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Abstract: This study aimed to assess the performance of 35 global climate models included in NEX-
GDDP-CMIP6, derived from downscaling CMIP6 data to high spatial (25 km) and temporal (daily)
resolutions, in reproducing extreme precipitation events over the Huai River Basin. Eight widely
used extreme precipitation indices were employed to quantitatively describe the models’ capability of
simulation. Results indicate that the majority of models can reasonably capture trends, with UKESM1-
0-LL performing the best among all considered models. All models demonstrate high accuracy in
simulating climatological means, especially for the total precipitation (PRCPTOT), displaying a spatial
correlation coefficient exceeding 0.8 when compared to the observed data. NorESM2-MM and MRI-
ESM2-0 can accurately simulate the frequency and intensity of extreme precipitation, respectively.
In general, UKESM1-0-LL, CESM2, MIROC6, MRI-ESM2-0, CMCC-CM2-SR5, and MPI-ESM-2-LR
exhibit superior simulation capabilities in terms of capturing both the trends and climatology of
extreme precipitation. The aforementioned findings provide guidance for future studies on the
regional impacts of climate change using NEX model data, and therefore hold great importance
in comprehending the regional impacts of, and the adaptability to, climate change, as well as the
development of adaptation strategies.

Keywords: NEX-GDDP; extreme precipitation; assessment; the Huai River Basin

1. Introduction

Global climate change has resulted in an amplification of water vapor effects, leading
to an increase in both the frequency and intensity of extreme precipitation events on
regional and global scales [1,2]. This trend has been observed in most areas with available
observational data [3–5] and is projected to increase by approximately 7% per degree
of global warming, according to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR6) [6]. These changes are expected to have significant
impacts on economic production and people’s livelihoods, causing serious damage to
natural ecosystems [7–9]. Therefore, researching extreme precipitation events has become
crucial in the field of climate change. Focusing on regional extreme precipitation research
can enhance our understanding of the local effects of climate change while providing
scientifically supported strategies for adapting to and mitigating climate change.

Climate scientists rely on global climate models (GCMs) to understand past climate
patterns and predict future changes [10,11]. The International Comparison Project of Cou-
pled Models, now in its sixth phase (CMIP6), marks a significant milestone in climate
research. This phase includes a record number of models, the most well-designed scientific
experiments, and the largest volume of simulated data provided since the Coupled Model In-
tercomparison Project was implemented over 20 years ago [12,13]. The new models integrated
into CMIP6 have improved the simulation capability of extreme precipitation compared to
previous models [14,15]. This has been evaluated in recent research studies [16,17]. However,
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recent research has also identified some limitations in the accuracy of GCMs in simulating
extreme climatic characteristics across China, particularly in areas characterized by complex
and multifaceted climatic factors [18].

The Huai River Basin (hereafter, HRB) in China is a unique region that experiences
the combined effects of ocean and continent aspects [19,20], as well as various weather
systems such as the East Asian Monsoon and the Quasi-Stationary Front of the Yangtze-
Huai River [21–23]. It also has a unique ecosystem at the geographical boundary between
northern and southern China [24]. This north−south transition zone is highly susceptible
to extreme weather events due to its sensitivity to climate change and vulnerability to the
natural environment. Being predominantly an agricultural and densely inhabited area, the
HRB faces more severe losses when floods triggered by extreme precipitation events occur.
Thus, it becomes critical to develop specialized adaptation and mitigation plans that take
into account the specifics of this transition zone. Research on extreme precipitation over
the HRB has indicated an increasing trend of extreme precipitation risk but with significant
differences in spatial patterns [25,26]. Some scientists predict a wetter trend in the inland
areas of the basin in the future [27], while others foresee an increase in the frequency of
extreme precipitation events, primarily near the Huai River’s mainstem [28]. In a separate
study, Jin et al. [29] divide the HRB into five subzones based on hydrological similarities in
their study and demonstrate that the southern portion of the basin will experience more
severe rainfall during different return periods, making it a critical location for flood control
and mitigation. Wang et al. [30], on the other hand, emphasize the need for greater attention
to the northern part of the basin over the next 60 years. Despite promising results from
these studies, significant differences exist in the above simulation results, which may be
attributed to the limitations of the model resolution. To provide more accurate guidance for
preventing and controlling extreme weather disasters, climate data with higher resolution
will be necessary to better capture spatial details and reveal the spatiotemporal distribution
characteristics of extreme precipitation [31].

The National Aeronautics and Space Administration (NASA) has developed a set of
high-resolution (25 km) daily data based on the coupled model within CMIP6, namely
NEX-GDDP-CMIP6 [32], in order to enrich climate change research that requires anal-
ysis at a finer scale. The performance of the previous dataset, NEX-GDDP-CMIP5, in
simulating extreme weather/climate events over China, has been evaluated, with results
demonstrating a high degree of agreement with events observed in historical scenarios [33].
Scholars have also conducted pertinent studies on the current generation of NEX-GDDP
since the release of the NEX-GDDP-CMIP6 dataset. Zhang et al. [34] used the most recent
high-resolution downscaling data to analyze the abrupt shifts between drought and flood
events in China, while Xu et al. [35] used the data to predict concurrent precipitation and
temperature extremes over the Asian monsoon region. Despite its potential to advance
climate science, the latest NEX-GDDP-CMIP6 dataset has been underutilized in Chinese
research. Therefore, given the increasing importance of understanding climate change
impacts at local and regional scales, further research using the NEX-GDDP-CMIP6 dataset
is warranted, especially for the transition zone.

