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Abstract: The ground validation of satellite-based precipitation products (SPPs) is very important
for their hydroclimatic application. This study evaluated the performance assessment of four soil
moisture-based SPPs (SM2Rain, SM2Rain- ASCAT, SM2Rain-CCI, and GPM-SM2Rain). All data
of SPPs were compared with 64 weather stations in Pakistan from January 2005 to December 2020.
All SPPs estimations were evaluated on daily, monthly, seasonal, and yearly scales, over the whole
spatial domain, and at point-to-pixel scale. Widely used evaluation indices (root mean square error
(RMSE), correlation coefficient (CC), bias, and relative bias (rBias)) along with categorical indices
(false alarm ratio (FAR), probability of detection (POD), success ratio (SR), and critical success index
(CSI) were evaluated for performance analysis. The results of our study signposted that: (1) On a
monthly scale, all SPPs estimations were in better agreement with gauge estimations as compared to
daily scales. Moreover, SM2Rain and GPM-SM2Rain products accurately traced the spatio-temporal
variability with CC >0.7 and rBIAS within the acceptable range (±10) of the whole country. (2) On a
seasonal scale (spring, summer, winter, and autumn), GPM-SM2Rain performed more satisfactorily
as compared to all other SPPs. (3) All SPPs performed better at capturing light precipitation events,
as indicated by the Probability Density Function (PDF); however, in the summer season, all SPPs
displayed considerable over/underestimates with respect to PDF (%). Moreover, GPM-SM2RAIN
beat all other SPPs in terms of probability of detection. Consequently, we suggest the daily and
monthly use of GPM-SM2Rain and SM2Rain for hydro climate applications in a semi-arid climate
zone (Pakistan).

Keywords: satellite precipitation; soil moisture; SM2Rain; GPM-SM2RAIN; ground validation;
Probability Density Function (PDF); Pakistan

1. Introduction

To keep the atmosphere in equilibrium, precipitation plays a crucial role. It is a
fundamental part of the hydrological cycle on earth [1], which transports water from the
atmosphere to the surface of the earth [1–4]. Precipitation is an integral part of many
studies such as the study of climate trends, management of water resources, prediction of
flood and drought, hydrological modeling, crop water requirement, and climate change [2].
For precipitation studies, the most authentic source of precipitation data is weather radar
and rain gauge [3,4]. However, it is almost impossible to get reliable or accurate data in
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developing regions of the world because of uneven distribution and a weak relationship
between precipitation intensity and topography [5,6]. Various satellite-based precipitation
products (SPPs) at different spatiotemporal scales have been developed in recent decades
to overcome the problem of precipitation sparseness. Furthermore, several reanalysis data
sets have also been introduced for studies in order to improve the accuracy of climate
variable measurement [7,8].

Precipitation data is important for reliable prediction to form hydro climatological
studies. Therefore, validating SPPs accuracy is necessary before using them effectively
in a variety of hydro-climatological analyses [9]. On the other hand, SPPs can deliver
constant information on precise spatial and temporal scales [10]. It is very difficult to get
accurate precipitation data on a fine spatiotemporal scale in the developing world because
of uneven distribution of rain gauge networks [11]. Currently, SPPs are using an advance
precipitation estimation algorithm to provide consistent data on a fine spatiotemporal
scale using signals from infrared (IR) and microwave (MW) sensors [12]. Because of the
continuous involvement of science and technology, the SPPs were formed by using many
techniques such as meteorological modeling, remote sensing, and ground measurement,
to enhance the accuracy of the products. For instance, several products rely on satellite-
based soil moisture [13,14]. These products were obtained from satellite soil moisture data
through SM2Rain algorithm [15]. It is observed that regional topography and climatology
have a significant impact on SPPs product performance [16]. Therefore, this study’s
goal is to describe, examine, and evaluate the efficiency of the most recent precipitation
products (SM2Rain-CCI, SM2Rain-ASCAT, GPM-SM2Rain, and SM2Rain) across a range of
topography and metrological regimes in the semi-arid climatic zone of Pakistan.

Many SPPs along with reanalysis precipitation products are freely available for evalua-
tion and their applications [13–16]. Moreover, some SPPs use a combination of sensors that
measures the top characteristics of a cloud to provide precipitation estimations, and some
other SPPs are directly linked to ground observation. However, considering the SM2Rain
(Soil Moisture to Rain) products, the SM2RAIN-ASCAT was used to produce this product
from satellite measurements of soil moisture [17–20]. The GPM-SM2RAIN precipitation
dataset is based on the integration of the Global Precipitation Measurement Mission (GPM)
with SM2RAIN-based precipitation estimates derived from ASCAT H113 H-SAF, SMOS
L3, and SMAP L3 soil moisture products. Moreover, through the development of in-situ
networks of remote sensing sensors and advanced and powerful retrieval algorithms, SM
monitoring has advanced significantly in the last 20 years. Typically, SM data sets are used
with hydrological and meteorological models to enhance the simulation of their internal
state by using data assimilation techniques. In contrast, precipitation observations serve
as the primary input data required for SM modelling. The salient features of all selected
soil moisture-based satellite precipitation are given in Table 1. All the SPPs data has been
accessed on 25 September 2022.

