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Abstract: A hybrid machine learning (ML) model is becoming a common trend in predicting reference
evapotranspiration (ETo) research. This study aims to systematically review ML models that are
integrated with meta-heuristic algorithms (i.e., parameter optimisation-based hybrid models, OBH)
for predicting ETo data. Over five years, from 2018–2022, the articles published in three reliable
databases, including Web of Science, ScienceDirect, and IEEE Xplore, were considered. According to
the protocol search, 1485 papers were selected. After three filters were applied, the final set contained
33 papers related to the nominated topic. The final set of papers was categorised into five groups. The
first group, swarm intelligence-based algorithms, had the highest proportion of papers, (23/33) and
was superior to all other algorithms. The second group (evolution computation-based algorithms),
third group (physics-based algorithms), fourth group (hybrid-based algorithms), and fifth group
(reviews and surveys) had (4/33), (1/33), (2/33), and (3/33), respectively. However, researchers have
not treated OBH models in much detail, and there is still room for improvement by investigating both
newly single and hybrid meta-heuristic algorithms. Finally, this study hopes to assist researchers in
understanding the options and gaps in this line of research.

Keywords: reference evapotranspiration; hybrid model; machine learning; meta-heuristic algorithms;
systematic review

1. Introduction

Water has been termed “blue gold”, and it will undoubtedly be a major problem in the
twenty-first century [1]. Fresh water supplies for agricultural production are becoming less
abundant, necessitating the urgent need to manage scarce water resources effectively while
raising agricultural productivity [2]. The hydrologic cycle is dominated by evapotranspi-
ration (ET), which returns almost 60% of the yearly precipitation that falls on the earth’s
surface back to the atmosphere [3]. Reference evapotranspiration (ETo) is made up of the
transpiration and evaporation processes. Evaporation is the process by which water flows
from the earth’s surface to the atmosphere, whereas transpiration is the action of plant
roots taking water from the root zone and moving it to the leaves, where it is then expelled
through the stomata [4]. Additionally, it is measured as the amount of water lost from
a surface that is covered in grass or alfalfa that is in an active growth stage, has a uniform
height, a leaf area index of about three, is not subject to water restrictions, and has a fetch
that is sufficiently large and well-irrigated to reduce advection towards the experimental
area [5]. To date, the Penman–Monteith (FAO-56 PM) model has been the most extensively
used empirical model to estimate ETo after being endorsed by the United Nations Food
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and Agricultural Organisation [6]. However, the FAO-56 PM model has a major drawback
as it requires a lot of climatic variables, and automatic weather stations can also be costly
and time-consuming to install and maintain [7–10]. As a result, this model has not been
widely adopted, especially in developing nations [11]. However, machine learning is one of
the most active solutions [12].

In recent years, the most popular technique in hydrology modelling has been machine
learning, an artificial intelligence approach that aims to provide machines with a decision-
making capacity. Furthermore, it has a high degree of accuracy and precision in predicting
variables while being quick and inexpensive to implement [13]. Researchers have made
significant efforts to model ETo using machine learning algorithms, e.g., artificial neural
networks (ANN) [14], adaptive neuro-fuzzy inference systems (ANFIS) [15], random forests
(RF) [16], support vector machines (SVM) [17], and extreme learning machines (ELM) [18].
It was also shown that these models had a good ability to model ETo data in various
climates [19]. However, machine learning techniques have several drawbacks, such as
a slow convergence rate and the issue of easily slipping into local minima [20]. Re-
cently, hybrid modelling has advanced machine learning, allowing for the continued
improvement of standalone models to achieve more promising accuracy [6]. For example,
Maroufpoor, et al. [21] developed a hybrid technique that depends on the ANN approach
and the GWO algorithm for ETo estimating. They discovered that the new hybrid ANN-
GWO technique performed better than the single ANN model. Likewise, Tao, et al. [22]
established a hybrid ANFIS-FA model for predicting daily ETo, and found that the hybrid
ANFIS-FA model was superior to the standalone ANFIS model. According to Hajirahimi
and Khashei [23], hybrid techniques can be categorised into many groups; this study fo-
cused on parameter optimisation-based hybrid models (OBH), which incorporate two or
more techniques, one of which serves as the main model and the other as a pre-or post-
processing [24]. Machine learning models have been combined with meta-heuristic optimi-
sation algorithms [8], which, in a later section, will be classified and analysed. Therefore,
one of the most important objectives of the study is to clarify the uses of the hybrid model.

On the one hand, the primary goal of this paper is to provide valuable insights into
the hybrid techniques used in ETo forecasting. Particularly those that combine machine
learning with meta-heuristic algorithms. Furthermore, this study aims to identify the most
commonly used methods and determine the best ones. Moreover, it supports researchers
by understanding the obtainable options and gaps in this line of research. Furthermore, it
aims to shed light on the efforts of researchers in this field and map the research landscape
into a coherent taxonomy. On the other hand, the previous reviews rarely touched on this
aspect. For example, Krishnashetty, et al. [25] carried out a review of cognitive computing
models used for the estimation of ETo by comparing only three models (ANN, SVM, and
GP). While Jing, et al. [26] reviewed the implementation of evolutionary computing models
to estimate ETo from 2007–2019. Finally, Raza, et al. [4] conducted a search for research
articles in the Google Scholar Database only.

In this regard, the contributions of this paper can be presented in advance as the
following list: (1) A coherent taxonomy of meta-heuristic algorithms based on their in-
spired theories will be presented; (2) the role of these algorithms will be emphasised in
enhancing the accuracy of prediction results; and (3) the results of applying these algo-
rithms in previous studies will be discussed and illustrated, including the most popular
and effective types, as well as make some suggestions for future research. (4) The study’s
recommended taxonomy of the relevant literature also has important implications. (5) This
investigation pinpoints prospective research avenues, has the ability to reveal research gaps,
and provides a map of the academic literature on meta-heuristic algorithms for reference
evapotranspiration.

The rest of the paper is organised as follows: Section 2 describes the methodology.
Section 3 presents the details and results from this study’s final set of publications. In
Section 4, the discussion is presented. In Section 5, a bibliometric analysis was used.
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Section 6 contains the most important recommendations. Finally, the conclusion of this
review is presented in Section 7.

2. Methodology

The most significant keyword in the scope of this article is “reference evapotranspira-
tion”. This section excludes any paper in which meta-algorithms have not been used in
ETo forecasting. Furthermore, the scope is restricted to the English literature.

2.1. Information Sources

To conduct the search for relevant articles, we used three online resources: (1) Sci-
enceDirect, which provides access to scientific and technical literature; (2) IEEE Xplore,
which houses technological and engineering literature; and (3) the Web of Science (WoS)
service, which indexes studies from a variety of scientific fields. The goal of this selection
was to present a comprehensive overview of the state of research in this area by drawing
from a wide range of relevant publications.

2.2. Study Selection

Finding the relevant studies required a search of the relevant literature sources, fol-
lowed by two rounds of screening and filtering. After removing any duplicates and
unrelated articles from the findings by screening their titles and abstracts, the remaining
articles were subjected to a more in-depth screening process that included reviewing the
complete texts of the articles that had passed the first screening.

2.3. Search

Research began on the first of July 2022 in the ScienceDirect, IEEE Xplore, and WoS
databases via their search boxes. A mix of keywords were used that contained “machine
learning”, “neural networks”, “optimisation”, “hybrid”, “meta-heuristics”, “tune”, “tun-
ing”, and “reference evapotranspiration” in different variations, combined by the “OR”
operator. In addition, the tools provided by each search engine were utilised to filter out
book chapters and other report kinds in favour of journal and conference articles, which
were thought to be the most likely to include recent and appropriate scientific publications.

2.4. Eligibility Criteria

All articles that matched the standards shown in Figure 1 were involved. These classes
were created using extensive textual materials. All of the articles that failed to satisfy the
eligibility requirements shown in Figure 1 were excluded once the duplicate articles had
been removed. The criteria for exclusion were: (1) If there was no English in the articles.
(2) If the use of machine learning models in tandem with meta-algorithms in ETo data
modelling were not discussed in the articles.

2.5. Data Collection Process

The included articles were compiled from a wide variety of sources into a single Excel®

file, where preliminary categorisations had already been made. All of the papers were
read, and detailed notes were made on what was most interesting and how to organise
the articles into a more accurate taxonomy. All highlighting and notes were done on the
text itself. The findings were tabulated, summarised, and discussed at length. The list of
survey articles, summary and description tables, source indices, objectives, review sources,
validation methodologies, utilised datasets, and different related figures were all saved in
separate Word and Excel documents. All of this necessary information was included with
the outcomes for easy reference.
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2.6. Articles Search Results and Statistical Information

The initial query results reached 1486 papers: 1224 from Science-Direct, 8 from IEEE
Explore, and 255 from WOS, in a span of 5 years, from 2018 to 2022. Eleven duplicate
papers were found among the databases utilised. After the title and abstract scanning,
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1401 non-related papers were excluded, resulting in 84 papers. After reading the full text,
51 articles were excluded, and finally, 33 papers remained in the final set. These papers
were read deeply to offer a general research plan in this field.

3. Results

The taxonomy displayed in Figure 2 was applied to review the primary research
streams relying on meta-heuristic algorithms and their general practise in ETo forecasting.
This taxonomy system demonstrates the all-encompassing growth of several investigations
and implementations. The taxonomy suggests various classes and subclasses. The final
class consisted of survey and review articles discussing the use of meta-heuristic algorithms
in ETo modelling (33 papers).
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3.1. Meta-Heuristic Algorithms

The term “meta-heuristic” refers to an algorithmic structure that may be used generi-
cally for many different optimisation problems with just minor adjustments for problem-
specific adaptations [27]. In recent years, actual engineering design optimisation issues
have been solved using these algorithms as the principal techniques [28]. The meta-
heuristic algorithms were classified into four groups depending on their behaviour: swarm
intelligence-based algorithms, evolutionary computation-based algorithms, physics-based
algorithms, and hybrid meta-heuristic algorithms [27,29].