Considering the lack of consensus on the HRB’s extreme precipitation based on coarse-
grid GCMs discussed above, and the underutilization of the state-of-the-art downscaling
dataset—NEX-GDDP-CMIP6—in Chinese research, more research into climate models’
simulating performance in terms of extreme precipitation in transition zones is needed.
Therefore, the main goal of this study is to add to the existing body of research on this
topic. We do this by utilizing eight widely used extreme precipitation indices as assessment
indicators, assessing the overall performance of 35 global climate models derived from
NEX-GDDP-CMIP6 in modeling the spatial distribution of trends and climatological means
of extreme precipitation over the HRB. Assessment by comparing simulation results with
observational data will contribute to a deeper understanding of local climate variability and
improve the accuracy of future climate projections. Because the HRB is a highly climate-
sensitive region where further research on climate modeling and climate change impacts
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is needed, these results can also provide a scientific basis for climate change adaptation
research, climate policy decisions, and the promotion of sustainable development.

2. Material and Methods
2.1. Study Area

The HRB (shown in Figure 1) is located in the eastern monsoon region of China and is
characterized by a warm temperate zone to the north and a northern subtropical zone to
the south. Notably, the 0 ◦C isotherm for January and 800mm isohyetal line closely trace
the Huai River and Qinling Mountains [36], contributing to its typical and representative
climate. The west, southwest, and northeast of the basin are mountainous, whereas the
remaining two-thirds consist of a broad plain, which has allowed a large area of arable
land to be developed in the HRB. In addition, the simultaneous occurrence of rainfall and
high temperatures during the growing season makes the region favorable to agricultural
production. The combination of reliable water resources, suitable temperatures, and fertile
land contributes to the HRB’s role as a vital agricultural hub in China [37,38].
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Figure 1. Relevant information on the study area. (a) Spatial distribution of annual mean precipitation
over China from 1961 to 2020. (b) Overview of the study area. (c) Monthly variations in average
temperature and precipitation over the Huai River Basin from 1961 to 2020. The vector map of
boundaries of China’s ten major river basins used in (a) is sourced from the China Institute of Water
Resource and Hydropower Research.

2.2. Data

The CN05.1 dataset, provided by the China Meteorological Administration, encom-
passes four key meteorological variables: daily mean temperature, maximum temperature,
minimum temperature, and precipitation, and is used to obtain an observational refer-
ence for this study. It offers data with a spatial resolution of 0.25 degrees and covers
extensive periods, often spanning several decades, making it valuable for more refined
spatial analysis and long-term climate trend assessments. To develop this high-quality
reanalysis dataset with a long time series and high resolution, the researchers utilized more
than 2400 ground-based observatories across China and adopted the “Thin-Plate Splines”
method and the “Angular-Distance-Weighting” technique [39]. First, the climatic field is
interpolated using the ANUSPLIN software, (Version 4.4, Australian National University,
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Canberra, Australia), using longitude and latitude as independent variables and altitude as
a covariate. The “Angular-Distance-Weighting” method is then employed to interpolate
the anomaly field, in which the value at each grid point is determined by weighing the
angle and distance between those points and the station value. More details can be found at
https://ccrc.iap.ac.cn/resource/detail?id=228, accessed on 25 May 2022. Notably, CN05.1
data have undergone extensive validation in various river basins and are widely regarded
as a reliable source for research including climate change detection, attribution studies, and
model evaluation [15,40,41].

NEX-GDDP-CMIP6, the latest version of NASA Earth Exchange Global Daily Down-
scaled Projections, is available at https://nex-gddp-cmip6.s3.us-west-2.amazonaws.com/
index.html#NEX-GDDP-CMIP6/, accessed on 1 October 2022. It provides an extensive
collection of downscaled climate scenarios on a global scale and covers a historical period
from 1995 to 2014 and future projections from 2015 to 2100. The downscaled projections are
produced using the Bias Correction Spatial Disaggregation (BCSD) technique [32,42,43], to
address the need for more refined resolutions in climate research and effectively bridge
the gap between coarse-scale outputs and the demand for finer grained data. There are
two stages in particular to ensure accurate results. Firstly, deviation information obtained
by comparing model results with observations from the same period is utilized to adjust
and refine future climate predictions. Secondly, the integration of observational data with
more detailed spatial features allows for the interpolation of outcomes at a resolution
of 0.25◦. By adopting this approach, NEX-GDDP-CMIP6 achieves higher precision and
comprehensiveness in climate projections, capturing spatiotemporal patterns of climate
variables more accurately.

The shared spatial resolution of CN05.1 and NEX-GDDP-CMIP6 offers a convenient
opportunity to investigate climate patterns. Notably, in this study, our primary focus is
on the evaluation period spanning from 1995 to 2014, which aligns with the historical
reference period specified in the IPCC AR6 report. For the 1995–2014 daily precipitation
obtained from NASA Earth Exchange Global Daily Downscaled Projections, we will further
tailor the dataset to the study area’s specific geographical coordinates, retaining only the
data that fell within the confines of the HRB. Quality control of the read data will also
be performed and any outliers or missing values will be filled in using interpolation. At
the same time, given the temporal disparities among various models, a crucial step in
this data harmonization process involved resampling. This will standardize the temporal
dimension to either 365 days for non-leap years or 366 days for leap years. In order to
facilitate the comparison of differences between model and observation data over the
HRB, the observation data (502 grids) are interpolated to be consistent with the model
output (511 grids). Finally, we obtain the 1995–2014 daily precipitation data of the HRB,
encompassing 511 grid points. By comparing the NEX-GDDP-CMIP6 models (as presented
in Table 1) against the daily precipitation data from CN05.1, we aim to assess their ability to
accurately represent extreme precipitation characteristics in representative climatic regions
during this crucial evaluation period.