Table 1. Salient features of soil-moisture based satellite precipitation data.

Satellite Datasets Spatial/Temporal Resolution Time Coverage Data Source

SM2Rain-ASCAT 10 km\1-day January 2007 to December 2021 https://doi.org/10.5281/zenodo.2591214
GPM-SM2Rain 0.25-degree\1-day January 2007 to December 2018 https://doi.org/10.5281/zenodo.3854817
SM2Rain-CCI 0.25-degree\1-day January 1998 to December 2015 https://doi.org/10.5281/zenodo.1305021

SM2Rain 0.25 degree/daily January 1998 to December 2020 https://explorer.adamplatform.eu/

In recent times, many satellite-based precipitation products were introduced to obtain
reliable precipitation [9,21–23]. Most of the precipitation satellites were assessed in the up-
per Indus region and some were evaluated in the mountainous region of Pakistan [5,22,24].
However, the evaluation of soil moisture-based products over the whole country has not
been carried out yet. Although satellite-based precipitation products can provide accurate
and reliable information on suitable spatial and temporal scales, at the same time, the
accuracy of SPPs is not reliable over the different topographical and climatic regions of

https://doi.org/10.5281/zenodo.2591214
https://doi.org/10.5281/zenodo.3854817
https://doi.org/10.5281/zenodo.1305021
https://explorer.adamplatform.eu/
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Pakistan [25]. Recently, the record-breaking monsoon precipitation led to severe floods
in two main provinces of Pakistan (Baluchistan and Sindh). One of the main reasons for
floods is the inadequate in-situ hydro climatic study presentations caused by the uneven
distribution of metrological stations [26–28]. Therefore, we need to explore and evaluate
the different sources of precipitation data such as satellite-based precipitation data before
their direct application. The performance evaluation of recent soil moisture-based precip-
itation over various topographical and climatic circumstances in Pakistan has not been
conducted. Moreover, the issue of the lack of precipitation data is anticipated to be solved
by SPPs. Therefore, this enforces us to evaluate the uncertainty analysis of the latest soil
moisture-based products (SM2RAIN-ASCAT, SM2RAIN-CCI, and GPM-SM2RAIN). The
accuracy and reliability of these products are still unidentified because this will be the first
time. Moreover, the government of Pakistan is planning to develop multiple multipurpose
hydrological structures. Therefore, the significance of an assessment of satellite-based
precipitation products will lead to improvements enormously. The results of this research
will be very beneficial to SPPs’ data users, meteorologists, hydrologists, water conservation
practices, and policymakers in Pakistan.

2. Materials and Methods
2.1. Study Area

Pakistan is graphically situated in the western region of South Asia between 24◦ N
and 37◦ N and 62◦ E and 75◦ E. It reaches the Hindu Kush Mountains in the north and
extends from the Pamir to the Arabian Sea. The precipitation varies greatly in Pakistan, and
Baluchistan and Khyber Pakhtunkhwa (northern mountains) provinces receive maximum
precipitation from December to March (900–1100 precipitation mm/year), whereas Punjab
and Sindh receive 50–75% of the precipitation during monsoon season (June to August)
(500–700 precipitation mm/year) [29]. The lowest precipitation (100–300 mm/year) is found
in the plain areas of Sindh and Baluchistan (Hyderabad, Sibi, Badin, etc.) The distribution of
precipitation in Pakistan can be divided into two seasons, summer or monsoon precipitation
(enters from the east and northeast during July to September) and winter precipitation
(mainly received from western disturbances from December to March). The water received
from the snow melt in the northern areas of Kashmir and northern Baluchistan play an
important role in the agricultural and socioeconomic activities of the country [29]. The
main cause of recent floods in Pakistan is climate change; because of the temperature rises,
the glaciers in Pakistan’s northern Gilgit-Baltistan and Khyber Pakhtunkhwa regions are
melting rapidly. This is primary reason for the recent floods in Sindh and Baluchistan
provinces of Pakistan [30]. The Digital elevation model (DEM) and available meteorological
stations of study area is shown in Figure 1.

2.2. Datasets

In semi-arid climatic regions, 126 Pakistan Metrological Department (PMD) weather
stations collected precipitation datasets on a daily basis. However, a gauge-based metrolog-
ical dataset is very limited and rarely maintained by PMD. However, this study assesses
the daily performance of 64 metrological stations that were considered to be appropriate
because of significant missing values (greater than 20%) in other datasets. The evaluation of
the moisture-based satellite products was limited from 2005 to 2020 because of uncertainties
about the dependability and consistency of the daily datasets from available meteorological
stations. The most important highlights of metrological stations are shown in Appendix A
Table A1.

