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Abstract: Nanoparticles (NPs), nanoaerosols (NAs), ultrafine particles (UFPs), and PMs0.1 (diameters
≤ 0.1 µm or 100 nm) are used interchangeably in the field of atmospheric studies. This review article
summarizes recent research on PM0.1 in Thailand. The review involved peer-reviewed papers that
appeared in the Scopus and the Web of Science databases and included the most recently published
articles in the past 10 years (2013–2022). PM0.1 mainly originate from combustion processes such
as in motor vehicles. The highest mass concentration of PMs0.1 occurs during the dry season, in
which open fires occur in some regions of Thailand. The northern area of the country has higher
PM0.1 mass concentrations, followed by the central and southern areas. Carbonaceous nanoaerosols
are produced during normal periods, and the proportions of organic to elemental carbon and char
to soot suggest that these originate from motor vehicles. However, in haze periods, biomass fires
can also produce carbon-containing particles. PM0.1 pollution from local and cross-border countries
also needs to be considered. The overall conclusions reached will likely have a beneficial long-term
impact on achieving a blue sky over Thailand through the development of coherent policies and
managing new air pollution challenges and sharing knowledge with a broader audience.

Keywords: biomass burning; motor vehicles; nanoaerosols; nanoparticles; ultrafine particles; PM0.1;
health risks; local sources; transboundary; Thailand
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1. Introduction of Impact of PM0.1

Ambient particulate matters (PMs), which are strongly associated with harmful aspects
concerning human health [1,2] and global warming, have recently appeared [3] and have
attracted considerable interest regarding environmental pollution in many countries. PMs
can be categorized into three modes, which include coarse particles (diameter between
2.5 and 10 µm), fine particles (with a diameter between 0.1 to 2.5 µm), and ultrafine particles
(diameters ≤ 0.1 µm or 100 nm) [4,5]. The coarse category is primarily generated from
attrition processes, namely, mechanical abrasion, the re-suspension of road and soil dust,
volcanic eruptions, and sea spray [6]. On the other hand, fine and ultrafine mode particles
evolve mainly from combustion processes, e.g., biomass burning, motor vehicle exhaust,
coal combustion, and chemical processes in the atmosphere [7,8].

Nanoparticles (NPs), nanoaerosols (NAs), ultrafine particles (UFPs), and PMs0.1 are
interchangeably used depending on the subject area [9], but there are slight differences
among these particles. The most common nanoparticles are mainly incidentally and unin-
tentionally generated and are suspended in the atmosphere [8,10]. The term nanoaerosols
is used to refer to a broader coverage, including environmental and engineered nanoparti-
cles. In addition, toxicologists refer to particle size as ultrafine, fine, and coarse particles
to specify their danger to cells and human health [11,12]. The latest definition is PM0.1,
which typically refers to solid particles with at least one dimension smaller than 0.1 µm or
100 nm [13] and is always used in atmospheric pollution studies. Therefore, nanoparticles,
nanoaerosols, ultrafine particles, and PMs0.1 are commonly used in the scientific fields but
depend on the subject matter areas.

In the past decade, smaller particles (PMs2.5 or, predominantly, PMs0.1) are likely to
be a human health risk problem [8,14]. Airborne PM is linked to increased mortality and
morbidity in humans [15]. There is considerable evidence to show that PMs harm the
respiratory, nervous, and cardiovascular systems [16–18]. Smaller particles (UFPs) have a
large surface area and strong absorption/adsorption capability for various airborne con-
taminants. UFPs can carry both various hazardous chemical compounds, such as polycyclic
aromatic hydrocarbons (PAHs) and heavy metals [19–22], and airborne pathogens such as
bacteria, fungi, and viruses [22,23].