Table 1. Information on 35 global climate models from NEX-GDDP-CMIP6.

Model Name Intuition/Country
Horizontal Resolution (lon × lat)

Grid Degree

ACCESS-CM2 [44] CSIRO-ARCCSS/Australia 144 × 192 1.875◦ × 1.25◦

ACCESS-ESM1-5 [45] CSIRO/Australia 192 × 145 1.875◦ × 1.25◦

BCC-CSM2-MR [46] BCC/China 160 × 320 1.125◦ × 1.125◦

CanESM5 [47] CCCma/Canada 64 × 128 2.812◦ × 2.77◦

CESM2 [48] NCAR/USA 288 × 192 1.25◦ × 0.94◦

CESM2-WACCM [49] NCAR/USA 288 × 192 1.25◦ × 0.94◦

CMCC-CM2-SR5 [50] CMCC/Italy 288 × 192 1.25◦ × 0.9375◦

CMCC-ESM2 [51] CMCC/Italy 288 × 192 1.25◦ × 0.94◦

https://ccrc.iap.ac.cn/resource/detail?id=228
https://nex-gddp-cmip6.s3.us-west-2.amazonaws.com/index.html#NEX-GDDP-CMIP6/
https://nex-gddp-cmip6.s3.us-west-2.amazonaws.com/index.html#NEX-GDDP-CMIP6/
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Table 1. Cont.

Model Name Intuition/Country
Horizontal Resolution (lon × lat)

Grid Degree

CNRM-CM6-1 [52] CNRM-CERFACS/France 64 × 128 1.406◦ × 1.406◦

CNRM-ESM2-1 [53] CNRM-CERFACS/France 128 × 256 1.406◦ × 1.406◦

EC-Earth3 [54] EC-Earth-Consortium/EC-Earth consortium 256 × 512 0.703◦ × 0.703◦

EC-Earth3-Veg-LR [54] EC-Earth-Consortium/EC-Earth consortium 256 × 512 1.125◦ × 1.125◦

FGOALS-g3 [55] CAS/China 180 × 80 2◦ × 2.025◦

GFDL-CM4 [56] NOAA-GFDL/USA 288 × 180 1.25◦ × 1◦

GFDL-CM4_gr2 [56] NOAA-GFDL/USA 90 × 144 4◦ × 1.25◦

GFDL-ESM4 [57] NOAA-GFDL/USA 288 × 180 1.25◦ × 1◦

GISS-E2-1-G [58] NASA-GISS/USA 144 × 90 2.5◦ × 2◦

HadGEM3-GC31-LL [59] MOHC, NERC/UK 144 × 192 1.875◦ × 1.25◦

HadGEM3-GC31-MM [60] MOHC/UK 324 × 432 ~0.8◦ × 0.6◦

IITM-ESM [61] CCCR-IITM/India 192 × 94 1.875◦ × 1.915◦

INM-CM4-8 [62] INM/Russia 180 × 120 2◦ × 1.5◦

INM-CM5-0 [63] INM/Russia 180 × 120 2◦ × 1.5◦

IPSL-CM6A-LR [64] IPSL/France 144 × 143 2.5◦ × 1.259◦

KACE-1-0-G [65] NIMS-KMA/Republic of Korea 144 × 192 1.875◦ × 1.25◦

KIOST-ESM [65] KIOST/Republic of Korea 96 × 192 0.938◦ × 0.938◦

MIROC6 [66] MIROC/Japan 256 × 128 1.403◦ × 1.403◦

MIROC-ES2L [67] MIROC/Japan 256 × 128 1.403◦ × 1.403◦

MPI-ESM1-2-HR [68] MPI-M, DWD, DKRZ/Germany 384 × 192 0.938◦ × 0.939◦

MPI-ESM1-2-LR [69] MPI-M, AWI, DKRZ, DWD/Germany 192 × 96 1.9◦ × 1.9◦

MRI-ESM2-0 [70] MRI/Japan 320 × 160 1.125◦ × 1.125◦

NESM3 [71] NUIST/China 192 × 96 1.88◦ × 1.88◦

NorESM2-LM [72] NCC/Norway 144 × 96 2.5◦ × 1.89◦

NorESM2-MM [72] NCC/Norway 288 × 192 1.25◦ × 0.94◦

TaiESM1 [73] AS-RCEC/Taiwan, China 288 × 192 1.25◦ × 0.94◦

UKESM1-0-LL [74] MOHC/UK 144 × 192 1.875◦ × 1.25◦

2.3. Methodology

The assessment of model capabilities includes two key aspects: the simulation of
temporal trends and the model’s ability to replicate the climatology. Here, climatology refers
to the long-term average of the meteorological variables during the specified period. We first
evaluate the spatial distribution of trends and horizontal pattern of climatological means of
8 extreme precipitation indices over the HRB, which provides a systematic understanding
of the precipitation over this transition zone. Then, we evaluate the 35 climate models’
performance in terms of the tendency and climatology of the historical simulations, using
the Taylor diagram and Taylor Skill score. Lastly, to conduct an evaluation of each model’s
comprehensive performance in capturing both climatological patterns and trends, we
introduce the “Mr” as a precision measure. As a result of this evaluation, we identified
six models that demonstrated superior performance, and the weighted average of these
preferred models is processed to further evaluate the multi-model ensemble. The specific
methods are described as follows.