3.1.1. Swarm Intelligence-Based Algorithms (SI)

Swarm intelligence imitates the group behaviour of constituent agents, including birds
and insects. The decentralisation principle, which dictates that the candidate solutions be
updated through local contact with one another and their surroundings, is the foundation
upon which SI is primarily based. Particle swarm optimisation (PSO) and ant colony
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optimisation (ACO) are the two SI algorithms with the highest levels of popularity [27].
This category contains numerous algorithms, some of which will be discussed in the section
below, as well as some of the research that used this type of algorithm in ETo modelling.

a Particle Swarm Optimisation (PSO)

It is a meta-heuristic optimisation algorithm that takes its cues from the swarm in-
telligence paradigm, which imitates the cooperative behaviour of fish and birds. It is
successfully used in a variety of engineering and scientific applications [30]. The following
section will describe and detail four studies that used the PSO and produced the best results.

Zhu, et al. [19] used the PSO algorithm to determine the ELM model’s parameters
in the best possible way. As a result, a novel hybrid ELM-PSO model was suggested for
estimating daily ETo in the dry region of Northwest China with little input data (2002–2016).
The ELM-PSO approach produced better results compared to the original ELM, RF, and
ANN models, along with six empirical models (including empirical models based on mass
transport, temperature, and radiation). In comparison to equivalent empirical models
using the same inputs, the results showed that machine learning models generated more
accurate ETo estimations. Furthermore, the statistical results showed that the hybrid ELM-
PSO model performed better than the other models for the daily ETo estimate. Overall,
the machine learning and empirical models were outperformed by the ELM-PSO model.
When compared to the other models, the radiation-based ELM-PSO model performed
the best, with a coefficient of determination (R2), MAE, relative root mean square error
(RRMSE), and Nash–Sutcliffe efficiency (NSE) values of 0.935, 0.470 mm/day, 17.1%, and
0.935, respectively. With average R2, MAE, RRMSE, and NS of 0.917, 0.416 mm/day,
20.6%, and 0.917, respectively, the temperature-based ELM-PSO model likewise produced
favourable results.

Roy, et al. [31] assessed a new methodology, which coupled the hierarchical fuzzy
system (HFS) with the PSO algorithm to predict daily ETo. Two separate weather stations
in Bangladesh’s Gazipur Sadar Upazila of the Gazipur district and Ishurdi Upazilla of the
Pabna district were used to collect meteorological data (2004–2019). The HFS-PSO model
was evaluated by comparison to a fuzzy inference system (FIS), an M5 model tree (M5),
and a regression tree (RT) model. The idea of Shannon’s entropy, which takes into account
a number of performance evaluation indices, was used to rank the models. Additionally,
the dataset from a test station was used to assess the suggested models’ generalisation
abilities. The models’ generalisation performances showed that they all performed similarly
well on the test dataset. The HFS-PSO model offered the best performance (with correlation
coefficient (R) = 0.93, the root mean square error (RMSE) = 0.59 mm/d, and Willmott’s
index of agreement (IOA) = 0.94), while the RT model displayed the worst performance
(with R = 0.82, IOA = 0.83, and RMSE = 0.90 mm/d). Overall, the findings suggest that
ETo could be reliably and efficiently modelled using the HFS-PSO model.

Yu, et al. [32] developed a hybrid technique by combining the extreme gradient
boosting (XGB) model with the PSO algorithm. The model employs data from a greenhouse
located in Beijing, China, from 2018 to 2019. Using the meteorological and soil moisture data
gathered during the two-crop planting process as the experimental data and ETo calculated
using the improved FAO-56 PM equation as the reference truth, the effectiveness of the
model estimation was evaluated, and the impact of fewer input variables on the model
estimation was tested. In order to more thoroughly assess the XGB-PSO model’s capacity
for model construction and the generalisation performance of fitting with data from a single
planting process, the data obtained in this study comprised planting process data for spring
and autumn crops. Additionally, the characteristic values were processed using the Min-
Max normalisation approach to increase the precision and speed of model training. The
findings demonstrated that the PSO algorithm could stabilise the XGB model’s parameter
optimisation and that the XGB-PSO model could reliably estimate ETo in a variety of data
modes. Furthermore, the results show that all of the R2 values for the verification set and
all of the R2 values for the test set were greater than 0.9 and 0.92, respectively.
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Alizamir, et al. [33] examined the utility of two evolutionary neuro-fuzzy inference
systems, the ANFIS with PSO and the ANFIS with a genetic algorithm (GA), in simulating
monthly ETo. The data were obtained from two stations in Turkey, Antalya and Isparta,
from 1982 to 2006. Furthermore, the hybrid models were compared with traditional ANFIS,
ANN, and classification and regression tree (CART). The results show that the suggested
evolutionary neuro-fuzzy models outperformed ANFIS, ANN, and CART in terms of
estimates. Furthermore, the precision of ANFIS, ANN, and CART was raised by 40%, 32%,
and 66% for the Antalya and by 14%, 44%, and 67% for the Isparta, respectively, by the
ANFIS-PSO and/or ANFIS-GA.

b Ant Colony Optimisation (ACO)

An optimisation technique was put forth by Ali Dorigo et al. [34]. ACO draws its
inspiration from several ant species’ foraging strategies. These ants leave pheromone trails
on the ground to indicate a good route for the colony’s other ants to take. An analogous
method is used in ant colony optimisation to address optimisation issues. ACO works in
both discrete and continuous domains to solve a variety of static and dynamic optimisation
problems by cooperating as a colony of artificial ants. It distributes the computing power to
a group of artificial ants, which are comparatively basic agents that communicate covertly
via pheromone trails. It is a probabilistic multi-agent method that switches between
iterations using a probability distribution [35].

c Shuffled Frog-Leaping Algorithm (SFLA)

It is a memetic optimisation method that draws inspiration from biological phenomena
such as frog social behaviour [36]. For SFLA, the population is divided into a number of
memeplexes, and a number of frogs from each memeplex are chosen to form a submemeplex
for local evolution. This is done in accordance with the principle that the worst frog learns
from the best frog in the submemeplex or the best frog in the population. The memeplexes
are then shuffled for global evolution after several generations of each memeplex [37].

Mehdizadeh, et al. [38] created and implemented two innovative hybrid models using
two optimisation methods: the SFLA and invasive weed optimisation (IWO), coupled with
the ANFIS. In addition, the proposed hybrid models were contrasted with four empirical
models of various complexity, including Hargreaves–Samani, Romanenko, Priestley–Taylor,
and Valiantzas. This study used Tabriz and Shiraz, two locations in Iran, as its study lo-
cations. The Iran Meteorological Organisation collected daily time-scale meteorological
data from the study sites (2000–2014). According to the evaluation results, the developed
coupled models outperformed the traditional ANFIS, with the ANFIS-SFLA surpassing
the ANFIS-IWO, with RMSE being within 0.15 mm/day, RRMSE being within 4%, mean
absolute error, (MAE) being within 0.11 mm/day, and both a high R2 and NSE of 0.99 in
the test phase at the two study sites. Furthermore, the hybrid ANFIS-SFLA models incor-
porating full predictors provided the study locations with the most precise estimates of the
daily ETo.

d Firefly Algorithm (FA)

The idealised behaviour of the firefly served as the inspiration for the creation of FA
Yang [39]. The flash behaviour of fireflies serves as the basis for the FA. In the FA method,
the solution space is filled with a collection of fireflies, each of which stands for an initial
solution. Each firefly’s target function determines the fitness score, which is then assigned
a light intensity. Fireflies with a high adjacent light will attract nearby fireflies with a low
light intensity [8].

Roy, et al. [40] combined the ANFIS model with four different optimisation algorithms:
FA, PSO, biogeography-based optimisation (BBO), and Teaching-Learning-based optimi-
sation (TLBO) to predict the daily ETo. The daily weather data from three meteorological
stations: Gazipur Sadar Upazilla, Blue Cypress Marsh, and Pine Upland in Bangladesh
and South Florida, USA, were used in this study. Additionally, the performance of these
models was contrasted with that of the typical ANFIS model, whose parameters were
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fine-tuned using the Integrated Least Squares and Backpropagation Gradient Descent
(LSGD) algorithm. Furthermore, decision theories were used to rank prediction models
based on eight statistical indicators and evaluate how accurate the forecasts were. The
results showed that ANFIS-FA produced the most precise ETo forecasts.

Roy, et al. [31] proposed the ANFIS model combined with fifteen optimisation algo-
rithms, namely: FA, BBO, Artificial Bee Colony (ABC), Bee Algorithm (BA), continuous ant
colony optimisation (ACOR), Covariance Matrix Adaptation Evolution Strategy (CMAES),
Cultural Algorithm (CA), Differential Evolution (DE), GA, Harmony Search (HS), Imperi-
alist Competitive Algorithm (ICA), IWO, PSO, Simulated Annealing (SA), and Teaching-
Learning-based optimisation (TLBO), for daily ETo prediction in Bangladesh (2004–2019).
These hybridised ANFIS models’ performances were compared to the traditional ANFIS
model adjusted using a combined Gradient Descent technique and Least Squares Estimate
(GD-LSE) methodology. Eight statistical indices and decision theories based on Shannon’s
entropy, Variation Coefficient, and Grey Relational Analysis were used to rank the perfor-
mances of these ANFIS models. According to the results, the ANFIS-FA model is the best
model (R = 0.993, NSE = 0.986, IOA = 0.996, Kling–Gupta Efficiency (KGE) = 0.989, Median
Absolute Deviation (MADE) = 0.054 mm/d, RMSE = 0.149 mm/d, and normalised root
mean square error (NRMSE) = 3.819%), which can be used to forecast daily ET0 values for
regions with similar climatic circumstances.