Southeast Asia (SEA) has been a source of PM pollution for the last decades, affecting
countries in and countries outside the region [24,25]. The transport plume of Indonesian
forest fires affects air quality in Singapore, Malaysia, Brunei, and southern Thailand [25–28].
Moreover, recent studies suggest that fine particles from open biomass burning plumes are
transported from northern Southeast Asia (SEA) to East Asia (EA), including southeastern
China, the South China Sea, and southern Taiwan, during the dry season [29–31]. In
Thailand, the effect of the migration of polluted air masses is vital on a multi-provincial
scale (100–200 km) [32].

The particulate matter (PM) pollution observed in Thailand and Southeast Asian
countries is related to studies of the PM10 and PM2.5 fractions and, to a slight extent, on the
ground monitoring and satellite detection of PM1.0 [33–37]. However, information on the
status and characteristics of PM0.1 and emission sources is still ongoing and only limited
information is currently available. Only a few studies have appeared concerning the level
and sources of airborne NPs between different locations [32,38,39]. This work gathered
current papers on all aspects of atmospheric UFPs in Thailand. Over 100 refereed papers in
the Web of Sciences and Scopus databases were examined for this study and were used to
integrate this knowledge base. The keywords searched included “PM0.1, ultrafine particles,
nanoparticles, nanoaerosols, haze pollution, health effects, Thailand”. The work covered
publications in this area that have appeared in the past 10 years, from 2013 to 2022, and
included the following topics:

1. Introduction to the impact of PM0.1;
2. Recent studies of PM0.1 particles in Thailand;
3. Health concerns regarding PM0.1 particles in Thailand;
4. Challenges to the study of PM0.1 particles in Thailand;
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5. Options and recommendations for PM0.1 in Thailand;
6. Conclusions.

2. Recent Studies of PM0.1 in Thailand
2.1. PM0.1 Particle Mass Concentration and Particle Number Concentration

The PM0.1 levels in ambient air are usually extensively measured by particle number
concentration (PNC) due to their minuscule size in addition to mass concentration [40]. No
standards for airborne PM0.1 have been adopted in Thailand. Thailand’s National Ambient
Air Quality Standards recently established parameters for six air pollutants that are deemed
the highest priority to protect public health, including PM (TSP, PM10, PM2.5), O3, CO, SO2,
NO2, and lead (Pb) (Table 1). The six criteria for pollutants are classified into health risk
levels based on criteria defined by Thailand’s Air Quality and Noise Management Bureau,
Pollution Control Department, and Ministry of Natural Resources and Environment. This is
the current standard as of 2022; particulate pollution is a severe and increasing problem for
Thailand. The Pollution Control Department announced in 2022 [41] that it will decrease
Thailand’s National Ambient Air Quality of 24 h PM2.5 concentration to 37.5 µg/m3 in 2023.
This is because of human health concerns about smaller particles in the recent decade.

Table 1. Thailand’s National Ambient Air Quality Standards.

Pollutants Time Period Concentration

TSP (PM100) Annual 100 µg/m3

24 h 330 µg/m3

PM10 Annual 50 µg/m3

24 h 120 µg/m3

PM2.5 Annual 15 µg/m3

24 h 50 µg/m3

O3 8 h 140 µg/m3 (0.07 ppm)
1 h 200 µg/m3 (0.10 ppm)

CO 8 h 10,260 µg/m3 (9 ppm)
1 h 3420 µg/m3 (30 ppm)

NO2 Annual 57 µg/m3 (0.03 ppm)
1 h 320 µg/m3 (0.17 ppm)

SO2 Annual 100 µg/m3 (0.04 ppm)
24 h 300 µg/m3 (0.12 ppm)
1 h 78,000 µg/m3 (0.3 ppm)

Lead (Pb) Monthly 1.50 mcg/m3

Moreover, according to the new guidelines on air quality by the World Health Or-
ganization (WHO) (2021) [42], the suggested mean annual concentration for PM10 was
200 µg/m3 in 2005 and the mass concentration for 2021 moved to 150 µg/m3. The 24 h
concentration was updated from 50 µg/m3 in 2005 to 45 µg/m3. Furthermore, in 2005, the
highest recommended average PM2.5 annual mass concentration was 10 µg/m3; the 2021 re-
vision reduced that number by half, to just 5 µg/m3. The 24 h level changed from 25 µg/m3

in 2005 to 15 µg/m3. The WHO was confident that there was insufficient information to
provide guidelines for other types of PM, including elemental and black carbon, sand and
dust storm particles, and PM0.1 particles. The WHO does not create a set of best practices
for managing those pollutants, even though it recommends further study into their risks
and methods for mitigation.

