (ILSVRC) 2012 competition, deep learning methods have gained widespread
attention in academia and industry [11]. In the field of rainfall nowcasting, deep learning
methods have also been widely adopted. Convolutional neural networks (CNNs) are par-
ticularly effective in extracting feature representations from images because they possess
displacement, scale, and rotational invariance. This makes CNNs well-suited for extracting
feature information from radar echo images [12]. However, CNNs have the disadvantage
of learning feature information in the time-space dimension [5]. Therefore, this paper
aims to improve the ability of models to extract feature information and achieve near-time
cumulonimbus cloud prediction.

Recursive neural network (RNN) is a promising approach for cumulonimbus cloud
prediction. CLSTM, which combines CNN and LSTM, has been proposed for rainfall
nowcasting and has shown better performance than optical flow-based methods [5]. Google
has also proposed a deep learning-based rainfall prediction model called MetNet [13].
In short-term rainfall prediction research, deep learning methods have outperformed
traditional models [5,14].

Despite the progress made by deep learning-based methods in rainfall nowcasting,
CNN+RNN-based methods still have potential, considering the advantages of CNNs in
processing image data [15] and the advantages of RNNs in processing sequence data. In this
paper, we propose GraphAT-NET, which focuses on refining the feature extraction ability
of radar images. GraphAT-NET builds feature connections within low-level features (with
graph convolution) and then enhances the relationships between feature channels (with
channel attention). This approach establishes a strong association among spatio-temporal
relationships, further improving cumulonimbus cloud prediction. Specifically, GraphAT-
NET combines CNN, RNN, GCN, and attention mechanisms and achieves state-of-the-art
results on both moving MNIST [16] and real-world datasets. The paper’s main contributions
are as follows:

• In this study, a novel method for predicting the distribution of cumulonimbus clouds.
The proposed method achieves accurate predictions on both the moving MNIST
dataset and real-world radar echo data.

• The proposed method combines multiple refinements, including graph convolution,
recurrent neural networks, convolutional neural networks, and attention mechanisms.
We also adopt a hybrid loss function that includes mean square error (MSE) and
difference structure similarity index measure (SSIM).

• We evaluate the model’s effectiveness using a time-space series prediction dataset
based on radar echo data of cumulonimbus clouds. This dataset enables the rigorous
evaluation of the model’s performance in predicting complex phenomena.

To provide a comprehensive understanding of the proposed method, we have orga-
nized the content of the following sections as follows: Section 2 provides a summary of
recent developments in rainfall nowcasting technology. Section 3 presents the proposed
method in detail. Section 4 describes the experimental settings used to evaluate the pro-
posed method. Section 5 compares the performance of the proposed method with some
state-of-the-art methods. Section 6 discusses the effectiveness of the proposed method.
Finally, Section 7 concludes this manuscript and highlights future research directions.

2. Related Works

Currently, there are three primary deep network models utilized for rainfall prediction.
The first model is the convolutional neural network (CNN), which processes input grid
weather elements as images [12,17]. It performs feature learning through image filters and
takes into account the spatial structure of the data. However, it has limitations in processing
sequence data and is only suitable for fixed-length data. The second model is the recurrent
neural network (RNN), which is commonly used in natural language processing [18]. It is
flexible in processing sequence data through an autoregressive structure and is effective
at learning in the time dimension. However, it loses the inherent spatial characteristics of



Atmosphere 2023, 14, 1506 3 of 18

grid data and has limited learning ability. The third approach combines CNN and RNN
in various forms, allowing them to learn spatial and temporal features simultaneously.
Previous studies have demonstrated the effectiveness of this approach [5,14]. Therefore,
the selection of a deep network model for rainfall prediction depends on the specific
characteristics of the input data and the desired output. CNNs are suitable for processing
fixed-length data with spatial structure, while recurrent neural networks are better for
processing sequence data with temporal structure. Combining these models can provide
a more comprehensive approach to learning both spatial and temporal features, which is
critical for accurate rainfall prediction.