Tao, et al. [22] integrated ANFIS with the FA and compared it with the ANFIS model
to predict daily ETo. Three meteorological stations in Burkina Faso’s Sudanian, Sahelian-
Sudanian, and Sahelian regions provided data on a daily time scale: Bobo Dioulasso,
Bur Dedougou, and Ouahigouya, from 1998 to 2012. According to six different models,
six alternative climate input variable combinations were examined. In addition to the
Taylor diagram, several numerical indicators were taken into account while assessing the
performance of the models. The results revealed that for all three stations, the hybrid
ANFIS-FA model (Scatter Index (SIndex) = 0.043, R2 = 0.97, mean absolute percentage error
(MAPE) = 0.035, and RMSE = 0.24) beat the traditional ANFIS-based model (SIndex = 0.068,
R2 = 0.89, MAPE = 0.037, and RMSE = 0.378), and the model with the complete inputs
of climatic data produced the best results. The results also showed that using the FA
significantly enhanced the performance of the traditional ANFIS model.

Shiri, et al. [41] provided a thorough comparison of 12 soft computing models, in-
cluding SVM coupled with the FA (SVM-FA), gene expression programming (GEP), neural
network coupled with PSO algorithm (NN-PSO), neural network-differential evolution
(NN-DE), RF, boost regression tree (BT), model tree (MT), SVM, ELM, and neuro-fuzzy with
grid partitioning (NF-GP). Data from two humid stations in northern Iran (Babolsar and
Sari) from 2001 to 2012 were used to create and test the models. Models based on radiation
and temperature were also developed. The data gathered showed that all of the methods
used were extremely efficient. The temperature-based SVM-FA models (RMSE = 0.324 mm,
SIndex = 0.210, MAE = 0.225 mm, R2 = 0.960, NSE = 0.960) often exhibited the highest ac-
curacy when estimating the ETo. Furthermore, among the radiation-based models, the NF-
GP (RMSE = 0.272 mm, SIndex = 0.100, MAE = 0.203 mm, R2 = 0.973, NSE = 0.974) had the
highest level of accuracy for computing the ETo of both stations.

Wu, et al. [8] suggested a novel kernel extreme learning machine model combined
with the K-means clustering and firefly algorithms (Kmeans-FA-KELM). Furthermore,
the RF, M5P, ANFIS, and KELM-FA models were created to estimate the monthly mean
daily ETo. A total of 26 weather stations in the Poyang Lake basin of South China were
utilised to collect meteorological data from 1966 to 2015, which were then used to train
and evaluate the models. Furthermore, prior to training and testing, the raw weather data
were standardised to 0–1 to suit the needs of the machine learning models. According to
the results, the FA-KELM model and the ANFIS model fared better than the RF and M5
prime model tree (M5P) models. Additionally, the KELM-FA model was surpassed by the
Kmeans-FA-KELM model.

e Grasshopper Optimisation Algorithm (GOA)
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GOA was first developed by Saremi, et al. [42]. It mimics the behaviour of grasshop-
pers to tackle several real-world optimisation problems. Together, grasshopper populations
create a network, and each individual grasshopper is connected through this network to
coordinate and modify its position. The direction of the other network members’ predation
can be cooperatively determined by individuals. Individual grasshoppers are subject to
gravitational and repulsive forces. Grasshoppers can search for the right place thanks to
the repelling force, and they can explore some new places thanks to the gravitational force.
The optimal adaptation region is where an individual grasshopper is located when gravity
and the repulsive force are equal. Since they did not initially know the target area, the
target position was determined to be the optimal adaptation area. The grasshopper will
move towards the network objective. The appropriate range region will be automatically
altered as the grasshoppers’ locations are regularly updated, to strike a balance between
global and local searches. Eventually, all the grasshoppers will congregate and approach
the ideal solution.

f Grey Wolf Optimiser Algorithm (GWO)

Depending on the traits of the grey wolf population, Mirjalili, et al. [43] initially
presented the grey wolf algorithm. It has been demonstrated that it can efficiently discover
the nonlinear function’s optimal solution and that it has both a better estimation accuracy
and a faster processing speed. Due to these benefits, the GWO approach is one of the most
often applied bio-inspired algorithms in recent years. The fundamental goal of the GWO
algorithm is to mimic the grey wolf’s social standing and hunting habits [9].

Maroufpoor, et al. [21] used the GWO algorithm to enhance the ANN model for
estimating daily ETo. The models were built using data collected between 2012 and 2017
and were based on the 31 provinces of Iran. The accuracy of ANN-GWO was evaluated
in comparison to standalone ANN and least square support vector regression (LSSVR).
The outcomes demonstrated that the ANN-GWO model was more accurate than ANN
and LS-SVR, and that the GWO algorithm worked as an effective tool for optimising the
ANNs structure.

Lu, et al. [44] developed a new hybrid model called XGB-GWO, which uses the PSO
algorithm to optimise the extreme gradient boosting (XGB) parameters while using XGB
as the primary regression model for forecasting multi-step ahead ETo (1–3 months ahead).
This was done in comparison with three conventional machine learning models, namely
the Multi-Layer Perceptron (MLP), the standalone XGB, and the M5 model tree (M5).
Monthly meteorological data were gathered for this study from nine weather stations
in South China. The results showed that the XGB-GWO model generally outperformed
the other three machine learning models, with very few differences among the three
models. The model was then followed by the XGB, M5, and MLP models. The GWO-XGB
technique had the best performance in the autumn (RMSE = 0.431 mm/day, NSE = 0.840
and MAE = 0.335 mm/day). Furthermore, the MLP model fared somewhat better than the
other three models in the summer.

Tikhamarine, et al. [45] improved the performance of the ANN approach by com-
bining it with five optimisation algorithms: the GWO algorithm, the PSO algorithm, the
multi-verse optimisation (MVO) algorithm, the whale optimisation algorithm (WOA), and
the ant lion optimisation (ALO) algorithm, to predict monthly ETo. The models were
tested in two different locations: Dar El Beida Station in Algiers, the capital of Algeria, and
Ranichauri Station, located in the foothills of the Indian central Himalayan area (Uttarak-
hand State, India), from January 1994 to December 2012. Three models, Valiantzas-1, 2,
and 3, were used to compare the estimations produced by the hybrid machine learning
models. The comparison results reveal that the ANN-GWO technique with five predic-
tors (Tmin, Tmax, RH, Us, and Rs) produces better predictions at both research sites.
(RMSE = 0.0592/0.0808, NSE = 0.9972/0.9956, R = 0.9986/0.9978, and index of scattering
(IOS) = 0.9993/0.9989) was the evaluation result.

Tikhamarine, et al. [46] investigated the feasibility of a novel hybrid AI model for
calculating monthly ETo in the northern Algerian stations of Algiers, Tlemcen, and Annaba,



Atmosphere 2023, 14, 77 10 of 31

from 2000 to 2013. This model uses support vector regression (SVR) combined with the
grey wolf optimiser (SVR-GWO). The suggested hybrid SVR-GWO approach was con-
trasted with combined SVR-GA, SVR-PSO, ANN, and empirical models (Turc, Ritchie, and
Thornthwaite, and three variations of Valiantzas techniques). The outcomes show that the
SVR-GWO offers highly promising and occasionally competitive outcomes in comparison
to other ML and empirical methods at research stations. Therefore, at the Algiers, Tlem-
cen, and Annaba stations, the evaluation result was (RMSE = 0.0776/0.0613/0.0374 mm,
NSE = 0.9953/0.9990/0.9995, R = 0.9978/0.9995/0.9998, and IOS = 0.9988/0.9997/0.9999).

Dong, et al. [9] explored the performance of the kernel-based nonlinear extension of
Arps decline (KNEA) optimised with four bio-inspired algorithms named: GWO, PSO,
GOA, and salp swarm algorithm (SSA), to forecast monthly ETo. The 51 weather stations
located in China’s seven climate zones between 1966 and 2015 were used for model training
and testing. The FAO-56 PM formula findings were utilised as a control, and four alternative
combinations of meteorological data were applied as a model input. The results revealed
that the KNEA-GWO model outperformed the other three coupling models in general
(on average, R2 was 0.9666, RMSE was 0.3033 mm/day, MAE was 0.2308 mm/day, and
NRMSE was 0.105).

g Intelligent Water Drops (IWD)

This algorithm was first proposed by Hosseini [47]. The IWD algorithm is depen-
dent on water droplets flowing in nature, where each drop answers via moving through
space and altering its surroundings. In nature, countless water trains cooperate in pro-
viding the best path to the destination. In other words, this is a method that relies on
communal intelligence.

Ahmadi, et al. [48] applied SVR and gene expression programming (GEP) as indepen-
dent models. Then, by combining the conventional SVR with the IWD algorithm (i.e., SVR-
IWD), a novel combined technique was presented in order to simulate the monthly ETo.
Six stations in Iran were employed as the study areas. The semi-arid climate is present in
three of the six chosen stations (Arak, Mashhad, and Shiraz), whereas the arid climate is
present in the remaining three (Bandar Abbas, Tehran, and Yazd). The advances of current
research include the hybrid SVR-IWD model as well as the use of the two pre-processing
techniques, Kendall, and entropy, to determine the most significant weather character-
istics of ETo. Two types of empirical equations—the original and calibrated versions of
the Priestley–Taylor and Hargreaves–Samani equations—were also used. It was deter-
mined that the calibrated versions performed better than the original ones. The outcomes
demonstrated that the pre-processing techniques used added various climate inputs to
the models. The overall findings of this study showed that the suggested hybrid SVR-IWD
model performed better than the standalone SVR one. The evaluation yielded the following
results: At the Arak (RMSE = 0.404 mm/day, MAE = 0.303 mm/day, R = 0.980), Mashhad
(RMSE = 0.540 mm/day, MAE = 0.414 mm/day, R = 0.983), Shiraz (RMSE = 0.299 mm/day,
MAE = 0.219 mm/day, R = 0.989), Bandar Abbas (RMSE = 0.457 mm/day,
MAE = 0.370 mm/day, R = 0.962), Tehran (RMSE = 0.559 mm/day, MAE = 0.446 mm/day,
R = 0.978), and Yazd (RMSE = 0.399 mm/day, MAE = 0.314 mm/day, R = 0.986).

h Salp Swarm Algorithm (SSA)

The salp population movement and foraging activity served as inspiration for the
creation of the SSA by Mirjalili, et al. [49]. Salpidae is the class that includes salps. They
resemble jellyfish greatly in both their shapes and movements, as well as having a translu-
cent body. The body swims by spraying water. Salps typically float in a chain in the ocean,
so they may move and forage more easily. One could think of salp’s movement patterns as
a mathematical model. Salps naturally form two groups: leaders and followers. The actions
of the team are guided by the leader, and each individual follower works in turn. The SSA
employs infinitely spaced salps to iteratively approach the best solution, calculating the
best fit of each salp to determine its position [9].

i Whale Optimisation Algorithm (WOA)
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The WOA was put forth by Mirjalili and Lewis [50], where it mimics humpback whales’
foraging habits. It was seen that humpback whales would construct bubble nets to enclose
their prey while engaged in hunting behaviour. The whales (search agents) are separated
from one another throughout the searching phase to maximise search effectiveness.