In European countries, the Condensation Particle Counter (CPC) is a standard method
for measuring nanoparticles [43]. However, the ambient nanoparticle standard for all
emission types is still limited. Only the gasoline and diesel emission standard representing
the non-volatile particle of diameter >23 nm has been defined (the Solid Particle Number >
23 nm method (SPN23)) [44]. Surface area and particle number are appropriate for mea-
suring minor mass concentrations of PM0.1 in most atmospheres [16]. NPs are commonly
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measured as particle number concentration (PNC), representing more than 85% of the total
PM2.5 particle number [45]. In contrast, it contributes only slightly (10–20%) to the total PM
concentration.

Table 2 shows the PM0.1 mass concentration at each sampling site in Thailand. The
first sampling of NPs in Thailand started during 2014–2015 in Bangkok and Chiang Mai.
Chiang Mai had the highest PM0.1 level in Thailand based on the sampling period during
2014–2015 up to 25.2 ± 4.7 µg/m3. Bangkok, the capital city of Thailand, is one of the
megacities in SEA with high concentrations of residents and traffic congestion. Many
studies have concluded that the particulate pollution in the Bangkok metropolitan re-
gion (BMR) is mainly from land transportation [46–49]. The mass concentration of PM0.1
in the BMR ranges from 7.7–18.9 µg/m3, a number that is higher than that in Western
countries such as those of Europe and the USA; however, it is in the same range as other
Asian megacities such as Shanghai [50]. The levels of PM0.1 particles in southern Thai-
land are comparatively low compared with other types; cities in Thailand range from
1.9 ± 0.6 (normal)–14.2 ± 10.0 (haze) µg/m3. Interestingly, PM0.1/PM2.5 is the highest in
Chiang Mai, Thailand. It is well known that Chiang Mai has been confronted with air
pollution in almost every dry season from January to mid-April. PM2.5 concentrations
are augmented every dry season (January–April), which starts around mid-January and
reaches its peak in March before decreasing by April. The primary source of worsening air
pollution during the dry season in these areas was open burning, such as forest fires and
crop residue burning [32]. Considering that the ultrafine particles from biomass burning
are so high is in general agreement with laboratory experiments, in which nanoparticles
account for up to 30% of the total particle mass concentration [51].

Table 2. Ambient PM0.1 concentrations (µg/m3) and PM0.1/PM2.5 ratio at different locations in
Thailand.

Location Site
Description Sampling Time PM0.1 PM2.5

PM0.1/PM2.5
Ratio References

Chiang Mai Suburban September 2014–June 2015 25.2 ± 4.7 77.5 ± 23.8 0.33 ± 0.03 [32]
Suburban March–April 2015 16.5 - - [52]

Pathumtani Suburban October 2019 (wet) 13.5 ± 0.8 55.1 ± 4.6 0.25 ± 0.06 [24]
January–February 2020 (dry) 18.9 ± 4.0 73.4± 16.3 0.26 ± 0.04

Bangkok Urban July 2014–June 2015 14.5 ± 4.7 66.4 ± 17.2 0.23 ± 0.09 [32]
Urban March–April 2015 11.9 - - [52]
Urban November 2014–October 2015 15.0 ± 2.4 - - [53]
Urban May 2016–April 2017 14.8 ± 2.0 - - [54]
Urban–traffic March–April 2015 7.7 - - [52]

Songkhla Suburban September–October 2015 14.2 ± 10.0 73.7 ± 49.8 0.19 [26]
August–October 2017 1.9 ± 0.6 12.9 ± 0.8 0.15