2.3.1. Extreme Precipitation Indices

The Expert Team on Climate Change Detection and Indices (ETCCDI), which was
jointly established by the World Meteorological Organization’s (WMO) Commission for
Climatology (CCI), the World Climate Research Program (WCRP), and the Joint WMO/IOC
Technical Commission for Oceanography and Marine Meteorology (JCOMM), has devel-
oped a comprehensive set of 27 extreme climate indices that are globally representative and
applicable [75]. As shown in Table 2, the assessment of eight extreme precipitation indices
developed from the ETCCDI framework is the main emphasis of this study.
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Table 2. The extreme precipitation index information used in this study.

Index Descriptive Name Definition Units

Indexes for
frequency

CDD Consecutive dry days Maximum number of consecutive dry days d
CWD Consecutive wet days Maximum number of consecutive wet days d

R10 mm Number of heavy precipitation
days Annual count of days when RR ≥ 10 mm d

Indexes for
intensity

PRCPTOT Wet day precipitation Annual total precipitation from wet days mm
SDII Simple daily intensity index Average precipitation on wet days mm d−1

Rx1day Maximum 1-day precipitation Monthly maximum 1-day precipitation mm

Rx5day Maximum consecutive 5-day
precipitation

Monthly maximum consecutive 5-day
precipitation mm

R95p Very wet day precipitation Annual total precipitation when RR > 95th
percentile of 1961–2020 daily mm

2.3.2. Methods for Trend Analysis and Significance Testing

The trend analysis in this study employed the Theil−Sen estimation approach [76].
This approach, known for its non-parametric nature, is less sensitive to measurement errors
and outliers and has been widely adopted for trend calculations. Concerning the signifi-
cance of linear trends in extreme precipitation indices over time, the Mann−Kendall [77]
non-parametric test is suitable for determining whether there is a significant monotonic
increasing or decreasing trend. For time series variables x1, x2, . . ., xn, where n is the length
of the time series, the Mann−Kendell method defines the statistic S:

S =∑n−1
i=1 ∑n

j=i+1 sign
(
xj − xi

)
(1)

In the equation, “sign” is a sign function that returns −1, 0, or 1 when “xj − xi” is less
than, equal to, or greater than zero, respectively. Assuming that S is normally distributed,
when n > 10, the normal distribution statistic is:

Z =



(S − 1)√
n(n − 1)(2n + 5)/18

S > 0

0 S = 0
(S + 1)√

n(n − 1)(2n + 5)/18
S < 0

(2)

In our analysis, |Z| represents the absolute value Z. If |Z| > Z1−α/2, the null
hypothesis will be rejected at the confidence level α; that is, a positive or negative trend is
present in the time series data. For a significance level of 5%, Z1−α/2 = Z1−0.025 = 1.96,
which means when |Z| less than 1.96, the trend is invalid. In this work, the commonly
used 5% significance level is used for p-values. If the p-value of the test is less than 0.05,
then there is statistically significant evidence to reject the null hypothesis, assuming a trend
is present in the time series data. All data were tested at a 95% confidence interval.

2.3.3. Taylor Diagram

The spatial consistency between observation and outcomes was quantitatively eval-
uated using the Taylor diagram [78]. The Taylor diagram is widely acknowledged as
a useful tool for assessing model performance [27,28]. It provides a visual represen-
tation that effectively captures the performance of various models. By employing the
Taylor diagram, researchers can compare and analyze the agreement and disparities be-
tween model findings and actual data using three key metrics: root mean square error
(RMSE, Equation (3)), correlation coefficient (R, Equation (4)), and standard deviation (SD,
Equations (5) and (6)). The RMSE measures the disparity between the observed truth and
the simulated values, while R assesses the strength of the association between the simulated
and observed data. Additionally, SD sheds light on how well the model replicates the
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magnitude of the observed variability. The horizontal and vertical coordinates are the
standard deviation (SD), and the sector coordinates are the spatial similarity coefficients (R).
Model performance is considered superior when the spatial correlation coefficient is higher,
the ratio of model standard deviation (SDmodel) to observed standard deviation (SDobs) is
close to 1, and the RMSE value is lower (i.e., the closer the point represented by each model
is to the center of the observed circle).

RMSE =

{
1
n ∑n

i=1[(xi − x)− (yi − y)]2
} 1

2
(3)

R =
1

SDmodelSDobs

[
1
n ∑n

i=1(x i − x)(yi − y)
]

(4)

SDmodel =

{
1
n ∑n

i=1(xi − x)2
} 1

2
(5)

SDobs =

{
1
n ∑n

i=1(yi − y)2
} 1

2
(6)

x =
1
n ∑n

i=1 xi (7)

y =
1
n ∑n

i=1 yi (8)

In the equations, “xI” represents the modeled simulation results of the ith grid, “ x”
represents the average of the modeled simulation results of all grids, “yI” represents the
observed values of the ith grid, and “ y” represents the average of the observed results of
all grids. We mainly evaluate the trend and climatological performance using the spatial
distribution, so “n” represents the total number of grid points, i.e., 511.

2.3.4. TS

In the Taylor diagram, it is difficult to tell whether the simulation performance of the
model has improved if the R and the ratio of the SDmodel to the SDobs are both reduced [79].
In this work, the TS (Taylor Skill) [78] is introduced to quantitatively evaluate the ability
of the model to simulate extreme precipitation. The aforementioned statistical measures
were utilized to calculate the TS scores for each model’s extreme precipitation indices.
The 35 models were then ranked based on their TS scores across eight selected extreme
precipitation indicators.

TS =
4 × (1 + R)2(

SDmodel
SDobs

+ SDobs
SDmodel

)2
× (1 + Ro)

2
(9)

In Equation (9), “R” represents the correlation coefficient between the modeled simula-
tion results and the observed true values, while “Ro” represents the maximum correlation
coefficient between the modeled simulation results and the observations.