Mohammadi and Mehdizadeh [51] utilised the SVR model for the modelling of daily
ETo at three weather stations in Iran that experienced various climatic conditions: Isfahan
(arid), Urmia (semi-arid), and Yazd (hyper-arid), from 1 January 2000 to 31 December
2014. The best input combinations for the SVR were determined using a variety of pre-
processing techniques, including relief (RL), random forests (RF), principal component
analysis (PCA), and Pearson’s correlation (COR). Data were normalised using the Min-Max
normalisation strategy to compare pre-processing techniques. The inputs used by the RF
strategy (i.e., RF-SVR) produced superior outcomes than those introduced by the other
approaches, despite the fact that they introduced various predictors to the SVR approaches.
Additionally, a brand-new hybrid model that combines SVR with the WOA was created
and is used for daily ETo modelling. The RMSE, NRMSE, MAE, R2, and NS were applied
to examine the performance of the models. The outcomes revealed that the hybrid RF-
SVR-WOA technique had the best performance of the hybrid models, which outperformed
the SVR-only models. (RMSE = 0.294 mm/d, NRMSE = 7.931%, MAE = 0.204 mm/d,
R2 = 0.981, E = 0.981 for training period; RMSE = 0.265 mm/day, NRMSE = 6.945%,
MAE = 0.193 mm/day, R2 = 0.986, E = 0.986 for testing period).

ELM-based estimation of ETo has become the norm due to its outstanding computing
efficiency and reduced reliance on data. However, when stochastic tuning is absent,
convergence to a local rather than a global optimum frequently occurs. Chia, et al. [10] made
an effort to address this problem by combining three optimisation algorithms, including
the WOA, the ELM, the PSO, and the moth-flame algorithm (MFO), with various levels of
fitness. In this study, daily data were collected from three stations in the states of Sabah
and Sarawak in East Malaysia from 2014 to 2018. The findings demonstrated that the
ELM-WOA outperformed the ELM-PSO and ELM-PSO in terms of the average rank score,
particularly when the simple Taylor skill score was applied as the fitness function. The use
of various fitness functions did not result in any notable results. Furthermore, as the ideal
optimisation algorithm for this study, the WOA was recommended.

Chia, et al. [6] utilised the MLP, SVM, and ANFIS as the basic models to estimate
daily ETo. Additionally, three methods were utilised to hybridise the underlying models:
bootstrap aggregating, Bayesian model averaging (BMA), and an ELM-based non-linear
neural ensemble (NNE). Alor Setar, Kota Bharu, Kuala Lumpur International Airport, and
Kuantan were the four stations chosen for this study, all of which are located in Peninsular
Malaysia and have typical tropical climates (2000–2019). In order to compute the results
of the combined judgments made by the MLP, SVM, and ANFIS for predicting ETo, the
WOA optimised the ELM. A hybrid model with improved accuracy and generalisability
was produced by the ELM-WOA, which was free to combine the positive characteristics
and features of the underlying models. The ELM-WOA was the best model, according to
the Global performance Index (GPI) ranking algorithm, obtaining the highest value.

For the purpose of estimating the daily ETo at four stations in the desert part of China
and four stations in the humid region of China, for the period (1966–2015), Yan, et al. [11]
suggested a unique hybrid extreme gradient boosting (XGB) model with the WOA. With
seven incomplete combinations of meteorological data, its performances were specifically
assessed under the local and three exterior scenarios. The findings showed that, in compar-
ison to their corresponding simplified FAO-56 PM models, the locally tested and trained
XGB-WOA models performed significantly better, with an average reduction in RMSE
of 40.1% and 38.9% in arid and humid regions, respectively. Furthermore, the externally
trained XGB-WOA models’ prediction accuracy with local or external testing data fell by
18.1% or 69.9% in the arid region and 16.8% or 67.9% in the humid region, respectively, as
compared to the local XGB-WOA models. This is a promising method that enables a more
precise daily ETo calculation in the absence of complete current or long-term historical data.
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Tikhamarine, et al. [52] used hybrid SVR along with the whale optimisation algo-
rithm (SVR-WOA) at the Algiers and Tlemcen meteorological stations, located in the
north of Algeria (2000–2013), to calculate the monthly ETo. Through performance met-
rics, the combined SVR-WOA technique’s accuracy was evaluated against the hybrid
SVR-MVO (Multi-Verse Optimiser) and SVR-ALO (ant lion optimiser) techniques. In
comparison to the SVR-MVO and SVR-ALO models, the suggested hybrid SVR-WOA
model was found to be more suitable and effective for calculating the monthly ETo
in the research region. For the testing period at both stations, the following values
were recorded: MAE = 0.0658/0.0489 mm/month, RMSE = 0.0808/0.0617 mm/month,
IOS = 0.0259/0.0165, and the highest values of NSE = 0.9949/0.9989, R = 0.9975/0.9995,
and IOA = 0.9987/0.9997.

j Cuckoo Search Algorithm (CSA)

Yang and Deb [53] introduced the CSA, an optimisation technique based on the
breeding behaviour of cuckoos mixed with Levy flights. The CSA mimics the cuckoo’s
egg-laying and breeding behaviour. Some cuckoos are nest parasites, which means that
they lay their eggs in the nests of other birds. The host birds would either remove the
eggs or build a new nest after spotting these ones. To increase the chance of the eggs
surviving, they imitate this behaviour. Each egg in the nest represents a particular answer,
and the cuckoo egg represents a brand-new solution. The cuckoo frequently replaces the
undesirable eggs in the nest with superior ones. This method uses breeding behaviour to
replace the poorest answer with a new one. Each time a cuckoo bird lays an egg, it only
chooses one nest at random to place it in. The number of nests with eggs of a high calibre is
subsequently passed on to the next generation. An alien egg is likely to be found by a host
cuckoo if there are a certain number of accessible host nests. The alien egg will either be
discarded at this point or a new nest will be constructed [54].

k Flower Pollination Algorithm (FPA)

Yang [55] created the FPA, which is an optimisation algorithm. It simulates the
biological traits of self-pollination and the cross-pollination of flowering plants in nature
using a stochastic global optimisation technique. Plants can be classified into two categories
based on their pollination components: self-pollination and cross-pollination.

Wu, et al. [54] integrated the ELM with four optimisation algorithms: FPA, ACO, GA,
and the cuckoo search algorithm (CSA) to estimate the daily ETo. Eight meteorological
sites in China with varying climates provided data from 2001 to 2015 that were used to
train, validate, and test the models. These models were contrasted with the traditional ELM
model parameterised using the grid search method. The findings demonstrated that the
ETo values predicted by all ELM models and the matching FAO-56 PM values were in good
agreement. During testing, the ELM-FPA model (R2 = 0.9930, RMSE = 0.1589 mm/day,
NRMSE = 5.5406%, and MAE = 0.1188 mm/day) fared a little better than the ELM-CSA,
both of which outperformed the ELM-ACO and ELM-GA models, with the standalone ELM
model coming in third. The findings supported the ability of bio-inspired optimisation
algorithms, particularly the FPA and CSA, to enhance the daily ETo prediction accuracy of
the traditional ELM model in China’s various climates.

l Artificial Bee Colony (ABC)

The ABC Karaboga [56] is an optimisation algorithm designed to mimic the rational,
inherently social behaviour of real honey bees when constructing meals. A swarm is made
up of a group of honeybees that have been given specific duties to complete and have done
so successfully through social cooperation. Honeybees use a variety of unusual techniques,
such as the waggle dance, to precisely find food sources and look for new ones. Due to their
distinctive behaviour, honeybees are a perfect option for the development of intelligent
search algorithms. The ABC algorithm uses the behaviours of three different bee kinds:
employed bees, observers, and scout bees, which are associated with three different sorts
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of actions: (1) searching for new food sources; (2) hiring bees to collect the food; and
(3) abandoning exploited food sources [40].

m Bee Algorithm (BA)

Pham, et al. [57] developed the Bees Algorithm, which uses the honeybees’ organic
foraging habits as inspiration to obtain the best answer. The algorithm conducts a neigh-
bourhood search that is both exploitative and exploratory [58].

n Continuous Ant Colony Optimisation (ACOR)

The first ant-based continuous optimisation method that fits into the ACO framework,
Socha and Dorigo [59], ACOR, is a straightforward extension of ACO. It is possible to
classify ACOR as a competitive strategy. Additionally, ACOR’s performance may be
modified to meet goals for either greater robustness or greater efficiency. Furthermore,
ACOR is a definite victor when compared to other ant-related continuous optimisation
methods that have been put forth in the past. ACOR outperformed these techniques by
roughly two orders of magnitude.

o Ant Lion Optimiser (ALO)

Mirjalili [28] presented the ant lion optimiser (ALO) method and demonstrated its
efficacy by resolving three traditional engineering problems in addition to nineteen different
mathematics benchmark problems. The ALO algorithm was influenced by the ant lions’
clever hunting techniques and interactions with their preferred ant prey. As a result, the
ALO algorithm includes a mathematical representation of the primary processes in ant lion
hunting [60].

p Moth-Flame Optimisation Algorithm (MFO)

MFO was developed by Mirjalili [61] and was primarily motivated by the way that
moths naturally travel in spirals towards flames or artificial light.

q Teaching-Learning-Based Optimisation (TLBO)

It is a population-based meta-heuristic search technique that converges to the overall
best solution using a population of solutions. The foundation of TLBO approaches is the
concept of teaching and learning processes in a classroom, or the impact of a teacher on
students [62]. This algorithm takes into account the teacher and learner phases, which
are the two fundamental learning processes: learning from the teacher and learning from
other students’ interactions [63]. The TLBO approach is based on how a teacher’s influence
affects the students’ performance in a class [64].

r Fruit fly Optimisation Algorithm (FOA)

The FOA, is based on how fruit flies acquire their food. The fruit fly has superior
sensory and perceptive abilities to those of other species, particularly in osphresis and
eyesight. Fruit flies have osphresis organs that can detect a wide range of aromas in the air,
and they can even detect food sources 40 km distant [65].