The prediction of rainfall has undergone a significant evolution, progressing from
pure RNN to Conv + RNN (a combination of CNN and RNN) to CNN. Shi et al. [5]
proposed the pioneering ConvLSTM, which extends the idea of FC-LSTM by incorporating
a convolutional structure in the input-to-state and state-to-state transitions. Multiple
ConvLSTM layers were stacked to construct a precipitation adjacent to predicted end-to-end
code-predict structure. The model consistently outperformed FC-LSTM when evaluated
on both the moving MNIST dataset and the radar echo dataset. Souto Y M et al. [19]
proposed a solution that combines recurrent networks with convolutional networks, using
different channels to obtain the weights input to each prediction model. Their method
improved accuracy by 50% for real weather datasets. Kim Y et al. [20] adopted a ConvLSTM
network to predict the presence of rainfall and classify rainfall intensity. The experimental
results showed that for longer-time predictions, lower rainfall intensities were predicted
even if the rainfall was heavy, and for lighter rainfall intensities, the prediction time
increased. Fang W et al. [21] designed the predictor (AttEF) module in the ConvLSTM
encoder, allowing the encoder to encode all spatiotemporal information in a vector sequence.
The experimental results demonstrated that the model could learn both short-term and
long-term spatiotemporal dependencies, achieving the best performance on both datasets.

LSTM has a significant drawback of having a large number of parameters and is not
well-suited for parallel computing training scenarios. To address this issue, Cho et al. [22]
proposed a variant called gated recurrent unit (GRU). GRU combines the forget gate and
the input gate into a single “update gate” and merges the cell state and the hidden state.
This simplifies the model and reduces the number of parameters compared to the standard
LSTM model. Additionally, GRU infers faster and requires less data to generalize.

Shi X et al. [14] argue that previous approaches have not focused on modifying the
loop structure itself to solve the problem. Their model, TrajGRU, modifies the structure
of loop connections and tests with different numbers of links to learn a more efficient
connection structure. The improved HKO-7 dataset and moving MNIST dataset were used
to evaluate seven models, with TrajGRU outperforming ConvLSTM. L. Tian et al. [23]
proposed a disadvantage of ConvGRU, which uses mean squared error as a loss function,
resulting in blurred extrapolated images and an inability to achieve the multi-modal and
oblique intensities of real radar images. To address this issue, they proposed an adversarial
model, GA-ConvGRU, consisting of a generator and a discriminator, which can produce
more realistic and accurate inferences. Xie P et al. [24] argued that GA-ConvGRU has
inherent shortcomings, where the generator and discriminator are easily trained in co-
ordination, leading to training instability. They proposed the EBGAN-forecaster, which
outperforms several existing models. Yu T et al. [25] argued that existing methods simply
add additional parallel storage units outside the inner loop unit, and the different types of
information are independent of one another. They introduced an axial attention memory
module, ATMConvGRU, that can yield a stronger spatial-temporal feature correlation.
Finally, Zhang et al. [26] proposed the M-ConvGRU model, which considers the interaction
between input data and previous output data, merges the two states into ConvGRU neu-
rons, and performs convolution-based gate preprocessing to capture contextual relations.
For echo predictions longer than 1 h, M-ConvGRU outperforms ConvLSTM.

In addition to RNN, the academic community has also explored the use of CNN
for rainfall prediction, with models such as U-Net, Smatunet, and Seresunet. In the
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Weather4cast competition, the RNN-based model won first place, while the U-Net-based
model won second place. However, when using more parameters and additional weather
variables as input, U-Net-based models achieve higher scores in spatial transfer learning.
A U-Net model that combines a numerical model and a deep learning model was proposed,
taking numerical data from the NWP system as input and then correcting the data via U-Net
to improve the accuracy of the final prediction. Trebing K et al. [17] proposed SmaAt-UNet,
which is equipped with an attention module and depthwise separable convolution based on
the efficient convolutional neural network of U-Net architecture. The experimental results
showed that SmaAt-UNet achieves comparable prediction performance to other U-Net
models while requiring only one-fourth of the trainable parameters. Song K et al. [12]
proposed SE-ResNet to distinguish moving/deformed rain regions from random noise
regions. The input–output cross-entropy was used as a loss function to remove noise
in radar images. The regressor integrates FCN and uses the attention mechanism and
the IOU regression loss function. The experimental results showed that the algorithm
outperforms RNN.

However, the above methods do not consider integrating the temporal dimension with
the high-level semantic information in the image, which could help the model learn more
accurate feature representations. Graph convolutional networks (GCNs) are capable of
learning data with arbitrary graph structures and have been successfully applied to many
tasks. For graph data, GCN can fuse the information of itself and its nearby nodes, making
two connected nodes highly correlated. Kipf T N et al. [27] proposed a scalable semi-
supervised learning method for graph structures that scale linearly in the number of graph
edges, learning hidden layer representations that encode local graph structure and node
features. Extensive experiments show that this method is significantly better than related
methods. Wu Y et al. [28] proposed GCRN with a multi-convolution mechanism to tolerate
the varying spatial correlations in actual precipitation, extending the central node and its
adjacent rain gauges to capture more complex spatial features of precipitation. Comparing
the model with another graph recurrent architecture, GCRN can use fewer parameters and
significantly improve performance, outperforming the QPE models. Although GCN has
many advantages, there is not much literature applied to rainfall prediction at present, so it
has research significance.