The data for all precipitation products can be accessed from their official website. The
details (spatial/temporal resolution, time coverage, and data source link) of soil moisture-
based satellite precipitation data are shown in Table 1. The SM2RAIN algorithm was
used to produce this product from satellite measurements of soil moisture [31]. This
precipitation dataset (mm/day) was provided over a regular grid at 0.1-degree sampling
(3600 × 1801) on a global scale. The SM2RAIN-CCI [19,32] collects data by comparing the



Atmosphere 2023, 14, 8 4 of 23

two precipitation satellite products, such as Tropical Measurement Mission Multi-Satellite
precipitation analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction
Center Morphing Technique (CMORPH). Among the other products, the SM2RAIN-CCI is
only product that does not use rain gauge observations [10].
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Figure 1. Digital elevation model (DEM) and available meteorological stations of study area.

2.3. Methods

The evaluation of soil moisture products (SM2Rain, SM2Rain- ASCAT, SM2Rain-CCI,
and GPM-SM2Rain) was assessed using in-situ ground observations. In the validation
process, the methodology of previously published studies [3,22] was used. We only con-
sidered SPP grids with at least one benchmark measuring station. The uncertainties in
the SPP estimations within the inquiry were evaluated and contrasted on various spatial
and temporal scales. On periods ranging from daily to annual, errors in the products are
assessed by grid and pixel size across the full spatial domain. The spatial distribution
map of the recorded precipitation was produced using the Kriging spatial interpolation
technique. This geographical approach is suggested for locations where the reference data
are not homogeneous.

Firstly, the ability of each soil moisture product was estimated on multiple spatio-
temporal scales. The Thiessen polygon method is used for the calculation of aerial precipita-
tion. Then, for validation, each soil moisture product was evaluated against the 64 ground
weather stations. For this purpose, previously recommended statistical indices were consid-
ered. The details of statistical indices and their acceptable ranges as indicated by previously
published studies [22,24] used for the evaluation assessment of soil moisture-based satellite
products are shown in Table 2. The Probability Density Function (PDF) of the daily and
seasonal estimations of in-situ gauging stations was examined at different thresholds for
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a more accurate assessment of the soil moisture-based products. To examine the PDFs, a
previous study [3] was employed as a framework. The World Meteorological Organization
(WMO)’s protocol was followed for defining the thresholds for daily precipitation rates.
Moreover, the ability of all examined precipitation products in Pakistan is visualized in
terms of probability of detection (POD). Roebber [24] used classified indices to develop the
performance diagram for evaluating the results of the categorical indices.

Table 2. Statistical analysis equations with their acceptable ranges.

Statistical Analysis Details Acceptable Range

cc = ∑n
i=1(Gi−G)(Ei−E)√

∑n
i=1(Gi−G)2×

√
∑n

i=1(Ei−E)2

CC = Correlation Coefficient

1

Gi = data of reference gauges
G = average of the gauge data

Ei = estimates of satellite/reanalysis product
E = mean of the estimates of satellite/reanalysis product

n = total number of datasets

BIAS = ∑n
i=1(Ei−Gi)

n

Ei = estimates of satellite/reanalysis product
0Gi = data of reference gauges

n = total number of datasets

rbias = ∑n
i=1(Ei−Gi)
∑n

I=1 Gi × 100

rbias = Bias, relative Bias

±10
Ei = estimates of satellite/reanalysis product

Gi = data of reference gauges
n = total number of datasets

RMSE =
√

1
n

n
∑

I=1
(Ei−Gi)2

RMSE = Root Mean Square Error

0
Ei = estimates of satellite/reanalysis product

Gi = data of reference gauges
n = total number of datasets

POD = A
A+B

POD = Probability of Detection A = number of precipitation
events that the SPPs/reanalysis products actually reported

1B = number of precipitation events that the reference gauging
stations observed but that the SPPs/reanalysis products missed

FAR = C
A+C

FAR = False Alarm Ratio

0
C = number of precipitation events that the SPPs/reanalysis

products misrepresented
A = number of precipitation events that the SPPs/reanalysis

products actually reported

CSI = A
A+B+C

CSI = Critical Success Index

1

A = Amount of precipitation events that were really reported by
SPPs and reanalysis products

B = Amount of precipitation events missed by SPPs/reanalysis
products while being observed by reference gauging stations

C = Amount of precipitation events that were inaccurately
represented by SPPs and reanalysis products

Figure 2 illustrates the Thiessen polygon method to calculate the aerial precipitation
of the whole country. Firstly, the gauge weight is calculated for each meteorological
station by using the Thiessen polygon method in ArcGIS10.7.1. The gauge weight of
every single station is multiplied by its precipitation to estimate aerial precipitation. The
Thiessen polygon method supposes that each pixel will capture the precipitation value in a
specific area (A). The precipitation amount measured at pixel I is therefore only relevant
to that region. Every pixel’s weight is determined by the region it belongs to in the
Thiessen polygon.
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Figure 2. Thiessen polygon to calculate aerial precipitation of study area.