Using generalised regression neural networks (GRNN) and mathematical morphology
clustering (MMC), Ruiming and Shijie [66] created a prediction model for the daily ETo of
Tieguanyin. The GRNNs smoothing factor was enhanced using the FOA. The proposed
model (MMC-GRNN-FOA) was trained and tested using meteorological data collected
between January 2018 and October 2019 in the Dabaofeng tea garden in Anxi County,
Fujian Province, China. Following a correlation analysis of the microclimate features of
the tea garden, the average air temperature, sunlight hours, and relative humidity were
chosen as the best acceptable input indexes for GRNN. The model validity coefficient
(MVC), RMSE, and MAE were utilised to assess its performance. The outcomes of various
seasons’ predictions (March, June, August, and October) demonstrate how effective and
accurate the suggested model is, as well as how well-suited it is to changing weather
circumstances. The analysis produced the following findings: MVC = 0.982, 0.976, 0.985
and 0.981, respectively; MAX = 0.431, 0.472, 0.345 and 0454, respectively; RMSE = 0.271,
0.189, 0.223 and 0.283 respectively.
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3.1.2. Evolutionary Computation-Based Algorithms (EC)

Evolutionary algorithms are approaches to finding the answer to an optimisation
problem that draw on concepts from biological evolution, such as reproduction, mutation,
and recombination. In order to arrive at progressive approximations of the ideal answer,
the principle of survival was applied to a set of probable solutions [67]. This section lists
only a few of the most popular algorithms of this type reported in the literature and cites
references that have used these algorithms for ETo modelling.

a. Genetic Algorithm (GA)

The GA developed by Holland [68] is reliable, strong, and optimised, based on the
laws of natural selection and evolution. The natural processes of biological evolution
served as the basis for the GA, which has been frequently used to produce excellent
answers to optimisation problems [24]. Briefly stated, the approach starts by generating
a random population of chromosomes that represent potential answers to a certain problem.
The fitness function that determines the likelihood of the selection stage should then be
determined for each chromosome. The crossover operation is performed on a pair of chosen
chromosomes to combine two different chromosomes in order to create a new, superior
progeny. As a result, genes located at several randomly chosen chromosome locations are
changed. This last genetic modification is referred to as a “mutation”. The descendants of
genetically altered individuals will be the next population to be studied [69].

Jiao and Hu [70] used the GA with the backpropagation network (BP) and three other
optimisation techniques (RF model, the LSSVR model, and the Bi-LSTM model) to simulate
the ETo values. Daily weather information from eight meteorological sites was used in
northern Xinjiang, China, between 2000 and 2020. The models were evaluated using
five statistical performance evaluations: the formulas for the GPI, MAE, mean bias error
(MBE), R2, and RMSE. The findings demonstrate that the GA-BP model’s total simulation
impact is the best, with an RMSE = 0.2542 mm/day, MAE = 0.1706 mm/day, MBE = −0.0039
and R2 = 0.9918.

b Differential Evolution (DE)

DE is a straightforward, evolutionary process that combines the parent individually
with several other individuals from the same population to produce new candidate so-
lutions. Only when a candidate is fitter than the parent does it take its place. This is
an avaricious selection strategy that frequently outperforms traditional strategies [71].

Majhi and Naidu [30] examined how well a differential evolution-based radial ba-
sis function neural network (RBFDE) can simulate weekly ETo as a function of climatic
variables in various agro-climatic zones in a wet, sub-humid region in East-Central India
(2001 to 2019). The new RBFDE model’s performance is compared against models based
on particle swarm optimisation, radial basis function neural networks, multilayer artificial
neural networks, and the traditional empirical equations of Hargreaves, Turc, Open-Pan,
and Blaney–Criddle. The results revealed that the soft computing models generate better
ETo estimates than empirical techniques. RBFDE outperforms other soft computing models
such as RBFPSO, RBFNN, and MLANN.

c Biogeography-Based Optimisation (BBO)

BBO was first developed by Simon [72], who details the process by which many
biological organisms move from one habitat to another. It also discusses how each species
came into being and went extinct. Geographically remote places that are home to various
animals or plant species are referred to in this method as habitats or islands.

d Covariance Matrix Adaptation Evolution Strategy (CMAES)

CMAES is a powerful global evolutionary optimisation technique that does not use
derivatives to solve continuous optimisation issues, Hansen, et al. [73]. Recombination,
mutation, and selection are the three essential processes that the CMAES executes to carry
out the optimisation tasks, just like any other evolutionary optimisation method.
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e Imperialist Competitive Algorithm (ICA)

The ICA, introduced by Atashpaz-Gargari and Lucas [74], is motivated by the socio-
political behaviours of people as a strategy for human social evolution.

To predict the daily ETo, Zeinolabedini Rezaabad, et al. [63] combined the ANFIS with
four optimisation algorithms: ICA, IWO, BBO, and TLBO. The data were collected from
the synoptic station of Kerman, Iran, from 2000 to 2015. Additionally, the ETo values were
estimated using relatively new empirical equations and compared with the FAO-56 PM
equation. The results showed that the hybrid models were more capable of estimating
the ETo values than empirical equations. Furthermore, when compared to other models,
ANFIS-ICA (R = 0.99, RMSE = 0.5, and NSE = 0.98) performed better in terms of both
statistical and graphical approaches and error distribution; as a result, it was deemed to be
the best model.

f Invasive Weed Optimisation (IWO)

Mehrabian and Lucas [75] initially presented the IWO as a kind of rational and
evolutionary optimisation algorithm that draws inspiration from the way weeds grow,
survive, and adapt. According to the IWO definition, a weed is a plant that grows and
produces in undesirable locations, poses a major threat to other plants, and impedes their
development. The basic and natural characteristics of weeds, as well as seed generation,
development, and survival conflict in a colony, are the basis of this set of rules, which,
while simple, are very successful and quick in identifying the ideal parameters [38].

g Cultural Algorithms (CA)

CA are an evolutionary model that Reynolds [76] introduced as being drawn from the
natural process of cultural evolution. It comprises areas for beliefs and populations, as well
as a communication link between them, to regulate the standard of common knowledge
and its kind.

h Water Wave Optimisation (WWO)

WWO is derived from shallow water wave theory [77]. It provided a number of
benefits, including a balanced approach to exploitation and exploration. Additionally, it
employs various operators, including refraction, propagation, and breaking operators, to
broaden the population [78].

Sayyahi, et al. [78] assessed the capacity of soft computing models to simulate the
daily and monthly ETo using MLP and in combination with the WWO, PSO, and GA
algorithms. The data were gathered between 1987 and 2000 by the Iranian meteorological
station in the Aidoghmoush basin. Prior to creating the model, monthly and daily ETo
values were subjected to a principal component analysis (PCA) in order to identify the
significant delays, i.e., the inputs that have the greatest impact on daily and monthly ETo
values. Soft computing models were utilised to estimate daily, and monthly ETo using the
variables lagged up to seven days and seven months. The outcomes demonstrated that,
in comparison to the MLP-PSO, MLP-GA, and MLP models in the daily scale models, the
MAE of the MLP-WWO is 1.3%, 2.5%, and 3.3% lower. Additionally, in comparison to the
MLP-PSO, MLP-GA, and MLP models on a monthly basis, the MAE of the MLP-WWO
was 7.2%, 14%, and 17% lower.