2.3.5. Mr (Modified rank) Scores

To provide a comprehensive evaluation that considers 8 indices in terms of the trend
and the climatology, the study also used the Mr (Modified rank) [80] as a composite ranking
measure. Compared with the original ranking method proposed by Schuenemann and
Cassano, which merely took correlation into account, the modified ranking provides for a
more extensive analysis of the index in a variety of ways. This method has been extensively
employed to comprehensively evaluate the simulation performance of models [79], and it



Atmosphere 2023, 14, 1497 8 of 22

has made it possible for us to more accurately judge their simulation abilities. A higher Mr
value indicates superior overall model performance.

Mr = 1− 1
a × b ∑b

i=1 ri (10)

In Equation (10), “a” represents the number of models included in the assessment of
NEX-GDDP-CMIP6, while “b” denotes the number of evaluation indices. “ri” indicates the
ranking based on the TS value for each evaluation index. For instance, in evaluating the
replication performance of climatology of extreme precipitation frequency for ACCESS-
ESM1-5, where there are three evaluation indices (CDD, CWD, R10mm), we set b = 3.
By considering the TS value, we find that its capability to simulate the CDD, CWD, and
R10mm are ranked 10th, 9th, and 11th, respectively. So, the ∑b

i=1 ri = 10 + 9 + 11 = 20.
When we analyze the comprehensive performance of ACCESS-ESM1-5, we set b = 4 (the
performance of the frequency index for climatology and trend, and the performance of the
intensity index for climatology and trend).

By doing this, the study achieved an integrated evaluation of the models’ performance
in capturing extreme precipitation events. The TS scores provided insights into the models’
skill in reproducing specific precipitation indices, while the Mr measure offered a con-
solidated ranking considering various indices. The comprehensive evaluation presented
through the TS values and Mr rankings allows for a more informed understanding of the
simulating capabilities.

2.3.6. Weighted Average Formula

After establishing the simulation ability ranking, we assign weights to the preferred
models and calculate their weighted average by grid using Equation (11). This approach
aims to enhance the fidelity of the representation of real-world precipitation patterns.

VMME =
Mr1×V1
∑n

i=1 Mri
+

Mr2×V2
∑n

i=1 Mri
+ · · · · · ·+ Mri×Vi

∑n
i=1 Mri

(11)

In Equation (11), “VMME” represents the ensemble means of selected models, “Mri”
means the Mr scores of the models, while “Vi” represents the extreme precipitation indices
values of the corresponding model. “i” is determined by the number of the preferred
models. Note, we calculate “VMME” by grid.

3. Results
3.1. Characteristics of Extreme Precipitation Indices

The spatial distribution of climatological means of different indices from 1961 to 2020
is shown in Figure 2. Except for SDII and CDD, all other indices show a comparable
spatial pattern for the climatological means. Generally, higher values are observed in the
southwest region of the basin, gradually decreasing towards the northern portion. Notably,
CDD demonstrates a more pronounced distribution, with higher values concentrated north
of 34 ◦N in the basin and having a clear declining tendency from northwest to southeast.
SDII exhibits mild spatial variability, with the lowest values (7.320 mm d−1) in the western
mountainous region and a regional center of high value (11.110 mm d−1) in the middle and
lower portions of the basin.

Subtle variations can be observed in the spatial patterns of several extreme precip-
itation indices, as shown in Figure 3. Approximately 86% of the study area exhibits an
upward trend in PRCPTOT, with significant increases centered in the southwest of the
basin at a 95% confidence level, while no significant decreases are observed. SDII shows
growth in the central area with declining tendencies in the peripheral regions, particularly
in the northern section of the basin. The distribution patterns of SDII and CDD are similar.
Moreover, CWD is becoming more prominent in the eastern coastal regions and western
highland areas, while declining in other locations.
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Figure 2. The spatial distribution of the climatological average of various extreme precipitation
indices over the HRB from 1961 to 2020. The indices are (a) CDD, (b) CWD, (c) R10mm, (d) PRCPTOT,
(e) SDII, (f) Rx1day, (g) Rx5day, and (h) R95p.
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Figure 3. The spatial distribution of trends over the HRB from 1961 to 2020 for CDD (a), CWD (b),
R10mm (c), PRCPTOT (d), SDII (e), Rx1day (f), Rx5day (g), R95p (h). Cross-hatch regions represent
areas with statistically significant trends at a 95% confidence level.

The analysis of the eight aforementioned extreme precipitation indices reveals that
the spatiotemporal patterns, particularly for indices such as SDII, Rx1day, and Rx5day that
are linked to intensity, are strongly influenced by topography. Therefore, taking models’
simulation capabilities of spatial pattern into consideration is essential when conducting
the model assessment.
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3.2. Assessment of Model Performance for Extreme Precipitation Indices

The results shown in Figures 2 and 3 demonstrate a pronounced spatial non-uniformity
in extreme precipitation, which is consistent with previous studies [81,82]. The assessment
concentrates on the spatial distribution of climatological means and trends for each index
during the historical period from 1995 to 2014 to gauge the model’s performance. Here, the
average of meteorological variables recorded between 1995 and 2014 is referred to as the
climatological means.