From the perspective of spatio-temporal modeling, precipitation nowcasting and
video prediction are essentially spatio-temporal sequence prediction problems, where
both input and output are spatio-temporal sequences. Compared to the general standard
goal, time series are more challenging because each sample of the data in the time series
is not independent. The closer the two samples in time are, the more relevant they are.
Therefore, common classifiers cannot be used to fit the data as they assume that the two
samples are independent. Currently, research is focused on addressing this issue with time
series problems.

Compared with the traditional time series prediction problem, meteorological data
can be viewed as image data. Therefore, some studies have introduced a learnable convo-
lution as an image feature extractor to extract the high-level semantic information of the
image. This semantic information is then imported into the recurrent neural network for
learning. Finally, the predicted features are decoded and up-sampled to obtain predicted
image information. The model mainly adopts the encoder–decoder architecture for feature
extraction and remapping. The slice of meteorological time series data in each space can be
regarded as a kind of image data with uneven distribution. Convolutional layers are better
at extracting features in Euclidean space due to the specific shape of their convolution
kernels. Graph convolution has a strong ability to represent features. It can construct
topological structure information of semantic features, map traditional image features
to graph structure information, and build feature associations to achieve more accurate
feature extraction.

This paper introduces the use of graph convolution to enhance the encoder–decoder
model that is built using traditional CNN and RNN. The goal is to improve the learning
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ability of the model for time series data. Additionally, a low-parameter attention mechanism
is adopted to optimize the feature distribution of the convolutional layer in the feature
extraction and reconstruction stage of the model.

3. Methods

The proposed method contains three main structures: 1, an encoder–decoder network
based on CNN and RNN; 2, an attention mechanism to enhance the feature extraction abil-
ity; and 3, a GCN layer to better build correlations between features. The structure diagram
of the proposed GraphAT-NET is presented in Figure 1. In the following subsections, we
introduce the mathematics and deployment of the details of the proposed method.

Figure 1. Framework of GraphAT-NET ( 1© is the overall architecture of the proposed model; 2© is
the structure diagram of GCN structure; and 3© is the structure diagram of ECA-attention).

3.1. Trajectory GRU Structure

As presented in the 1© part of Figure 1, the proposed method adopts RNN to build
the correlation between time and radar data. The whole structure can be identified as
a three-step encoding and decoding module. We assume the input radar data (I1) are
separated alone time dimension: < I1, I2, . . . >. Then the prediction task can be arranged
as forecasting k steps based on the inputs: < I1+k, I2+k, . . . >. The task of rainfall prediction
is defined as a sequence learning-predicting mission. The main algorithm we adopted in
the proposed method can be defined as follows:

The observations into n layers of RNN: H1
t , H2

t , . . . , Hn
t = h

(
It−J+1, It−J+2, . . . , It

)
(here, h indicates operating history information), and then use another n layer of RNNs

to generate the predictions based on these encoded states:
_

I t+1,
_

I t+2, . . . ,
_

I t+K =
g(H1

t , H2
t , . . . , Hn

t ) (here, g indicates the gate operation of RNN). Based on the introduction
above, we define the methods of trajectory GRU as follows:

Ut,Vt = γ(X
′
t, Ht−1) (1)

Zt = σ(Wxz × X
′
t +

L

∑
l=1

W l
hz)

× warp(Ht−1, Ut,l , Vt,l)

(2)

Rt = σ(Wxr × X
′
t +

L

∑
l=1

W l
hr)

× warp(Ht−1, Ut,l , Vt,l)

(3)
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H′t = f (Wxh × X
′
t + Rt)

◦ (
L

∑
l=1

W l
hh × warp(Ht−1, Ut,l , Vt,l))

(4)

Ht = (1− Zt ◦ H′t + Zt) ◦ Ht−1 (5)

Here, L is the total number of allowed links. Ut,Vt ∈ RL×H×W are the flow fields
that store the local connection structure generated by the structure generating network γ.
And W l

hz, W l
hr, W l

hh are the weights for projecting the channels, which are implemented by
1× 1 convolutions. The warp(Ht−1, Ut,l , Vt,l) function selects the position pointed out by
Ut,l , Vt,l from Ht−1 via the bilinear sampling kernel. If we denote M = warp(I, U, V) where
M, I ∈ C×H×W and U, V ∈ H×W , we have:

Mc,i,j =
H

∑
m=1

W

∑
N=1

Ic,m,n max(0, 1−
∣∣i + Vi,j −m

∣∣)max(0, 1−
∣∣j + Ui,j − n

∣∣) (6)

The advantage of this framework is the ability to learn features through image se-
quences. However, radar images, as a complex data source, have features that cause
problems.