3.1.3. Physics-Based Algorithms (PH)

In these sections, we briefly review all the studies that applied physics-based algo-
rithms that are used in ETo modelling. Quantum theory, electrostatics, electromagnetics,
Newton’s gravitational law, and the laws of motion are some of the key topics covered by
these algorithms. Examples of physics-inspired algorithms include:

a Gravitational Search Algorithm (GSA)

The effective meta-heuristic GSA [79] was modelled after Newton’s equations of
motion and gravitation. The performance of the solutions is viewed in GSA as the mass of
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the objects, with search agents playing the role of interacting with physical objects. Based
on the gravitational force, the particles can draw in additional entities. By this force, lighter
things are pushed towards the heavier ones. Although heavy objects are thought to be
superior solutions, they will travel more slowly than lighter objects. The research that used
this algorithm and got the best results was conducted by Muhammad Adnan, et al. [80],
who used two machine learning models: least squares support vector regression with
a gravitational search algorithm (LSSVR-GSA) and the dynamic evolving neural-fuzzy
inference system (DENFIS), to predict the monthly ETo. The models were built and tested
using data collected from three stations in China’s Jinsha River basin between 1961 and
2012. Furthermore, these techniques were compared with the M5 model tree (M5) approach.
Three statistics—the determination coefficient, mean absolute error, and root mean square
error—are used to gauge how accurately the models estimate. The results show that the
accuracy of LSSVR-GSA is somewhat higher than that of the DENFIS and M5RT models.

b Multi-Verse Optimiser (MVO)

Three cosmological notions—the white hole, black hole, and the wormhole—serve
as the foundation for this algorithm’s primary sources of inspiration. These three con-
cepts each have mathematical models that have been established for exploration, exploita-
tion, and local search, respectively. The MVO was developed by Mirjalili, et al. [81].
Tikhamarine, et al. [52] and Tikhamarine, et al. [46] used this algorithm, but it did not
produce the best results.

c Simulated Annealing Optimisation Algorithm (SA)

The SA was first developed as a search engine for combinatorial optimisation
problems [82]. It is an iterative meta-heuristic search algorithm that simulates the gradual
cooling process of metals.

d Harmony Search (HS)

HS, a meta-heuristic optimisation algorithm that has been created to imitate musicians’
improvisation, was initially suggested by [83]. The algorithm is based on the fact that
the main goal of listening to music is to seek out perfect harmony, which is incorporated
into the search process to find the best solution to a problem requiring optimisation, as in
Roy, et al. [40], who used it and also did not achieve the best results.

e Water Cycle Optimisation Algorithm (WCA)

The WCA takes its inspiration from nature and is based on observations of the water
cycle and how rivers and streams naturally flow in the direction of the sea, and it was
developed by Eskandar, et al. [84].

3.1.4. Hybrid Meta-Heuristic Algorithms

Hybrid algorithms are sets of two or more algorithms that work in concert and
complement one another to create a positive synergy. An algorithm’s capacity to search
better is thanks in large part to hybrid algorithms. In order to create a hybrid algorithm,
hybridisation seeks to integrate the positive aspects of each algorithm while also minimising
any significant negative aspects. The results of hybridisation can typically be improved
in terms of either computational correctness or speed [85,86]. Hybridisation boosts the
algorithms’ effectiveness and precision. The problems of randomisation, intensification,
and trapping in local minima are overcome by combining the optimisation procedures [87].

a Adaptive Dynamic Algorithm Coupled with the Grey Wolf Optimiser (PRSFGWO)

El-Kenawy, et al. [13] developed a new hybrid adaptive dynamic PRSFGWO that
was coupled to several machine learning regressors, such as the Decision Tree Regressor
(DET), the Multi-Layer Perceptron Regressor (MLP), the Support Vector Regressor (SVR),
the Random Forest Regressor (RFR), and the K-neighbours Regressor (KNR), in order to
construct novel combined ensemble techniques for forecasting the daily ETo under the
semi-arid climate of Andalusia, Spain. The study’s objective was to improve the accuracy
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and reliability of the base learners by comparing them with other widely used optimisers
such as GWO, PSO, GA, and WOA. The prediction models’ predictive capability was
assessed using various statistical metrics combined with ANOVA testing. The results show
that the KNR algorithm performed better as a base learner. The MLP, SVR, and KNR-based
techniques displayed improved performances when combined with PRSFGWO, which
reduced prediction errors by up to 68%.

b Water Cycle-Moth Flame Optimisation (WCAMFO)

For the purpose of resolving numerical and restricted engineering optimisation prob-
lems, Khalilpourazari and Khalilpourazary [88] devised a combined method based on
the Water Cycle and Moth-Flame Optimisation techniques. The Water Cycle algorithm
incorporates the spiral movement of moths from the Moth-Flame Optimisation algorithm to
improve its ability to be exploited. Additionally, the streams in the Water Cycle algorithm
can alter their positions utilising a random walk in the new hybrid method to further
boost randomisation (Levy flight). The Water Cycle algorithm’s capacity for exploration is
considerably enhanced by the random walk.

Adnan, et al. [89] examined the potential of a new hybrid neuro-fuzzy approach called
ANFIS-WCMFO for simulating the monthly ETo. The case study locations for this study are
the Bangladeshi districts of Dhaka and Mymensingh, which are situated on the Buriganga
River and east of the Jamuna River (1982–2017). Various statistical criteria and graphical
tests were employed to compare the outcomes of this method with those of standalone
ANFIS and the two hybrid methods, ANFIS-WCA and ANFIS-MFO. This demonstrated
the need for hybrid techniques for fine-tuning the ANFIS algorithm for the ETo estimate.
Among the hybrid techniques, ANFIS-WCMFO outperformed ANFIS-WCA and ANFIS-
MFO. The evaluation result showed that the improvements in RMSE were obtained by
applying the ANFIS-WCA, ANFIS-MFO, and ANFIS-WCMFO hybrid approaches as 2.7%,
6.9%, and 15.1% for one station and 0.6%, 7.3%, and 12.4% for another station, respectively.

3.2. Review and Survey Articles

This subsection will highlight the past review papers in order to provide academics
and researchers with insight into this area.

This review by Raza, et al. [4] indicated that the use of soft computing models in
the estimation of ETo had received enormous interest in recent decades. Additionally,
many studies have been reported in the literature to apply soft computing models to the
improvement of ETo estimation. Furthermore, in this review, they relied on dividing the
papers according to accuracy, structure, and flexibility, and also provided some possible
suggestions for future research in this area. Krishnashetty, et al. [25] reviewed the research
on cognitive computing models that have been applied to the calculation of ETo. The
analysis demonstrates that the ANN technique performs better than both the SVM and
GP. The second-order neural network (SONN), one of the ANN models, shows the most
promise. Jing, et al. [26] performed a thorough analysis to determine the viability of
evolutionary computing (EC) models and their potential for modelling ETo in a variety
of situations. Using the review as a foundation, an evaluation and assessment of the
techniques are also offered. Finally, a number of potential future study directions for the
examinations of ETo employing EC are suggested.

4. Discussion

The main objective of this research is to offer valuable information on hybrid meta-
heuristic algorithms with ML models to forecast ETo data. The accurate estimation of ETo
data is crucial for several reasons. It helps manage water resources, calculate crop water
needs, choose crop patterns for agricultural lands, analyse water balances, and calculate
water budgets, especially in arid environments where fresh water is scarce and resources
are limited. Therefore, decision-makers have valuably benefited from using hybrid ML
models that offer them a clear scientific view. This paper reviews the recent ETo forecasting
research, where the OBH models have been studied in detail. The publications selected
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for this review showed that there had been a growing tendency towards applying hybrid
techniques in the field of ETo modelling recently. Additionally, meta-heuristic algorithms
have enhanced single ML models by choosing the most appropriate hyperparameters for
the nominated model, saving time, and avoiding slipping into local minima instead of
a global solution.

This survey differs from many earlier reviews in both its recentness and its focus on
the literature that uses OBH models. Furthermore, it contributes to a suggested taxonomy
of the related literature. Evolving a taxonomy of the published works imposes a sort of
organisation on the mass of publications. On the other hand, the taxonomy’s structure
offers scholars the crucial context for their research. It begins by outlining prospective
avenues of investigation for the area. Second, a taxonomy might highlight research gaps
that can be considered for potential future directions.

In this study, meta-heuristic algorithms are divided into four categories: swarm
intelligence-based algorithms, evolutionary computation-based algorithms, physics-based
algorithms, and hybrid meta-heuristic algorithms. Based on the analysis of the results, the
following must be highlighted:

About 47% of the total papers reviewed in this study integrated the ML models
(i.e., ANN, ANFIS, and SVR) with one meta-heuristic algorithm. It was noted that the
hybrid techniques were superior to the standalone ML approaches in terms of prediction
accuracy, depending on the various statistics adopted in these papers.

Furthermore, around 47% of the total papers reviewed in this study used several
meta-heuristic algorithms to optimise the ML models. It was observed that the swarm
intelligence-based algorithms were superior to both the evolutionary computation-based
and physics-based algorithms.

Finally, about 6% applied hybrid meta-heuristic algorithms to tune the ML models,
and the results were compared with ML models that integrated with several single meta-
heuristic algorithms. The comparison shows that the hybrid meta-algorithms were more
accurate than single meta-heuristic algorithms when combined with the ML models. Ac-
cordingly, the development of the field of meta-heuristic algorithms works in parallel ways
that either create new meta-heuristic algorithms or hybridise two current algorithms to
achieve the benefits of both algorithms.

5. Analysing Scientific Maps

Although there is a steady flow of both applied and theoretical literature, staying
abreast of the literature is a complex process. To arrange the results of the prior literature,
highlight issues, and determine research gaps, some scholars have proposed the method
of systematic reviews and meta-analyses. Systematic reviews increase understanding,
improve the study, and summarise the findings of previous studies. Systematic reviews
already have problems with trustworthiness and impartiality because they depend on the
author’s viewpoint to rearrange the results from the preceding literature. To end, various
authors have proposed ways for holistic academic research and analysis based on the
R-tool and VOS viewer to promote transparency in presenting the outcomes of the previous
research (Aria and Cuccurullo, 2017). High dependability and openness in drawing conclu-
sions from the research are hallmarks of the bibliometrics method. Additionally, these tools
are easy to use and are widely available since they are developed and shared by the public.
As shown in the following sections, the bibliometric approach was used for this research.

5.1. Main Information

Table 1 provides information on the chosen studies, including the authors, location,
time frame, techniques, predictors, target prediction, and rating criteria. The following are
the results of an examination of many papers on ETo forecasting:
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Table 1. Summary of application of various kinds of hybrid models in reference evapotranspiration forecasting.