The Taylor diagram shown in Figure 4 offers an analysis of spatial distribution of
trends in extreme precipitation indices for the years 1995 to 2014. It reveals that a significant
number of models exhibit weak correlations when it comes to specific extreme precipitation
indices. Among these, the CMCC-CM2-SR5 model exhibits the strongest correlation in
the trend of total precipitation (PRCPTOT), albeit still being below 0.590. The ratio of the
model’s standard deviation (SDmodel) to the observed standard deviation (SDobs) ranges
from 0.230 to 3.790. The normalized RSME, defined as the ratio of the RSME to the SDobs,
is concentrated between 0.800 and 2.500. These results indicate that the models have a
limited ability to capture the spatial patterns of trend changes, which requires further
improvements in their performance. It is worth noting that the resolution of the models
significantly affects their performance, and downscaled climate models are still insufficient
in the simulation of extreme precipitation indices in the humid regions of eastern China.
Therefore, apart from resolution, other factors such as the dynamic framework of the
models require further investigation to better replicate the complex spatial characteristics
of extreme precipitation. Simulating longer-term climate sequences often results in greater
modeling performance. The length of the simulated period is another significant component
that impacts the modeling capacity [31,83]. This finding provides insight into one possible
explanation for the weak correlation between the observed data and the models, in addition
to the inherent limitations in the accuracy of the models.
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Figure 4. Taylor diagram for the 35 models of NEX-GDDP-CMIP6 simulating trends in spatial change
in extreme precipitation indices over the HRB from 1995 to 2014. (a) CDD, (b) CWD, (c) R10mm,
(d) PRCPTOT, (e) SDII, (f) Rx1day, (g) Rx5day, (h) R95p.
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Based on the analysis depicted in Figure 4, the TS values were calculated for the
various indices across the 35 models, and then a unique ranking was established as shown
in Figure 5. The findings clearly indicate significant disparities in the modeling performance
among the different models. For example, KACE-1-0-G exhibits the weakest performance in
simulating the CDD index, while closely trailing the top-performing models, MIROC-ES2L
and CanESM5, for the Rx1day index. In terms of overall performance, UKESM1-0-LL,
CMCC-CM2-SR5, and GFDL-CM4_gr2 perform better for frequency indices and MPI-ESM1-
2-HR and UKESM1-0-LL exhibit superior performance for intensity indices. By leveraging
the ensemble mean of better-performing models, researchers improve the analysis of
extreme precipitation trends, leading to more reliable and integrated results in assessing
the regional impacts of climate change.
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Figure 5. Ranking of the simulation capability of 35 models of NEX-GDDP-CMIP6 on the trend of
extreme precipitation over the HRB from 1995 to 2014. The numbers in the figure represent the ranking
of each climate model in terms of simulation capabilities for different extreme precipitation indices.

The distribution of climatological means of each model exhibits a high level of agree-
ment with observed precipitation, indicating successful simulation (Figures 6 and 7). For
the PRCPTOT, which represents the integrated changes in precipitation, models show the
highest R values exceeding 0.850. The ratio of RMSE to SDobs generally remains below
0.500, and the ratio of SD spans from 0.800 to 1.250, closely approximating the spatial
patterns of observed precipitation. The Taylor plots show the distribution of climate models
is organized, indicating a high degree of agreement among them. They perform relatively
better in simulating the Rx5day and R95p indices, while improvements are still needed for
accurate simulation of SDII and CWD. All models consistently underestimate Rx1day and
Rx5day, while overestimating CWD and R10mm. These biases exhibit a strong correlation
with topography, where increased topographical complexity leads to larger discrepan-
cies [84,85]. More specifically, smaller biases are observed in the central plain regions of the
basin, while the western mountainous areas and eastern coastal regions of the basin show
more significant disparities. When using datasets in areas with complicated topography, it
is necessary to employ appropriate bias correction techniques. Furthermore, it is important
to acknowledge that the model’s ability to simulate extreme precipitation indices is subject
to significant uncertainty, which can be influenced by various factors such as structural
frameworks, external forcing, and other considerations.
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Figure 6. Taylor diagram for the 35 models of NEX-GDDP-CMIP6 simulating climatology in extreme
precipitation indices over the HRB from 1995 to 2014. (a) CDD, (b) CWD, (c) R10mm, (d) PRCPTOT,
(e) SDII, (f) Rx1day, (g) Rx5day, (h) R95p.
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Figure 7. Ranking of the simulation capability of 35 models of NEX-GDDP-CMIP6 on the climatolog-
ical mean states of extreme precipitation over the HRB from 1995 to 2014. The numbers in the figure
represent the ranking of each climate model in terms of simulation capabilities for different extreme
precipitation indices.

3.3. Assessment of Preferred Models

Since there is significant regional variability in extreme precipitation, reliable data are
crucial for predicting regional dangers that are involved. A large number of researchers
mainly use data from CMIP models to forecast extreme precipitation events, which means
the success of related risk evaluation efforts is directly influenced by the models’ ability
to simulate the observational data. So, selecting appropriate simulation outcomes from a
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wide array of models is critical. To further pinpoint models with the best simulation ability,
the spatial distribution of trends and the horizontal pattern of climatological means were
assessed in terms of how they reproduce real-world conditions accurately (Figure 8), using
an extensive ranking method.
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Figure 8. Ranking of the simulation capability of 35 models of NEX-GDDP-CMIP6 on the climate
and trend of extreme precipitation based on frequency index (CDD, CWD, R10mm) and intensity
index (PRCPTOT, SDII, Rx1day, Rx5day, R95p) over the HRB from 1995 to 2014. The numbers in the
figure represent the ranking of each climate model in terms of simulation capabilities for different
extreme precipitation indices.