3. Results
3.1. The Performance of Selected SPPs to Monitor Precipitation Spatial and Temporal Variability

Figure 3 defines the comparison of performance of spatial variability annual average
precipitation of four precipitation products presented in this diagram. A significant portion
of the nation’s annual precipitation was found to fall in the northern regions throughout the
winter, whereas the Punjab Province experienced between 50–70% of its total precipitation
during the summer. According to gauge information, SM2Rain completely captured the
spatial distribution in arid and semi-arid regions. The precipitation values vary between
0–500 (mm). The SM2Rain data shows over-validation in arid and semi-arid regions, and
poor validation in humid regions. On the other hand, the ASCAT data shows that the data
captured completely resembles the gauge data in arid regions. The value of precipitation
in that region is 0–300 (mm). However, we can see that ASCAT shows good validation in
arid regions and poor validation in semi-arid and humid regions. The spatial distribution
captured by CCI and GPM data has been completely compared with gauge data in humid
regions. The precipitation varies in this region between 600–1100 (mm). The validation of
CCI and GPM data is reliable in humid regions and poor in semi and semi-arid regions.

Figure 4 illustrates the comparison of temporal variability and annual average precipi-
tation of CCI. As demonstrated here, the in-situ gauge data often exhibit two peaks in the
precipitation time series data. Both the peak precipitation interval and the gauge average
indicated an overestimation of the amount of precipitation (Feb- March and August-Sep.).
While tracking the variability of recorded precipitation during the peak precipitation period,
SM2Rain CCI displays good performance (Feb-March and July-August). The comparison
of temporal variability and annual average precipitation of GPM is presented. When
compared to Gauge Moving Average, Gauge Average exhibited an overestimation of the
amount of precipitation during both peak precipitation periods (February-March and
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August-September). GPM-SM2Rain Average, meanwhile, showed substandard perfor-
mance when compared to the temporal variability of observed precipitation throughout
both the peak precipitation period and the entire period (March-April and June-July). The
comparison of temporal variability annual average precipitation of ASCAT is presented.
When evaluated to Gauge Moving Average, Gauge Average demonstrated an overesti-
mation of the amount of precipitation during both peak precipitation periods (February-
March and August-September). Furthermore, the SM2Rain-ASCAT Average indicates that
the capacity to monitor the temporal variability of observed precipitation during both
peak precipitation periods and the rest of the time is unsatisfactory (February-March and
July-August). The comparison of temporal variability of annual average precipitation of
SM2Rain is presented. Gauge Average shows an overestimation of the capability to monitor
temporal variability in both the peak precipitation period and the observed precipitation
(February-March and August-September), whereas, SM2Rain showed an overestimation in
one peak precipitation period (March–April) and showed poor performance in other peak
precipitation periods (June–July).
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3.2. Uncertainty Analysis of SPPs on Monthly Scale

The projected CC, BIAS, RMSE, and rBIAS values for four precipitation products
on a monthly scale varied, as shown in Table 3. By looking at the box plot of CC, the
products of GPM showed better performance as compared to other precipitation products.
In the case of a plot box of BIAS (mm), as compared to other precipitation products, the



Atmosphere 2023, 14, 8 9 of 23

output of GPM and SM2Rain shows comparatively good performance. The box plot of
RMSE highlighted that the SM2Rain-ASCAT products performed relatively poorly when
compared to other precipitation products (mm). When considering the box plot of rBIAS
(%), the product of SM2Rain displayed relatively good performance as compared to other
precipitation products.

Figure 5 evaluates the impact of aerial average precipitation (mm/month) of all SPPs
(CCI, GPM, ASCAT, and SM2Rain) on evaluation indices. In general, the CC values of
all items taken into consideration were directly proportional to the precipitation intensity,
whereas the RMSE (mm/month) and BIAS (mm/month) values of all considered products
decreased with the increase in intensity of precipitation. The value of R2 = 0.9709 is higher
in GPM at RMSE (mm/month).
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Table 3. The results of all evaluation indices on monthly scale.

SPPs CC BIAS (mm) RMSE (mm) rBIAS

GPM-SM2Rain 0.91 5 10.13 150
SM2Rain-CCI 0.75 −0.3 9.45 180

SM2Rain 0.81 4 8.75 200
SM2Rain-ASCAT 0.82 3.88 −0.4 −100

3.3. Uncertainty Analysis of SPPs on Daily Scale

The variation in the estimated CC, BIAS, RMSE, and rBIAS values for four precipi-
tation products on the daily scale is illustrated in Table 4. The GPM products performed
better than other precipitation products, as shown by the box plot of CC. By reviewing the
BIAS (mm/day) box plot, the products of GPM and ASCAT indicate relatively good perfor-
mance as compared to other precipitation products. When compared to other precipitation
products, the ASCAT product performed fairly well in the plot box of RMSE (mm/day).
Taking into account the plot box of rBIAS (%), the ASCAT product performed better than
other precipitation products.

Table 4. Results of all evaluation indices on daily scales.