3.2. GCN Structure

Radar images are generated from the echo signal of clouds. Cumulonimbus is related
to humidity, wind, temperature, topography, etc. [29]. These matters constructed a chaos
system. Thus, we need to insert nonlinear mapping components to build relationships
within these features. GCN has been proven to be a network that can build the such
relationship in irregular data. In this work, we embedded GCN layers in the proposed
method to learn the features of cumulonimbus. The structure diagram is presented in the
2© part of Figure 1. We introduce the GCN components in the following paragraphs:

First, we define the transition pattern of GCN as presented in Equation (7):

H(l+1) = ReLU(D̂−
1
2 ÂD̂−

1
2 H(l)W(l)) (7)

Here, Â = A + I A is the adjacency matrix, I is the identity matrix, H(l) is the graph-level
outputs, H(0) is the input X, D̂ is the diagonal node degree matrix of Â, and ReLU(·) is the
ReLU activation function.

In this model, the GCN is embedded after the first convolutional RNN layer, and the
features are reorganized, which balances the computational complexity and the effective-
ness of the GCN. This part of the component is composed of two layers of GCNs, and
the correlation between GCN and TrajGRU can be concluded as follows:

H1=GCN(h1) (8)

Here, the input of the GCN layer is the state tensor of the first convolutional RNN layer.
To initialize the relations within features, we create a Gaussian distribution matrix

as the adjacent matrix A. Then, we use the initialized weight matrix and bias matrix to
transport and learn features during training. After the inner operations within the first layer
of GCN, we use the ReLU activation function to enhance the nonlinear mapping capability
of GCN. To avoid overfitting during training, we use dropout to randomly disable 50% of
the neurons. After that, we use another GCN layer to compose the bottleneck structure.
Finally, we have the enhanced stage tensor H1.
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3.3. ECA Attention Structure

The attention mechanism is an effective method to improve the feature extraction
ability of deep neural networks. To further improve the convolutional layers in the en-
coder and decoder of the proposed method, we embed a lightweight attention layer after
each convolutional layer. To reach the balance between performance and efficiency, we
adopt efficient channel attention (ECA) attention in this method. The structure diagram is
presented in the 3© part of Figure 1, and the details of ECA are as follows:

First, we use adaptive average pooling to generate the channel-wise weight of the
feature maps:

w = Adaavgpool(Xt) (9)

After that, we use two layers of 1D convolutional layers to enhance the relationships
of channel weight:

w′ = Conv1D(w) (10)

Then, we use sigmoid activation function to enhance the nonlinear mapping ability
of w′:

w′′ = σ(w′) (11)

Finally, we use the inner product of w′′ and input feature maps as the enhanced feature:

X
′
t = (w′′ × Xt) (12)

4. Experiment Settings

This section describes the experiment settings of this work, which evaluate the ef-
fectiveness of the proposed method using two datasets. The moving MNIST dataset is a
benchmark for testing and evaluating prediction models. The second dataset is real-world
time sequence data used to assess the prediction ability of the proposed method. These
datasets are crucial for evaluating the proposed method and its potential applications.

4.1. Dataset Information

Moving MNIST [16] is a handwriting digit dataset based on the MNIST dataset [30].
It consists of 10,000 sequences, each containing 20 frames with a size of 64× 64 pixels,
where digits move inside each patch. The dataset is commonly used as a benchmark for
testing and evaluating video prediction models due to its complexity and diversity. The
moving MNIST dataset is generated by adding random motion blur with random speeds
and directions to the MNIST digits. Examples of the moving MNIST dataset are presented
in Figure 2.

Figure 2. Examples of Moving MNIST.