The analysis of extreme precipitation indices in many studies is mainly attributed
to frequency, intensity, area, and duration. In this work, the eight extreme precipitation
indices are separated into two groups, according to their definitions: frequency index (CDD,
CWD, R10mm) and intensity index (PRCPTOT, SDII, Rx1day, Rx5day, R95p). The ability of
35 models to replicate extreme precipitation is thoroughly examined in terms of climate,
tendency, and the combination of the two, using the Mr scores. Figure 8 demonstrates that
most models that underperform in simulating intensity tend to perform better in simulating
frequency. Meanwhile, models weaker in capturing trends often exhibit better simula-
tion skills in representing climatological means. Contrary to the assessment of extreme
temperature, this pattern introduces a higher amount of uncertainty [86,87]. For instance,
CMCC-CM2-SR5 is ranked 26th in terms of simulating frequency indices in time changes,
but demonstrates competitive performance in simulating the climatological means of inten-
sity indices, coming in second place to MRI-ESM2-0. Certain models demonstrated strong
simulation capability for both extreme frequency and intensity indices, encompassing both
climatological means and tendency. UKESM1-0-LL performs the best among all considered
models, also showing high simulation abilities across other evaluation measures [88]. This
finding indicates that UKESM1-0-LL has the best ability to simulate extreme precipitation
events over the HRB. In general, UKESM1-0-LL, CESM2, MIROC6, MRI-ESM2-0, CMCC-
CM2-SR5, and MPI-ESM-2-LR exhibit superior simulation capabilities, consistently ranking
in the top five models. Among these, MIROC6 and MRI-ESM2-0 are both ranked third.

Researchers commonly use multi-model ensemble averaging to reduce uncertainties
in extreme weather/climate events projection. However, a single model with substantial
deviations may introduce more errors and uncertainties. Therefore, we selected the top five
models with excellent simulation capabilities, i.e., the Mr scores exceed 0.680, as our final
preferred models, referring to the Reference [80]. We derived a weighted average of the six
favored models based on the Mr scores. Mr scores for UKESM1-0-LL, CESM2, MIROC6,
MRI-ESM2-0, CMCC-CM2-SR5, and MPI-ESM-2-LR are 0.793, 0.743, 0.736, 0.736, 0.721,
and 0.700, respectively. As a result, their weights are 0.179, 0.168, 0.166, 0.163, and 0.157,
respectively, according to Equation (11).

The preferred models’ ensemble has a slight bias of less than 10% relative to the annual
precipitation perspective (Figure 9), successfully reproducing the spatial distribution pattern
of a decreasing trend from southeast to northwest over the HRB. Although the ensemble tends
to underestimate indices such as Rx1day, R95p, and SDII when taking into account the clima-
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tological means and trend fluctuations, as illustrated in Figures 10 and 11, the discrepancies
in magnitude are typically negligible. Additionally, the ensemble appropriately depicts the
steady trends of the R10mm, Rx1day, and Rx5day indices across the entire basin, as well as
the distribution characteristics of indices such as CDD, PRCPTOT, and Rx5day. As a result,
it can be said that the ensemble of the recommended models is an effective instrument for
faithfully modeling extreme precipitation over the HRB.

Atmosphere 2023, 14, x FOR PEER REVIEW 15 of 23 
 

 

 

Figure 9. Comparison of the spatial distribution of average annual precipitation (a,b) between the 

observed (a) and preferred (b) models’ ensemble and spatial pattern of their bias (c) over the HRB 

from 1995 to 2014. 

 

Figure 10. Comparison of the spatial distribution of climatological means between the observed 

(columns 1 and 3) and preferred models’ ensemble (columns 2 and 4) for CDD (a), CWD (b), R10mm 

(c), PRCPTOT (d), SDII (e), Rx1day (f), Rx5day (g), R95p (h). 

Figure 9. Comparison of the spatial distribution of average annual precipitation (a,b) between the
observed (a) and preferred (b) models’ ensemble and spatial pattern of their bias (c) over the HRB
from 1995 to 2014.
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Figure 10. Comparison of the spatial distribution of climatological means between the observed
(columns 1 and 3) and preferred models’ ensemble (columns 2 and 4) for CDD (a), CWD (b), R10mm
(c), PRCPTOT (d), SDII (e), Rx1day (f), Rx5day (g), R95p (h).
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Figure 11. Comparison of the spatial distribution of trends between the observed (columns 1 and 3)
and preferred models’ ensemble (columns 2 and 4) for CDD (a), CWD (b), R10mm (c), PRCPTOT (d),
SDII (e), Rx1day (f), Rx5day (g), R95p (h). Cross-hatch regions represent areas with statistically
significant trends at a 95% confidence level.

According to the Taylor diagram (Figures 12 and 13), the ensemble greatly improves
the negative correlation that individual models showed across many indices and exhibits
greater precipitation-catching abilities. The ensemble shows enhanced comprehensive
modeling skills for frequency indices such as CDD, CWD, and R10mm with excellent
spatial correlation coefficients. Furthermore, in comparison to the observed values, R10mm
and Rx5day both exhibit significant spatial correlation coefficients that exceed 0.900. With
an average climatological correlation coefficient for the eight indices of 0.800, the ensemble
of preferred models performs best when compared to individual models and the ensemble
mean of all models.
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Figure 12. Taylor diagram for the preferred models’ simulation of climatological means in extreme
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Consequently, using the ensemble mean of the selected models is a more reliable and
justifiable strategy in the scientific study of the estimation of future extreme precipitation-
related disaster risks over the HRB.

4. Discussion

The inherent, non-uniform characteristics of extreme precipitation have caused strong
biases between models and observational data. Furthermore, the HRB is located in the East
Asian Monsoon Zone of China, where precipitation caused by the East Asian Monsoon
during summer plays a significant role in driving regional extreme precipitation [22]. That
is, the unique location and climate mechanism of the HRB further enlarge the uneven
features of extreme precipitation. Moreover, the eastern region has experienced significant
economic development, resulting in increased human activities that have intensified the
impact on the environment surrounding meteorological observation stations. This has
led to the observed values deviating from the actual, true values. The primary basis
for modulating the model outputs is the observed data, which, to some extent, adds to
the modeling discrepancies [31]. It is worth noting that the biases are relatively small in
absolute magnitude, indicating that it is reasonable to see variations in the model’s capacity
to replicate the precipitation’s spatiotemporal trends.