Suburban March–April 2015 10.9 - - [52]
Suburban January–December 2018 10.2 ± 2.2 57.8 ± 4.7 0.18 ± 0.05 [55]
Suburban January–August 2019 10.4 ± 1.2 - - [25]
Suburban January–December 2018 8.4 ± 1.9 - - [28]

In the BMR, the PM0.1/PM2.5 ratio is around 0.23 [32]. Motor vehicles account for
smaller particles in this area, and the ratio slightly increases to 0.26 during the dry season,
indicating that some biomass burning episodes produce PM0.1 [24]. Hat Yai, Songkhla
province, is an economic city in the south of Thailand. A previous study showed that
the primary particulate pollutants in Hat Yai are caused by biomass combustion from
the rubber industry [56] because southern Thailand is different from the other regions of
Thailand. The economic crop in the region is oil palm and para-rubber, which are produced
in plantations in the south of Thailand [57,58]. However, PM0.1 in the southern part of
Thailand is lower than in other parts due to less frequent open biomass burning fires
in the area. The PM0.1/PM2.5 ranges from 0.15 to 0.19 depending on the transboundary
particulate effects that increase the mass concentration [26,55].
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2.2. Carbonaceous Nanoaerosol

The most significant portion of airborne PM is carbon-containing materials with vari-
ous physical and chemical characteristics, which account for around 20–50% of the mass
concentration of PMs [59,60]. The PM-bound total carbon (TC) can be divided into two
types, including organic carbon (OC) and black carbon (BC) or elemental carbon (EC). BC
and EC are used interchangeably depending on the analytical method being used [61,62].
Brown carbon (BrC) was recently discovered with light absorption characteristics similar to
atmospheric aerosols [63]. BrC is a non-soot organic carbon aerosol that is produced from
bioaerosols, tar, and humic-like substances (HULIS) [64,65]. BC is mainly emitted by high-
temperature combustion processes (diesel and gasoline exhausts, coal combustion, and
biomass burning) [66,67]. BrC is primarily emitted by biomass burning. BC and BrC are the
two most crucial light-absorbing substances in atmospheric aerosols [68]. In contrast, OC is
a light-scattering material that is mainly generated from biomass fires, coal combustion,
motor vehicles, and secondary chemical processes in the atmosphere [69,70]. The Intergov-
ernmental Panel on Climate Change (IPCC) predicted that EC would lead to a direct global
radiative forcing of around +0.2 Wm−2 [71]. In contrast, OC was produced at around the
same magnitude [72]. Therefore, the primary emissions of BC clearly have global warming
potential and can influence the hydrological cycle [73]. Primary pollutants, including BC
and OC, include an atmospheric photochemical activity and can produce secondary organic
aerosols (SOA) and ozone (O3), creating an even more complicated effect [74].

Information concerning OC and EC is crucial in estimating the impact of PMs and our
understanding of the source and strength of these pollutants. EC can be divided into char-
EC and soot-EC [75]. Char consists of the residue remaining after burning solid residue.
Soot, however, is different from the physical and chemical properties of the source materials
after the high-temperature condensation of hot gases during the combustion process [76].
The ratio of Char-EC and Soot-EC varies depending on the main sources and can be used to
categorize the origin of this material. Only a small number of studies have reported on the
pattern for Thailand’s carbonaceous nanoaerosols (OC and EC) [24,25,32,55]. Brown carbon
(BrC) in nanoaerosols, which affects the splitting between OC and EC via a thermal-optical
protocol, has not been studied so far in Thailand. A reliable method for detecting BrC
plays a vital role in accurately estimating carbonaceous nanoaerosols [77]. The effect on
regional and global warming is highly uncertain due to carbonaceous aerosols that are
emitted into the atmosphere. This is because the distribution of carbon fractions varies with
the time and location, which basically contributes to the chemical, physical, and optical
characteristics of carbon components in PMs. Accordingly, information on carbonaceous
nanoaerosols is vital in terms of assessing their radiative effects on global warming. Only
limited studies of carbon components and spatial and temporal variations in Thailand have
appeared, particularly of the nano-scale ambient particles related to carbon components.