The Guangxi constant altitude plan position indicating (GCAPPI) dataset is a high-
time resolution record dataset of cumulonimbus cloud distribution in Guangxi province,
China. The research area covers (102–114◦ E, 19–28◦ N). The experimental data consist
of radar maps collected by 10 Doppler radars in Guangxi. The radar data are sampled
and processed by the severe weather analysis and prediction system (SWAN) of the China
Meteorological Administration to form a gridded reflectivity factor isosurface mosaic,
with a horizontal resolution of 0.01◦ × 0.01◦ and an altitude spectrum ranging from 0.5 to
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10.5 km. In order to avoid ground interference and improve the reliability of data [2], the
quality control algorithm was applied to remove isolated noise and ground echoes [31].
Specifically, the algorithm identified and removed echoes with low reflectivity values and
those that were not contiguous with other echoes [32]. This step helped to reduce the
impact of non-meteorological echoes on the analysis. We selected the radar maps from June
2019, with a time resolution of 6 min. The original radar echo data are stored in bin format
as echo data with amplitudes ranging from −128 to 127. To better form image information,
we rescale the amplitudes to the range of 0 to 255. In addition, to avoid noise and abnormal
values affecting the feature extraction process, we use the Daubechies8 wavelet for filtering.
This results in a radar echo image with a size of 1200× 900. The GCAPPI dataset contains a
total of 7200 frames, which were separated into a 6:4 training set and testing set, i.e., the
GCAPPI dataset includes a training set of 4320 frames and a validation set of 2880 frames.
To improve the operation speed, we resized the radar map size to 256× 256. Examples of
the GCAPPI dataset are presented in Figure 3.

Figure 3. Examples of GCAPPI dataset (the brightness in figure represents the radar echo signal,
which represents the thickness of the cloud).

4.2. Evaluation Metrics

MSE (mean square error) is the root of the deviation between the observed value and
the ground truth value divided by the number of observations and is used to measure the
deviation [33]. The standardized mean-variance is based on calculating the ratio of the
accuracy between the model to be evaluated and the model based on the mean. The value
range of the standardized mean-variance is usually 0 to 1. The smaller the ratio, the better
the model is than the mean-based prediction strategy. The standard error is very sensitive
to very large or very small errors in a group of measurements, so the standard error can
reflect the precision of the measurement well. Therefore, this paper adopts MSE as the
evaluation method to evaluate the performance of each model.

MSE(x, y) =
1
n

n

∑
i=1

(x− y)2 (13)
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SSIM (structure similarity index measure) [34], is used to evaluate the similarity
between the target image and the generated image. SSIM mainly concerns three indicators:
luminance, contrast, and structure. First, luminance calculates the similarity between two
patches; the closer two patches are, the larger luminance is. The definition of luminance is:

Luminance(x, y) =
2µxµy

µ2
x + µ2

y
(14)

Here, µ indicates the average value of corresponding patch.
Second, contrast measures the distance between the texture of two patches; the defini-

tion of contrast is:

Contrast(x, y) =
2σxσy

σ2
x + σ2

y
(15)

Here, σ means the variance of corresponding patch.
Third, structure is the correlation between the pixel values in two patches. The more

edges with the same position and direction two patches contain, the higher score is. The def-
inition of structure is:

Structure(x, y) =
σxy

σxσy
(16)

Finally, when we add weight(ω) among three indicators, we have:

SSIM(x, y) = ωLLuminance(x, y)

×ωCContrast(x, y)

×ωSStructure(x, y)

(17)

Obviously, the larger SSIM is, the better the model predicts.

4.3. Training Details

The experiments were conducted on a hardware platform that contains an Intel i5-
9400f CPU, 24 GB RAM, and GTX 1080Ti GPU. All of the code was programmed and
executed in PyTorch 1.8.

As introduced above, two datasets are adopted in this work. And the size of moving
MNIST and GCAPPI data varies from each other. Thus, to achieve a balance between
performance and hard platform, we use different training settings:

Moving MNIST: In the moving MNIST experiment, the batch size is 8, the learning
rate is 1× 10−4, the input is 10 frames, and the predict the next 10 frames. The total epoch
is 100. We use Adam as the optimizer. We also use a learning rate scheduler to change the
learning rate. The dynamic learning rate adjustment strategy we adopted in this experiment
is ReduceLROnPlateau. As for training loss, we combine MSE loss with SSIM loss; the loss
function is presented in Equation (18). In Equation (18), Ît+k represents the ground truth
and It+k represents the sequence image predicted by the model. The loss function is mainly
composed of the mean squared error (MSE) loss function and the structural similarity index
(SSIM) loss function, which are added together and then divided by 2. This constrains
the maximum value of the loss and improves training stability. To prevent overfitting,
we adopted early stopping in the experiments, i.e., if the loss value does not decrease in
5 epochs, the training procedure will stop.