Previous research has also demonstrated that the CMIP6 data, which provide higher
resolution and higher fidelity, are a trustworthy source for climate studies. Compared to
CMIP5, the data show significant improvements in simulating extreme precipitation in
arid and semi-arid regions, but with less significant improvements in the humid parts
of eastern China [87]. Inaccuracies can also be seen in the data of NEX-GDDP-CMIP6, a
downscaled version of CMIP6, in capturing the eastern region’s precipitation characteristics.
There is a greater need for models to meet stricter performance requirements due to the
complex, interrelated processes that affect the climatic patterns in the eastern monsoon
zone. Therefore, additional research is required to explore the model’s physical processes,
dynamic frameworks, and other pertinent factors aside from resolution concerns in order
to better comprehend its potential in simulation.

It is important to recognize the uncertainties and restrictions related to this study.
The choice and combination of indicators can have an impact on the results of the assess-
ment. There are inherent limitations in using eight frequently used extreme precipitation
indices to assess the capabilities of simulating extreme precipitation frequency and intensity.
Furthermore, China’s vast geographical expanse gives rise to potential disparities in the
simulation performance of a single climate model across different topographical regions.
UKESM1-0-LL is the model that performs the best overall in our thorough evaluation of the
whole HRB, and MIROC6 was the model that performed the best in the study conducted
by Li et al. [89], which considered the integrity of administrative units to divide the HRB.
One potential explanation for these discrepancies lies in the inherent differences in physical
parameters, system configurations, and other model-specific attributes among the various
climate models. These distinctions could account for variations in their capacity to capture
precipitation patterns across diverse topographic regions. Consequently, a more in-depth
analysis and investigation into the sources of errors among these models is imperative.
Additionally, there are may still some outliers in the outputs due to the model’s physical
parameter settings and potential biases inherited from the driving GCMs. However, the
number of outliers is minimal in comparison to the whole data sample and is ignored
throughout processing. These ignored outliers may, to some extent, lead to inaccuracies in
the climate model performance, which will influence model selection and potentially lead
to significant errors in the preferred multi-model means. Therefore, it is crucial to identify
such outliers and address them scientifically [90]. In future work, it may be worthwhile to
delve into this aspect by, for instance, performing sensitivity analysis of outliers, determining
whether outliers have a significant impact on model assessments, or considering the use of the
entire ensemble climate sensitivity range to account for uncertainties in future climates. The
model ensemble employed a straightforward weighted average method based on Mr scores,



Atmosphere 2023, 14, 1497 18 of 22

and future research could explore more sophisticated weighted ensemble methods that take
into account more variables. It would also be worthwhile to conduct further research into the
application of various evaluation techniques to reduce model uncertainty.

5. Conclusions

This study evaluates 35 NEX-GDDP climate models’ performance in simulating ex-
treme precipitation events in the HRB using eight specific indicators. The results can be
concluded as follows:

(1) The underlying topography and the spatial dynamics of extreme precipitation indices
over the HRB are well related. Both frequency and intensity indices exhibit noticeable
variations in regions with significant changes in the topography, which emphasizes
the need for climate models to accurately replicate the complex spatial features linked
to these indices.

(2) The models’ capacity to replicate the trends of extreme precipitation requires further
development. With a positive correlation with the observed field in 87% of the extreme
precipitation indices, UKESM1-0-LL outperforms the other considered models, but
still with a relatively weak connection. Since different models exhibit large differences
in their capacity to represent both the trends and climatology of various indices, a great
deal of uncertainty is introduced into the simulation of extreme precipitation indices.
In comparison to their trend simulations, models perform better when modeling
the climatological means, and they are better at simulating frequency indices than
intensity indices. NorESM2-MM and MRI-ESM2-0, in particular, are excellent at
simulating climatology. UKESM1-0-LL, CMCC-CM2-SR5, and MPI-ESM1-2-HR have
relatively superior performance in terms of changing trends.

(3) Based on their comparatively superior simulation abilities, the preferred models,
UKESM1-0-LL, CESM2, MIROC6, MRI-ESM2-0, CMCC-CM2-SR5, and MPIESMI-2-
LR, were ultimately chosen. Only a few of these models’ ensembles deviate from the
observed data, primarily in the western mountains. Additionally, the contribution rate
of the deviation varies very little between the eastern, central, and western regions.
The models’ performances for frequency indices show strong agreement with the
spatial pattern of the observed climate, and the negative correlations in the temporal
patterns of intensity indices are significantly mitigated. To put it another way, the
ensemble of selected models shows some degree of applicability.

In conclusion, the NEX-GDDP-CMIP6 dataset exhibits some degree of reliability over
the HRB. The high-resolution downscaled datasets are expected to be used widely as
research into climate change advances and demands for risk and catastrophe mitigation
rise. Our findings establish a scientific foundation for decision making concerning climate
change mitigation and adaptation, and serve as a basis for model selection in estimating
risks associated with extreme precipitation occurrences. Furthermore, the thorough eval-
uation of the simulation capabilities of the NEX-GDDP-CMIP6 climate models over the
HRB not only aids in better understanding and utilization of these climate models, but also
provides theoretical support for their advancement. It also offers theories and methods for
studying extreme precipitation in various geographic areas, which is crucial in areas with
complicated climatic causes or transitional climate zones.
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