SPPs CC BIAS (mm) RMSE (mm) rBIAS

GPM-SM2Rain 0.39 −0.2 7 100
SM2Rain-CCI 0.21 −0.1 18.75 −80

SM2Rain 0.35 0.2 34.98 110
SM2Rain-ASCAT 0.22 0.4 13.24 140

Figure 6 evaluates the impact of elevation (mm) of all SPPs (CCI, GPM, ASCAT, and
SM2Rain) on a daily basis. However, the CC value of every product taken into consideration
was inversely related to elevation. This highlights how poorly precipitation products
perform at higher altitudes. The elevation change (mm) typically shows no influence on the
value of BIAS (mm/day). Additionally, it was noted that as elevation increased, the error
in all product predictions grew. That could occur as a result of the challenging topography
at higher altitudes. The value of R2 = 0.42 is higher in CCI at RMSE (mm/day).

Figure 7 shows the spatial distribution of CC for all SPPs products (SM2Rain, GPM,
CCI, and ASCAT). Throughout the entire study zone, the elevation indices have witnessed
a wide range of variations. There were significantly fewer variations in the CC values
across the full spatial domain for all SM2Rain products, based on the spatial variation of
CC. Compared to other items, the CCI and GPM’s CC values fluctuated more drastically.
The higher value of CC represents the region of the country that has higher precipitation
rates. The product of ASCAT indicates a better performance than the other products, as
demonstrated by the higher value of CC.

Figure 8 shows the spatial distribution of BIAS (mm/day) for all SPPs products
(SM2Rain, GPM, CCI, and ASCAT). Throughout the entire study region, the elevation
indicators have experienced a wide range of variations. All products in the CCI family
exhibited much lower fluctuations in their BIAS values across the entire spatial domain, ac-
cording to the spatial variation of BIAS. Compared to other products, the ASCAT and GPM
had a wider range of BIAS values. The product of SM2Rain indicates a better performance
than the other products, as demonstrated by the higher value of BIAS (mm/day).

Figure 9 shows the RMSE (mm/day) geographical distribution for all SPPs products
(SM2Rain, GPM, CCI, and ASCAT). All across the entire study zone, the elevation indicators
witnessed a wide range of variations. All GPM family products’ spatial RMSE fluctuation
displayed considerably less variation in their RMSE values throughout the entire spatial
domain. The product of SM2Rain indicates a better performance than the other products,
as demonstrated by the higher value of RMSE (mm/day). The RMSE value varied more
widely in the CCI and ASCAT as compared with other products.
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3.4. Uncertainty Analysis of SPPs at Seasonal Scale

Figure 10 indicates the box scheme of all evaluation indices at seasonal scale. When
compared with other products in all seasons, the CCI product showed good performance
in the box scheme of CC. As compared to similar products, the ASCAT product displayed
good performance throughout the spring season and relatively low performance during
the summer, according to the box scheme of BIAS (mm). In comparison to other datasets,
the GPM product showed considerably better performance during the summer, whereas
the CCI product showed poor performance during the autumn.
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The seasonal variations of rBias (%) determined for all SPPs (GPM, CCI, ASCAT,
and SM2Rain) are shown in Figure 11. The SM2Rain products demonstrated the best
performance over the winter, as evidenced by the lowest value of rBias. Moreover, the
ASCAT reveals that performance is at its lowest during the winter and autumn seasons,
with overestimation values exceeding 30% (rBias). All precipitation products for the
summer season indicated a precipitation amount underestimation. Only the GPM product
revealed rBias values that were within accepted limits (10%) during this season. All
seasons’ precipitation amounts were underestimated according to SM2Rain, with the
winter season scoring the worst (underestimation >55%). All seasons, barring summer,
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show overestimation according to the ASCAT product, with rBias values that are generally
acceptable (>10%).

Atmosphere 2022, 13, x FOR PEER REVIEW 15 of 24 
 

 

 

Figure 11. rBIAS (%) all SPPs on seasonal scale. 

3.5. Probability Density Function (PDF) and Performance Diagram of All SPPs to Track 

Precipitation Events 

The ability of all examined precipitation products in Pakistan is visualized in Figure 

12 in terms of probability of detection (POD). Roebber used classified indices to develop 

the performance diagram for evaluating the results of the categorical indices. This illus-

trates the spatial relationship among reference gauges and SPPs. The statistics graphic 

illustrates how various precipitation products behaved under various topographical and 

climatic environments. The calculated POD value for SM2Rain, GPM, CCI, and SM2Rain- 

ASCAT was 0.41, 0.68, 0.43, and 0.61, respectively. The GPM shows the maximum POD, 

demonstrating that the product showed good capacity to recognize the existence of pre-

cipitation. SM2Rain and SM2Rain-ASCAT products seemed to have the lowest probability 

of detection (POD) when compared to the other products, but they efficiently depicted the 

observed precipitation with a high rate of success. 

Figure 13 shows capability of all SPPs (SM2Rain, CCI, GPM, and SM2Rain-ASCAT) 

to accurately detect the seasonal precipitation. GPM outperformed the competition in all 

seasons aside from winter in terms of its capacity to detect the presence of precipitation 

(POD values of 0.82 in spring, 0.79 in summer, and 0.69 in autumn). The spring and sum-

mer seasons both had good Probability of Detection POD values for SM2Rain-ASCAT 

(POD = 0.71 and 0.69, respectively). In the winter season, SM2Rain’s performance was 

mediocre (POD = 0.29). Both the spring (POD = 0.73) and the winter season (POD = 0.58) 

witnessed good POD for CCI. 