Authors Location Size of Data Scale Predictors Target Models Used Best Model Measures of Accuracy

[51] Iran 2000–2014 Daily Tmin, Tmax, RH, U2,
Rs, SSD ETO

SVR, RL-SVR-WOA,
RF-SVR-WOA,

PCA-SVR-WOA,
COR-SVR-WOA

RF-SVR-WOA NSE, NRMSE, MAE,
R2, RMSE

[30] India 2000–2019 Weekly Tmin, Tmax, Rs, BSS,
WS, RH1, RH2, EP ETO

ML-ANN, RBF-PSO,
RBF-NN, RBF-DE RBF-DE NSE, RMSE, R2, MAPE

[62] Bangladesh and
USA

2004–2019,
2009–2014,
2007–2010

Daily
Tmin, Tmax, WS, RH,

SSD, sensible heat flux,
latent heat

ETO

ANFIS, ANFIS-BBO,
ANFIS-FA, ANFIS-PSO,

ANFIS-TLBO, LSGD,
ANFIS-FA

R, UC, RRMSE, SI, MAE,
MBE, Tstat, U95, GPI, NSE,
KGE, U, UB, UV, Shannon’s

entropy, COV, GRA

[31] Bangladesh 2004–2019,
2015–2020 Daily Tmin, Tmax, RH, WS,

SSD, Rs ETO
RT, FIS, M5Tree, HFS,

HFS-PSO HFS-PSO
R, RMSE, NRMSE, Acc,

NSE, IOA, MAE, MADE,
Shannon’s entropy

[9] China 1966–2015 Monthly Tmin, Tmax, RH, WS,
Rs, Ra ETO

KNEA, KNEA-SSA,
KNEA-PSO, KNEA-GWO,

KNEA-GOA
KNEA-GWO NRMSE, RMSE, MAE, R2

[13] Spain 2000–2020 Daily Tmean, Tmin, Tmax,
RH, WS ETO

PRSFGWO, MLP, RFR,
SVR, KNR, DET PRSFGWO MAE, RMSE, RRMSE, R2,

IOA, ANOVA tests

[66] China 2018–2019 Daily Tmean, SSD, RH ETO
MMC, GRNN,
GRNN-FOA GRNN-FOA MVC, MAE, RMSE

[48] Iran 1973–2018 Monthly Tmean, Tmin, Tmax,
RH, SSD, U2 ETO SVR-IWD, SVR, GEP SVR-IWD R, MAE, RMSE

[78] Iran 1987–2000 Daily and Monthly the lagged ETo values ETO
MLP, MLP-GA,

MLP-WWO, MLP-PSO MLP-WWO NSE, PBIAS, MAE,
Scatter plots

[22] Burkina Faso 1998–2012 Daily Tmin, Tmax, RH, WS,
Rs, Vp ETO ANFIS-FA, ANFIS ANFIS-FA TD, MAPE, RMSE, RMSRE,

MRE, MAE, R2, RE, SIndex

[41] Iran 2001–2012 Daily T, RH, WS, Rs ETO

ELM, NF-GP, NF-SC,
MARS, MT, RF, BT,

SVM, GEP
SVM-FA and NF-GP NSE, RMSE, SIndex,

MAE, R2

[32] China 2018–2019 Hourly Tmean, VPD, RH,
RS, SSWC ETO

XGB-PSO, CatBoost,
Bagging, XGB, AdaBoost,

RF, ANN, KNN, Tree
XGB-PSO RMSE, MSE, MAE, R2

[8] China 1966–2000,
2001–2015 Monthly Tave, Tmax, Tmin, RH,

WS, SSD ETO
RF, M5P, ANFIS, KELM-FA,

Kmeans-FA-KELM Kmeans-KELM-FA NSE, RMSE, MAE, SI, R2

[54] China 2001–2015 Daily Tmin, Tmax, RH,
WS, Rs ETO

ELM, ELM-FPA,
ELM-ACO, ELM-GA,

ELM-CSA
ELM-FPA MAE, RMSE, NRMSE, R2
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Table 1. Cont.

Authors Location Size of Data Scale Predictors Target Models Used Best Model Measures of Accuracy

[63] Iran 2000–2015 Daily
Tmin, Tmax, RH, U2,

Rs, SSD, Epan,
ETo-FAOPM56

ETO

ANFIS, ANFIS-IWO,
ANFIS-BBO, ANFIS-TLBO,

ANFIS-ICA
ANFIS-ICA NSE, MAE, IOA, R, RMSE

[33] Turkey 1982–2006 Monthly Tave, RH, WS, Rs ETO
ANN, CART, ANFIS-PSO,

ANFIS-GA, ANFIS
ANFIS-PSO,
ANFIS-GA R2, NSE, RMSE

[10] Malaysia 2014–20 Daily Tmean, Tmin, Tmax,
RH, Rs, U2 ETO

ELM, ELM-WOA,
ELM-PSO, ELM-MFO ELM-WOA R2, RMSE, MAE

[6] Malaysia 2000–2019 Daily Tmean, Tmin, Tmax,
RH, Rs, WS ETO

ANFIS, SVM, MLP, BMLP,
BSVM, BANFIS, BMA-E,

ELM-WOA-E
ELM-WOA-E MBE, RMSE, R2, MAE

[70] China 2000–2020 Daily, Monthly, and
Seasonal Scales

Tmean, RH, WS,
Rainfall, VPD, Ra ETO BP-GA, Bi-LSTM, LSSVR BP-GA, LSSVR GPI, MAE, MBE, R2, RMSE

[80] China 1961–2012 Monthly Tave, Ra, ETo ETO
LSSVR-GSA, DENFIS,

M5RT, LSSVR LSSVR-GSA R2, MAE, RMSE

[89] Bangladesh 1982–2017 Monthly Tmin, Tmax, RH, U2 ETO

ANFIS, ANFIS-WCA,
ANFIS-MFO,

ANFIS-WCAMFO
ANFIS-WCAMFO R2, MAE, NSE, RMSE

[38] Iran 2000–2014 Daily Tave, Tmax, Tmin, RH,
U2, Rs, SSD ETO

ANFIS, ANFIS-SFLA,
ANFIS-IWO ANFIS-SFLA NSE, RRMSE, MAE,

R2, RMSE

[21] Iran 2012–2017 Monthly Tmin, Tmax, RH, U2,
SSD, P ETO ANN-GWO, ANN, LSSVR ANN-GWO GPI, R2, MAE, U95, SI, TD

[11] China 1966–2015 Daily Tmin, Tmax, RH,
U2, SSD ETO XGB-WOA, XGB XGB-WOA NSE, MAE, RMSE

Lu, et al.
[44] China 1966–2015 Monthly T, RH, WS, SSD ETO XGB- GWO, MLP, M5, XGB

MLP best in summer,
XGB- GWO best

in autumn
RMSE, NSE, MAE

[45] India and
Algeria

1994–2012,
1990–2016 Monthly Tmin, Tmax, RH,

WS, Rs ETO

ANN, ANN-ALO,
ANN-GWO, ANN-MVO,
ANN-PSO, ANN-WOA,

ANN-GWO IOA, NSE, R, IOS, RMSE
Scatter plots and TD

[52] Algeria 2000–2013 Monthly Tmin, Tmax, RH,
WS, Rs ETO

SVR, SVR-ALO, SVR-MVO,
SVR-WOA, SVR-WOA

NSE, RMSE, IOA, R, MAE,
IOS, and graphical

interpretation
(time-variation and scatter

plots, and TD).

[46] Algeria 2000–2014 Monthly Tmin, Tmax, RH,
WS, Rs ETO

SVR, SVR-PSO, SVR-GA,
SVR-GWO SVR-GWO IOA, NSE, R, RMSE
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Table 1. Cont.

Authors Location Size of Data Scale Predictors Target Models Used Best Model Measures of Accuracy

[40] Bangladesh 2004–2019 Daily Tmin, Tmax, RH,
WS, SSD ETO

ANFIS, ANFIS-ABC,
ANFIS-BA, ANFIS-BBO,

ANFIS-ACOR,
ANFIS-CMAES,

ANFIS-CA, ANFIS-DE,
ANFIS-FA, ANFIS-GA,
ANFIS-HS, ANFIS-ICA,

ANFIS-IWO, ANFIS-PSO,
ANFIS-SA, ANFIS-TLBO,

ANFIS-LSE-GD

ANFIS-FA NRMSE, NSE, IOA, KGE,
RMSE, MAE, MADE, R

[19] Northwest
China 2002–2016 Daily Tmin, Tmax, RH,

U2, Rs ETO ELM-PSO, ANN, RF, ELM, ELM-PSO R2, RRMSE, NSE, MAE
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5.2. Country Scientific Production

The country scientific production map shows the publication production of authors,
institutions, and nations. One of the most important ways to help academic and industrial
institutions thrive is to increase the number of published scientific papers. Figure 3 shows
a graphic map of OBH models to predict the ETo time series. This figure has four colours.
The darkest blue refers to the highest scientific productions, while the bright blue relates to
the fewest scientific productions. The grey area shows the lack of scientific production out-
put. China and Iran have the highest scientific production, which can improve researchers’
and policymakers’ scientific views.
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5.3. Cloud of Words

The most frequently used and significant terms from the titles of previous studies
are explored in this word cloud. In order to offer a summary and reorganise the data,
Figure 4 delivers the key terms from the research literature. It can be seen in various
word sizes. Larger word sizes indicate greater occurrence rates in the studies. Terms
with fewer occurrences in the established literature tend to be thinner. Daily and monthly
reference evapotranspiration prediction and optimisation algorithms are all crucial parts of
the existing body of knowledge in this regard. The literature outcomes recommend that
optimisation algorithms are essential considerations for improving ML techniques in the
ETo prediction models.
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5.4. Distribution Based on Affiliations

Twelve different affiliations were represented in the papers included in this analysis
that discussed the prediction of ETo using OBH models (see Figure 5).
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There are a total of 33 papers. The number distribution of the selected articles on the
prediction of ETo reveals that the most prolific writers are found at Ilia State University (7 pa-
pers). Then, Hohai University (5 papers), followed by Bangladesh Agricultural Research
Institute, Northwest Aandf University, and School of Hydraulic and Ecological Engineering,
each of which had four papers. The following universities each contributed three papers:
Mansoura University, Universidade de Lisboa, University of Sciences, Technology Houari
Boumediene, and Urmia University,. At last, we have Duy Tan University, G.B. Pant Univer-
sity of Agriculture and Technology, and Kerman Graduate univ. of Advanced Technology,
all of which contributed two papers each.