Loss =(MSE(
_

I t+k, It+k) + (1− SSIM(
_

I t+k, It+k))/2)/2 (18)

GCAPPI dataset: In the GCAPPI experiment, we basically follow the same set of
moving MNIST datasets. However, considering the size of GCAPPI dataset and the
limitation of the hardware platform, we adjust the batch size to 1, and the amount of input
frames and prediction frames is 4. We compare the performance of methods after 40 epochs
of training.
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5. Performance

This section aims to demonstrate the superiority of the proposed method by comparing
it with several representative methods in the field. The comparison is conducted with
respect to the following methods: LSTM with fully connected layers (FC-LSTM), GCNnet,
PSPNet, Seresunet, Smatunet, ConvLstm, and ConvGRU. These methods have been widely
used in previous studies and are considered benchmarks for evaluating prediction models.

5.1. Performance of Methods on Moving-MNIST Dataset

We present the experiment results of the moving MNIST dataset in Table 1, sorted
by MSE values. To more specifically present the advantage of the proposed method, we
calculated the increased percentage (ip) of corresponding indicators (with ip = |a− b|/b).
For MSE, the increase percentages are ConvGRU: 11.51%; ConvLSTM: 17.45%; Smatunet:
65.64%; Seresunet: 72.30%; FC-LSTM: 91.05%; PSPNet: 82.43%; GCNNet: 83.45%. As for
SSIM, the increase percentages are: ConvGRU: 3.47%; ConvLSTM: 2.14%; Smatunet: 15.84%;
Seresunet: 15.93%; FC-LSTM: 25.88%; PSPNet: 27.31%; and GCNNet: 25.89%.

Table 1. Comparison of the proposed model with other models based on the moving MNIST
dataset (Vali Loss is short for validation loss).

Methods MSE SSIM Vali Loss

GCNNet 7.43× 10−3 8.33× 10−4 4.83× 10−1

PSPNet 7.00× 10−3 8.17× 10−4 4.83× 10−1

FC-LSTM 6.49× 10−3 8.33× 10−4 4.82× 10−1

Seresunet 4.44× 10−3 9.45× 10−4 4.79× 10−1

Smatunet 3.58× 10−3 9.46× 10−4 4.78× 10−1

ConvLSTM 1.49× 10−3 1.10× 10−3 4.73× 10−1

ConvGRU 41.39× 10−3 1.09× 10−3 4.74× 10−1

GraphAT-Net 1.23 × 10−3 1.12 × 10−3 4.72 × 10−1

In addition, we present the performance of different models on the moving MNIST
dataset in Figure 4 and Figure 5, respectively. Limited by the ability of different models,
PSPNet, GCN, and FC-LSTM triggered the early stopping mechanism. Evidently, GraphAT-
NET outperforms the other models in both the mean squared error (MSE) and structural
similarity index (SSIM) metrics. Firstly, GCN performs the worst, possibly because it
cannot extract spatio-temporal feature information from sequence data alone. Additionally,
fully CNN-based models such as PSPNet, Seresunet, and Smatunet, which use CNN to
construct spatio-temporal feature correlation information, still do not achieve as high
prediction accuracy as models that combine CNN and RNN. Furthermore, as a typical
machine learning method, FC-LSTM is not sufficient to learn feature representations from
the moving MNIST dataset. Comparing the models, Convlstm, Convgru, and the proposed
model show significantly improved accuracy compared to other models. This may be
because CNN can extract feature information from images, and RNN can build spatio-
temporal feature information based on the correlation between image features. Additionally,
Table 1 shows that the proposed model achieves the highest accuracy.
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Figure 4. The change of MSE loss value for different methods.

Figure 5. The change of SSIM loss value for different methods.

To better demonstrate the advantages of the proposed model, we display the visu-
alization results in Figure 6, following the order of Table 1. It is evident that GCN can
only achieve fuzzy predictions of the region, which is consistent with the previous specula-
tion that an image-sensitive CNN structure is necessary to extract image details. Notably,
FC-LSTM learned nothing but the background and failed to make any predictions in the
moving MNIST dataset. Furthermore, in the visualization results of PSPNet, Seresunet,
and Smatunit in Figure 6, the short-term prediction results are better and clearer, while
the long-term distribution becomes fuzzy and more disturbed. This may be because it is
difficult for the model to build the spatio-temporal feature association relationship, making
it challenging for the model built only by CNN to make long-term predictions. Compared
with ConvLSTM, ConvGRU, and the proposed model results, it is apparent that the ar-
chitecture built by CNN and RNN can better extract spatio-temporal feature information
and make more accurate predictions. However, the prediction results of ConvLSTM and
ConvGRU still contain a lot of interference, which affects the prediction results. Addi-
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tionally, it can be observed that the prediction accuracy of all models decreases with time.
Nevertheless, it is evident from the visualization results that the proposed model achieves
the best prediction accuracy.