Figure 14 illustrates the probability density function (PDF) of the recorded daily pre-

cipitation data of precipitation products (obtained from the gauging stations) (SM2Rain, 

ASCAT, and CCI). SM2Rain products indicate underestimation of light precipitation (0–1 

mm/day) events but overestimated the moderate and heavy precipitation (1–20 mm/day) 

events. The ASCAT products show underestimation at light precipitation (0–0.1 mm/day) 

events and indicate overestimation at moderate and heavy precipitation (0.1–15 mm/day) 

events. The CCI product indicates underestimation at light precipitation (0–1 mm/day) 

events and shows overestimation at moderate and heavy precipitation occurrences (1–50 

mm/day). 

Figure 14 evaluates the Probability Density Function of SPPs (SM2Rain, ASCAT, and 

CCI) estimated for different intensities of (a) winter, (b) spring, (c) summer, and (d) au-

tumn precipitation in Pakistan. In winter season, the SM2Rain products showed the un-

derestimation of light precipitation events. Conversely, the ASCAT product showed over-

estimation at light precipitation events. In terms of its effectiveness during this season for 

detecting the occurrence of precipitation events in Pakistan, the CCI product surpassed 

Figure 11. rBIAS (%) all SPPs on seasonal scale.

3.5. Probability Density Function (PDF) and Performance Diagram of All SPPs to Track
Precipitation Events

The ability of all examined precipitation products in Pakistan is visualized in Figure 12
in terms of probability of detection (POD). Roebber used classified indices to develop the
performance diagram for evaluating the results of the categorical indices. This illustrates
the spatial relationship among reference gauges and SPPs. The statistics graphic illustrates
how various precipitation products behaved under various topographical and climatic
environments. The calculated POD value for SM2Rain, GPM, CCI, and SM2Rain- ASCAT
was 0.41, 0.68, 0.43, and 0.61, respectively. The GPM shows the maximum POD, demon-
strating that the product showed good capacity to recognize the existence of precipitation.
SM2Rain and SM2Rain-ASCAT products seemed to have the lowest probability of detection
(POD) when compared to the other products, but they efficiently depicted the observed
precipitation with a high rate of success.
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Figure 13 shows capability of all SPPs (SM2Rain, CCI, GPM, and SM2Rain-ASCAT)
to accurately detect the seasonal precipitation. GPM outperformed the competition in all
seasons aside from winter in terms of its capacity to detect the presence of precipitation
(POD values of 0.82 in spring, 0.79 in summer, and 0.69 in autumn). The spring and summer
seasons both had good Probability of Detection POD values for SM2Rain-ASCAT (POD =
0.71 and 0.69, respectively). In the winter season, SM2Rain’s performance was mediocre
(POD = 0.29). Both the spring (POD = 0.73) and the winter season (POD = 0.58) witnessed
good POD for CCI.
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Figure 14 illustrates the probability density function (PDF) of the recorded daily precipi-
tation data of precipitation products (obtained from the gauging stations) (SM2Rain, ASCAT,
and CCI). SM2Rain products indicate underestimation of light precipitation (0–1 mm/day)
events but overestimated the moderate and heavy precipitation (1–20 mm/day) events. The
ASCAT products show underestimation at light precipitation (0–0.1 mm/day) events and
indicate overestimation at moderate and heavy precipitation (0.1–15 mm/day) events. The
CCI product indicates underestimation at light precipitation (0–1 mm/day) events and shows
overestimation at moderate and heavy precipitation occurrences (1–50 mm/day).
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Figure 14 evaluates the Probability Density Function of SPPs (SM2Rain, ASCAT, and
CCI) estimated for different intensities of (a) winter, (b) spring, (c) summer, and (d) autumn
precipitation in Pakistan. In winter season, the SM2Rain products showed the underestima-
tion of light precipitation events. Conversely, the ASCAT product showed overestimation
at light precipitation events. In terms of its effectiveness during this season for detecting
the occurrence of precipitation events in Pakistan, the CCI product surpassed all other
products. The performance of ASCAT products is superior to alternative products during
the spring season. In particular, neither of the other products correctly described the mild
to moderate precipitation events during this season. The CCI product completely failed
to depict the occurrences of light-to-heavy precipitation events during the summer. The
IMERG product was competent at analyzing the occurrences of light-to-heavy precipitation
events during the autumn season.