5.5. Co-Occurrence

Co-occurrence networks are built using frequently occurring terms from the existing
literature. Academics, researchers, and practitioners in a given field may greatly benefit
from the co-occurrence analysis network structure, which can shed light on the underlying
theoretical frameworks of that discipline. In order to better comprehend commonly used
terms, Figure 6 exhibits their co-occurrence networks.

The network of topics in the prior literature is reflected in the co-occurrence. It
is constructed of interconnected lines and knots. Regarding the literature, the largest
knots represent the most common themes. Since researchers may use data networks
to aid their attempts to reorganise the available information and results, optimisation
algorithms are among the most frequently used phrases by previous academics in the ETo
prediction models.
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6. Recommendations

The most significant suggestions provided by recent previous studies for potential
future ETo modelling research are outlined in this section.

Mohammadi and Mehdizadeh [51] recommended combining AI methods such as
ANFIS and MLP with optimisation algorithms such as GA, PSO, FFA, and KHA to create
different hybrid models. Mehdizadeh, et al. [38] expressed a similar viewpoint when they
proposed merging the ANFIS and SVM with additional bio-inspired optimisers, such as the
FA, WOA, GOA, krill herd algorithm (KHA), and the dragonfly algorithm (DFA) to provide
a variety of hybrid models for ETo modelling. Furthermore, Roy, et al. [31] advised that
future studies may focus on examining and contrasting additional bio-inspired optimisation
algorithms for the HFS models’ parameter tweaking procedures. Zhu, et al. [19] mentioned
that the hybrid PSO-ELM model is an effective way to estimate the daily ETo under various
input configurations. Roy, et al. [62] demonstrated how, in some places, the seasonal
variance of ETo is frequently far larger than the variation in daily anomalies. Future
studies might focus on creating AI-based prediction models that take into account this
seasonal change in the ETo values. El-Kenawy, et al. [13] recommended re-evaluating the
same hybrid method (i.e., PRSFGWO) in various climatic conditions. Ahmadi, et al. [48]
suggested combining AL-based ANN and ANFIS approaches with a variety of optimisation
methods, including GA, PSO, FA, and SFLA, to suggest other forms of combined models.
Furthermore, it is recommended that the novel hybrid techniques (i.e., SVR-IWD) be
applied to hydrological research studies in order to simulate the time series of hydrological
parameters such as evaporation, precipitation, stream flow, and other variables.

According to Sayyahi, et al. [78], using the proposed model in their study (MLP-
WWO) was recommended to predict hydrological phenomena and other hydrological
variables such as precipitation, temperature, and runoff. Maroufpoor, et al. [21] recommend
using one of the most effective technologies for supplying meteorological information:
the geographic information system (GIS) and satellite data. The lack of meteorological
stations may be resolved by analysing AI models with satellite input data to estimate ETo.
Tikhamarine, et al. [45] suggested that additional meta-heuristic algorithms, such as the
GOA, MFO, and the crow search algorithm, may also be employed to estimate monthly ETo.
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From the above analysis and observations, we may highlight some insights that should
be helpful for any future developments in this field:

The SI algorithms are superior to the other meta-heuristic types based on the findings
of earlier studies and identifying the best models. So, it advises using it going forward for
that reason.

Recently, hybrid meta-heuristic algorithms, such as WCAMFO (i.e., combining swarm
intelligence-based and physics-based algorithm types), have proven efficient. Accordingly,
extending the existing results by investigating various hybrids of meta-heuristic algorithms
would be a beneficial next step.

The use of the OBH technique in ETo forecasting has recently increased. Nevertheless,
there is still an opportunity for improvement by investigating different combinations of
types of ML models and meta-heuristic algorithms.

7. Conclusions

The worldwide shortage of freshwater has worsened substantially in recent years.
Consequently, there has been a growing trend towards integrating ML models with meta-
heuristic algorithms in the field of ETo modelling to offer policymakers a scientific view that
supports sustainability. Accordingly, this study systematically reviewed in detail the avail-
able information on OBH models for ETo prediction in the last five years by considering
three reliable sources (i.e., Web of Science, ScienceDirect, and IEEE Xplor). This study offers
a substantial contribution through classification and taxonomist publications. There are
distinct patterns that can be drawn from the mass of writings on ETo prediction, approxi-
mately categorising the paper into five groups: swarm intelligence algorithms, evolutionary
computation algorithms, physics algorithms, hybrid algorithms, and review papers.

The outcomes of this research indicate that 47% of the total papers used one meta-
heuristic algorithm to optimise the ML model and compared the results with the stan-
dalone ML model. The results show the superiority of the hybrid ML technique in all
cases. Furthermore, it concluded that 47% of the total papers integrated the ML model
with several meta-heuristic algorithms to increase validation. The results show that the
swarm intelligence-based algorithms were superior to evolutionary computation-based
and physics-based algorithms. Moreover, hybrid meta-heuristic algorithms offer more
accurate predictions than several single meta-heuristic algorithms when combined with
ML models.

Overall, this study strengthens the idea that meta-heuristic algorithms accurately opti-
mise ML models. Additionally, it has been one of the first attempts to thoroughly analyse
the performance of different meta-heuristic algorithms (categorised into four main groups)
combined with ML models. These findings contribute in several ways to our understanding
of OBH models. Further studies regarding the role of meta-heuristic algorithms would be
worthwhile because academics still have room to improve OBH models for ETo prediction
models. Finally, accurate ETo data led to a balance between requested and delivered water
demand that achieved sustainability.
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Abbreviations

Abbreviations Explanation
ABC Artificial Bee Colony
Acc Accuracy
ACO Ant Colony Optimisation
ACOR Continuous Ant Colony Optimisation
AI Artificial Intelligence
ALO Ant Lion Optimizer
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
BA Bee Algorithm
BBO Biogeography-Based Optimisation
BMA Bayesian Model Averaging
BSS Bright Sunshine Hours
CART Classification and Regression Tree
CMAES Covariance Matrix Adaptation Evolution Strategy
COR Pearson’s correlation
CSA Cuckoo Search Algorithm
DE Differential Evolution
DENFIS Dynamic Evolving Neural-Fuzzy Inference System
DET Decision Tree Regressor
DFA Dragonfly Algorithm
EC Evolutionary Computing
ELM Extreme Learning Machine
EP Weekly Cumulative Pan Evaporation
Epan Pan Evaporation
ET Evapotranspiration
ETo Reference Evapotranspiration
FA Firefly Algorithm
FIS Fuzzy Inference System
FOA Fruit Fly Optimisation Algorithm
FPA Flower Pollination Algorithm
GA Genetic Algorithm
GOA Grasshopper Optimisation Algorithm
GP Genetic Programming
GPI Global Performance Index
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimizer
HFS Hierarchical Fuzzy System
HS Harmony Search
ICA Imperialist Competitive Algorithm
IOA Willmott’s Index of Agreement
IOS Index Of Scattering
IWD Intelligent Water Drops
IWO Invasive Weed Optimisation
KGE Kling–Gupta Efficiency
KHA Krill Herd Algorithm
KNR K-Neighbours Regressor
LSSVM Least Square Support Vector Machine
LSSVR Least Squares Support Vector Regression
M5 Model Tree
MAD Mean Absolute Deviation
MADE Median Absolute Deviation
MAE Mean Absolute Error
MAX Maximum Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
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MEMD Multivariate Empirical Mode Decomposition
MFO Moth-Flame Optimisation Algorithm
MLP Multilayer Perceptron
MLR Multiple Linear Regression
MRE Mean Relative Error
MSE Mean Square Error
MVC Model Validity Coefficient
MVO Multi-Verse Optimizer
NNE Non-Linear Neural Ensemble
NRMSE Normalised Root Mean Squared Error
NSE Nash–Sutcliffe Coefficient of Efficiency
P Precipitation
PBIAS Percent bias
PCA Principal Component Analysis
FAO-56 PM Penman–Monteith Model
PRSFGWO Adaptive Dynamic Algorithm Coupled with the Grey Wolf Optimizer
PSO Particle Swarm Optimisation
R Correlation Coefficient
R2 Coefficient of Determination
Ra Extraterrestrial Solar Radiation
RF Random Forest
RFR Random Forest Regressor
RH Relative Humidity
RH1 Morning Relative Humidity During
RH2 Afternoon Relative Humidity
RL Relief
RMSE Root Mean Square Error
RMSRE Root Mean Square Relative Error
RRMSE Relative Root Mean Square Error
Rs Global Solar Radiation
RT Regression Tree
SA Simulated Annealing Optimisation Algorithm
SFLA Shuffled Frog-Leaping Algorithm
SIndex Scatter Index
SONN Second-Order Neural Network
SSA Salp Swarm Algorithm
SSD Sunshine Duration
SSWC Average Surface Soil Water Content
SVM Support Vector Machine
SVR Support Vector Regression
T Air Temperature
Tave Average Temperature
Tmax Maximum Temperature
Tmean Mean Air Temperature
Tmin Minimum Temperature
TD Taylor Diagram
Tstat T-statistic Test
TLBO Teaching-Learning-Based Optimisation
U2 Wind Speed at a Height of 2 m
U95 Uncertainty with 95% Confidence Level
U Theil Inequality Statistic
UB Bias Proportion of Theil Inequality Statistic
UC Covariance Proportion of Theil Inequality Statistic
UV Variance Proportion of Theil Inequality Statistic
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Vp Vapour Pressure
VPD Saturated Water Vapour Pressure Deficit
WCA Water Cycle Optimisation Algorithm
WCAMFO Water Cycle-Moth Flame Optimisation
WoS Web of Science
WOA Whale Optimisation Algorithm
WS Wind Speed
WWO Water Wave Optimisation
XGB Extreme Gradient Boosting
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