Figure 6. Performance of methods on moving MNIST dataset.

5.2. Performance of Methods on GCAPPI Dataset

Table 2 presents the performance of methods on the GCAPPI dataset, sorted according
to the MSE value. As shown in Table 2, the proposed method outperforms others on both
MSE and SSIM. For MSE values, the proposed method has ip over other methods with:
ConvLSTM: 10.92%; ConvGRU: 24.72%; FC-LSTM: 76.01%; GCNNet: 76.23%; Seresunet:
83.59%; Smatunet: 87.18%; and PSPNet: 99.94%. As for the results of SSIM, the proposed
method outperforms other methods with: ConvLSTM: 4.92%; ConvGRU: 0.08%; FC-LSTM:
0.45%; GCNNet: 0.57%; Seresunet: 0.50%; Smatunet: 0.99%; and PSPNet: 64.51%. In the
experiment on real-world data, pure CNN methods such as PSPNet, Smatunet, and Sere-
sunet perform worse than methods based on GCN and RNN. This is because of their lack
of spatio-temporal feature extraction ability. The results of other methods in Table 2 also
verify that the combination of CNN, RNN, and GCN can help methods to extract the
distributions of cumulonimbus clouds along the time dimension. Moreover, the proposed
method performs the best on real-world data.

We demonstrate the performance of the compared algorithms on the CAPPI dataset
over time in Figures 7 and 8. Due to hardware limitations, the training epoch of CAPPI is
40. Early stopping is not used in the CAPPI dataset experiment. It can be observed that
PSPNet is ineffective in training on the CAPPI dataset. To better illustrate the training
details, we excluded the loss curves of PSPNet, CLSTM, and CGRU and displayed the
detailed plots on the right side of Figures 7 and 8. It can be seen that GCN, FC-LSTM,
SERESUNET, SMATUNET, and GraphAT-NET perform similarly at the end of training,
making it difficult to compare them intuitively based on loss values.
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Table 2. Comparison of the proposed model with other models based on the GCAPPI dataset (Vali
Loss is short for validation loss).

Methods MSE SSIM Vali Loss

PSPNet 3.16× 10−4 3.55× 10−1 4.99× 10−1

Smatunet 1.54× 10−6 9.89× 10−1 4.98 × 10−1

Seresunet 1.21× 10−6 9.94× 10−1 4.98 × 10−1

FC-LSTM 8.24× 10−7 9.94× 10−4 4.98 × 10−1

GCNNet 8.32× 10−7 9.93× 10−1 4.98 × 10−1

ConvGRU 2.63× 10−7 9.98× 10−1 4.98 × 10−1

ConvLSTM 2.20× 10−7 9.50× 10−1 4.98 × 10−1

GraphAT-Net 1.98 × 10−7 9.99 × 10−1 4.98 × 10−1

Figure 7. The change of MSE loss value for different methods.

Figure 8. The change of SSIM loss value for different methods.

We present the visual results of corresponding methods in Figure 9. We analyze
the results of Figure 9 row by row. Firstly, the visual results of PSPNet show the worst
performance on both indicators and visual results, making them unacceptable. Secondly,
the visual results of Smatunet and Seresunet learn the prediction task as a segmentation
task. This is evident from the minimal differences in contour and details, indicating that
these models only learn spatial distribution rather than temporal correlations. Thirdly,
FC-LSTM can make basic predictions of the distribution of cumulonimbus clouds, but there
are still many noise interferences in the results. Fourthly, the unsatisfactory performance
of pure GCN is due to its inability to study spatial distributions. Fifthly, comparing the
results of ConvGRU and ConvLSTM, both methods have predicted vague spatio-temporal
distributions. Lastly, the proposed method generates the most accurate predictions, with
clearer details than those of ConvGRU and ConvLSTM results.
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Figure 9. Performance of methods on GCAPPI dataset.