4. Discussion

All SPPs estimations were evaluated against the in-situ gauge data on daily, monthly,
seasonal, and yearly scales, over the whole spatial domain, and on the point-to-pixel scale.
The uncertainty analysis of selected SPPs showed that their accuracy completely depends
upon the in-situ topographical and environmental conditions. Previously, numerous
researchers assessed the accuracies of many SPPs (SM2Rain, GPM-SM2Rain, CCI, ASCAT,
and IMERG) over different parts of the earth [10,17,18]. The results of previous studies also
indicated that the performance of SPPs was strongly influenced by the topography and
climatic conditions of the study area [32–34]. For instance, Nadeem et al. [22] assessed the
variety of SPPs over diverse topographic and climatic conditions. The findings of their study
also documented that the accuracy of satellite precipitation products showed significant
variation with respect to in-situ topography and climatic conditions. Hamza et al. [24]
compared the multi satellites along with SM2Rain-ASCAT over the mountainous domain
of the semi-arid zone. All products were completely influenced by local topography. The
evaluation indices (CC, BIAS, rBIAS, RMSE) also showed significant variability caused by
local topographic and climatic conditions [35].

The satellite-based precipitation products GPM-SM2Rain and SM2Rain were proficient
in assessing the spatial variability of precipitation over the Pakistan range. This might be
caused by the better morphing retrieval algorithm of these products. Moreover, through
the development of in-situ networks of remote sensing sensors and advanced and powerful
retrieval algorithms, SM monitoring has advanced significantly in the last 20 years [36].
Typically, SM data sets are used with hydrological and meteorological models to enhance
the simulation of their internal state by using data assimilation techniques. In contrast,
precipitation observations serve as the primary input data required for SM modeling.
However, all other products were inappropriate with respect to spatial and temporal
variation of precipitation over the study area, with similar outcomes found in the previous
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findings of certain studies [37–39]. The temporal estimations of SM2Rain were in better
agreement with gauge estimation, which is consistent with the findings of a particular
study [10,24]. On a monthly scale, All SPPs estimations were in better agreement with
gauge estimations as compared to the daily scale, which is comparable with previously
documented studies [22,40,41]. All SPPs performed better on capturing light precipitation
events as indicated by Probability Density Function but in the summer season, all SPPs
showed a significant amount of over/under estimation with respect to PDF(%) [24]. During
the summer season, all SPPs showed underestimation. Nadeem et al. [42] concluded that
the correlation coefficient increased with increase in precipitation intensity. On the other
hand, the error values dropped with the increase in precipitation intensity, which exactly
mirrored the outcome of our new research.

Although the performance of the selected soil moisture-based precipitation is bet-
ter on the monthly scale and can be employed for hydro-climatic applications, the daily
estimations were very poor against the gauge-daily estimations. Therefore, the algorithm re-
trievals of SPPs should be enhanced by applying advanced techniques and models [9,43,44]
(data-driven approaches such as machine learning/deep learning, downscaling of pre-
cipitation products, bias correction of SPPs) for more efficient utilization of satellite data.
Moreover, sub-daily data were not available in the research, and the lowest temporal scale
used in this study to examine the performances of four SPPs was daily resolution. The
sub-daily resolution in previously published papers [13,30,45] demonstrated consider-
able differences in the performance of precipitation products. Therefore, the findings of
comparing four SPPs on the sub-daily scale, as well as the findings obtained from those
assessments, may be quite different from those obtained on the daily scale.

5. Conclusions

The uncertainty analysis of soil moisture-based precipitation products (SM2Rain,
GPM-SM2Rain, SM2Rain-CCI, and SM2Rain-ASCAT) was evaluated on multistate tem-
poral (daily, monthly, seasonal, yearly) and spatial (point to pixel) scales, using 64 in-situ
meteorological stations in semi-arid zones (Pakistan). All soil moisture-based satellite
products were evaluated from January 2005 to December 2020. The major conclusions of
our study are as follows:

• GPM-SM2Rain was proficient in assessing the spatial variability of precipitation over
Pakistan. However, all other products were inappropriate with respect to spatial
variation of precipitation over the study area, whereas the performance of SM2Rain-
CCI is reasonable.

• The overall assessment of all selected SPPs was better on a monthly scale as compared
to daily scales.

• The GPM-SM2Rain outperformed all other SPPs in terms of probability of detection
on daily and seasonal scales.

• GPM-SM2Rain had good capturing capacities in all seasons, whereas the performance
of all other SPPs is unsatisfactory in all seasons.

• In humid climatic regions, the SM2Rain performed most reliably with a value of CC >0.7.
• All SPPs performed better in capturing light precipitation events as indicated by the

Probability Density Function.
• Based on the outcomes of the evaluation indices, the in-situ topographical and climatic

conditions substantially influence the performance of SPPs.

The findings of this study showed that GPM-SM2Rain outperformed all others selected
SPPs products in the Pakistan region. The correlation coefficient (CC) for GPM-SM2Rainis
(>0.70) in both daily and monthly scales was noted. In addition, rBIAS was likewise
within the acceptable range (±10). As a result, we recommend the use of both daily and
monthly evaluations as a model for hydro-climatic applications in the Pakistan range.
Additionally, we advocate that algorithm retrievals of SPPs be improved by the use of deep
learning/machine learning methodologies and advanced models for more appropriate
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applications. The findings of this study will be very useful for hydrologists, meteorologists,
SPPs data users, water conservation practices, and policymakers in Pakistan.
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Appendix A

Table A1. Salient features of meteorological stations.

Sr. No. Station Lat Long Ele. (m)

1 Astore 35.37 74.90 2168.0
2 Balakot 34.38 73.35 981.0
3 Bunji 35.67 74.63 1470.0
4 Burzil 34.91 75.09 4030.0
5 Chillas 35.42 74.10 1251.0
6 Cherat 33.82 71.55 1372.0
7 Chitral 35.85 71.83 1500.0
8 Deosai 35.10 75.60 3910.0
9 Dir 35.20 71.85 1370.0

10 Drosh 35.57 71.78 1465.0
11 G-Dopata 34.20 73.60 813.5
12 Gilgit 35.92 74.33 1457.2
13 G-Khan 33.25 73.62 457.0
14 Gupis 36.17 73.40 2156.0
15 Jhelum 32.93 73.73 287.2
16 Hunza 36.32 74.65 2374.0
17 Hushy 35.37 76.40 3010.0
18 Kakul 34.18 73.25 1309.0
19 Kallar 33.42 73.37 518.0
20 Khot 36.52 72.58 3505.0
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Table A1. Cont.

Sr. No. Station Lat Long Ele. (m)

21 Khunjrab 36.85 75.40 4730.0
22 Kotli 33.52 73.89 614.0
23 Mangla 33.13 73.63 305.0
24 Murree 33.92 73.38 2127.0
25 Muzaffarabad 34.40 73.50 702.0
26 Naltar 36.22 74.27 2810.0
27 Naran 34.90 73.65 2363.0
28 Peshawar 34.00 71.93 327
29 Plandri 33.70 73.70 1402.0
30 Rama 35.36 74.81 3040.0
31 Ratu 35.15 74.81 2920.0
32 RawlaKot 33.87 74.27 1677.0
33 Shigar 35.53 75.59 2470.0
34 Skardu 35.34 75.54 2316.5
35 S-Sharif 34.82 72.35 970.0
36 Ushkore 36.02 73.36 3353.0
37 Yasin 36.63 73.30 3353.0
38 Zani Post 36.28 72.15 3000.0
39 Ziarat 36.83 74.28 3669.0
40 PBO. Chhor 29.88 69.71 5
41 PBO. Hyderabad 25.38 61.8 28
42 PBO. Jiwani 25.06 61.8 56
43 PBO. Jacobabad 28.3 68.46 55
44 M.O S K.A.P. 24.9 67.13 22
45 PBO. Nawabshah 26.25 68.36 37
46 PBO. Panjgur 26.96 64.1 968
47 PBO. Pasni 25.26 63.48 9
48 M.O. Badin 24.63 68.9 9
49 M.O. Gwadar 25.13 62.33 29.86
50 M.O. Larkana 27.53 68.23 52.7
51 M.O. Lasbella 26.23 66.16 87
52 M.O. Padidan 26.85 68.13 46
53 M.O. Rohri 27.66 68.9 66
54 A.M. Moen-jo-daro 27.36 68.1 51.8
55 A.M. Ormara 25.2 64.66 2
56 A.M. Turbat 25.98 63.06 155
57 A.M. Sukkur 27.7 68.86 68.5
58 P.B.O/AER Karachi 24.9 66.93 22
59 Marine Met. Kiamari. Karachi 24.9 66.93 22
60 M.O. Mithi 24.75 69.8 30
61 A.M. Tandojam 25.66 68.71 19.5
62 M.O Dadu 26.71 67.78 38
63 M.O Mirpur Khas 25.51 69 15
64 M.O. Thatta 24.75 67.9
65 A.M. Uthal 25.81 66.61 40
66 A.M. Sakrand 26.13 68.26 45
67 Bahawal Nagar 30 73.24
68 Bahawal Pur 29.33 71.783
69 Bahawal Pur(A/P) 29.383 71.683
70 Bhakkar 31.616 71.06
71 Noorpur Thal 31.866 71.9
72 Jauharabad 32.5 72.43
73 Faisalabad 31.43 73.13
74 Jhelum 32.93 73.73
75 Khanpur 28.65 70.683
76 Lahore A.P. 31.583 74.4
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Table A1. Cont.

Sr. No. Station Lat Long Ele. (m)

77 Lahore PBO. 31.55 74.33
78 Multan 30.2 71.43
79 Mandi Bahauddin 32.96 73.8
80 Sialkot 32.516 74.53
81 Sialkot Airport 32.53 74.03
82 Sargodha 32.05 72.66
83 Toba Tek Singh 30.983 72.783
84 D.G. Khan 30.05 70.63
85 D.G. Khan (Aeromet) 29.96 70.33
86 Jhang 31.26 72.316
87 Mangla 33.06 73.63
88 Sahiwal 30.65 73.16
89 Chakwal 32.916 72.85
90 Gujranwala 32.36 74.35
91 Okara 30.8 73.43
92 Rahim Yar Khan 28.43 70.316
93 Gujrat 32.56 74.06
94 MCC Lahore 31.583 74.4
95 Rawalpindi 33.56 73.02
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