6. Ablation Study

In this section, we analyze the effectiveness of the modules in the proposed method.
We conduct experiments on the GCAPPI dataset to discuss the validity of the corresponding
modules. The details are presented in the following sections.
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6.1. Effectiveness of GCN

To validate the effectiveness of the GCN module, we conducted experiments among
GCNNet, ConvGRU, ConvGRU + GCNNet, and GraphAT-Net. The purpose of this experi-
ment is to evaluate the contribution of the GCN module to the performance of GraphAT-Net.
As shown in Table 3, ConvGRU with GCN increased about 10.9% on MSE and showed
the same performance on SSIM. This indicates that GCNNet could enhance the model
to learn more accurate features. Specifically, the GCN module can capture the spatial
dependencies among the input data and propagate the information to the subsequent
layers, which leads to more accurate predictions. To better illustrate the enhancement, we
present visual results in Figure 10. As shown in Figure 10, the results of pure GCN are still
unreadable, while ConvGRU + GCN performs much better than ConvGRU. This verifies
the effectiveness of GCN as an embedded module in the CNN+RNN-based framework.
Specifically, the GCN module can effectively capture the spatial correlations in the input
data and enhance the feature representation of the model, which leads to more accurate
predictions. The experimental results demonstrate that the GCN module can effectively
enhance the feature representation of the model and improve the accuracy of the predic-
tions. Therefore, the GCN module is a valuable addition to the proposed method and can
be used to improve the performance of other CNN + RNN-based models.

Table 3. Performance of methods in ablation study on GCN module (Vali Loss is short for validation
loss).

Methods MSE SSIM Vali Loss

GCNNet 8.32× 10−7 9.93× 10−1 4.98 × 10−1

ConvGRU 2.63× 10−7 9.98× 10−1 4.98 × 10−1

ConvGRU + GCN 2.34× 10−7 9.98× 10−1 4.98 × 10−1

GraphAT-Net 1.98 × 10−7 9.99 × 10−1 4.98 × 10−1

Figure 10. Visual results of ablation study on GCN module.
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6.2. Effectiveness of ECA

In this subsection, we discuss the effectiveness of the ECA module. We present the
experimental results in Table 4 and the visual results in Figure 11. The purpose of this
experiment is to evaluate the contribution of the ECA module to the performance of the
proposed method.

Table 4. Performance of methods in ablation study on ECA module (Vali Loss is short for validation
loss).

Methods MSE SSIM Vali Loss

ConvGRU 2.63× 10−7 9.98× 10−1 4.98 × 10−1

ConvGRU + ECA 2.12× 10−7 9.98× 10−1 4.98 × 10−1

GraphAT-Net 1.98 × 10−7 9.99 × 10−1 4.98 × 10−1

Figure 11. Visual results of ablation study on ECA module.

Table 4 shows that the ECA module helps ConvGRU improve by about 19.28% on
MSE. This indicates that the ECA module can effectively enhance the feature representation
of the model. Specifically, the ECA module can selectively emphasize informative features
and suppress irrelevant ones, which leads to more accurate predictions. To better illustrate
the effectiveness of the ECA module, we present visual results in Figure 11. As shown
in Figure 11, the details of the ConvGRU+ECA results are more accurate than those of
the ConvGRU results. In particular, the ConvGRU+ECA results have clearer boundaries
and more accurate shapes, which indicates that the ECA module can effectively capture
the spatio-temporal correlations in the input data. In summary, the experimental results
demonstrate that the ECA module can effectively enhance the feature representation of
the model and improve the accuracy of the predictions. Therefore, the ECA module is a
valuable addition to the proposed method and can be used to improve the performance of
other CNN+RNN-based models.
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7. Conclusions

The proposed method utilizes a deep learning model combining CNN, GCN, RNN, the
attention mechanism, and refined loss has demonstrated superior performance compared
to other methods on both the moving MNIST dataset and real-world radar echo data. In the
moving MNIST experiment, GraphAT-NET outperformed other methods with a 59.12%
reduction in MSE and a 16.26% improvement in SSIM. The effectiveness of the proposed
model was further confirmed through visualization results on the moving MNIST dataset.
In the GCAPPI experiment, GraphAT-NET also exhibited an average increase of 65.40% in
MSE and a 10.29% increase in SSIM. Additionally, the visualization results demonstrated
that the proposed method outperformed other methods in terms of prediction accuracy
and distribution detail. To analyze the effectiveness of different modules in GraphAT-NET,
an ablation study was conducted. The study revealed that the GCN module facilitated the
learning of complex feature relationships, resulting in an average 10.09% improvement
in MSE. Furthermore, the ECA module enhanced accuracy, with a 19.28% improvement
in MSE. Based on these results, we believe that the proposed GraphAT-NET method has
the potential to improve the prediction of cumulonimbus cloud distribution. However,
it is important to note that predicting cumulonimbus clouds is just the first step in the
process of rainfall nowcasting. Our future work will focus on establishing connections
between radar echo data and actual rainfall information, which will enable us to generate
end-to-end predictions.
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