2.3. Carbon Characteristics of OC, EC, Char-EC, and Soot-EC

The ratios of OC/EC can be used to classify the exact emission sources of carbonaceous
particulate matter. Ratios for diesel exhaust, coal burning, and biomass combustion are
different. Biomass burning has a higher ratio, while the OC/EC ratios for fossil burning
results are lower [78]. The ratio of OC to EC for biomass combustion is higher (~6–8) [79]
and that from fossil fuel is lower (<1) [80]. The characteristics of emission sources of carbon
fractions include diesel exhaust (OC/EC ~0.1–0.8) [70], biomass combustion (OC/EC
~4–6) [33,81], and long-range transport/aged aerosol (OC/EC ~12) [82]. On the other hand,
OC/EC depends on three factors for appropriately categorizing the source of the emission.
The three factors include the primary emission source, the deposition rate, and secondary
organic aerosols (SOA) [55,70]. Table 3 shows the average seasonal concentration of OC,
EC, Char-EC, Soot-EC (µg/m3), and OC/EC and Char-EC/Soot-EC ratios in different
locations in Thailand. A high concentration of carbon species was found in Chiang Mai
(2014–2015) [32]; the dry season is longer than the wet season. However, in Songkhla
(2019) [55], the wet season is longer than the dry season. The OC/EC ratio in Thailand is
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typically higher than 2.0, except in the wet season in Pathumtani. The ratios of OC/EC
are usually used to diagnose the source of an organic aerosol [32,70]. However, the high
OC/EC in many PM0.1 particles suggests that secondary organic carbon is vital in this area.
The lower ratio represents the influence of local transportation in Thailand [24,25].

Table 3. Seasonal average of OC, EC (µg/m3), and OC/EC ratio as well as Char-EC, Soot-EC (µg/m3),
and Char-EC/Soot-EC ratio at different locations in Thailand.

Location Season OC
(µg/m3) EC (µg/m3) OC/EC (-) Char-EC

(µg/m3)
Soot-EC
(µg/m3)

Char-EC/
Soot-EC (-) References

Chiang Mai Wet–2014 2.34 ± 0.82 0.51 ± 0.14 5.62 ± 1.22 0.23 ± 0.11 0.29 ± 0.07 0.80 ±
0.51 [32]

Dry—2015 4.97 ± 1.46 1.51 ± 0.66 3.29 ± 0.67 0.96 ± 0.58 0.54 ± 0.13 1.78 ±
0.66

Pathumtani Wet—2019 0.86 ± 0.17 0.58 ± 0.17 1.50 ± 0.18 0.24 ± 0.08 0.34 ± 0.08 0.70 ±
0.09 [24]

Dry—2020 2.05 ± 0.45 0.93 ± 0.41 2.49 ± 0.89 0.39 ± 0.32 0.54 ± 0.14 0.69 ±
0.46

Bangkok Wet—2014 0.78 ± 0.34 0.31 ± 0.08 2.57 ± 1.10 0.11 ± 0.03 0.20 ± 0.05 0.52 ±
0.57 [32]

Dry—2015 2.31 ± 0.58 0.58 ± 0.13 4.47 ± 1.46 0.26 ± 0.10 0.32 ± 0.04 0.77 ±
0.24

Bangkok Wet—2016 3.45 ± 0.70 1.39 ± 0.43 2.59 ± 0.55 0.43 ± 0.15 0.97 ± 0.30 0.45 ±
0.09 [54]

Dry—2017 2.60 ± 0.83 0.61 ± 0.14 4.43 ± 1.79 0.27 ± 0.09 0.35 ± 0.06 0.77 ±
0.23

Songkhla Wet—2019 4.90 ± 0.90 1.85 ± 0.50 2.70 ± 0.70 0.43 ± 0.10 1.40 ± 0.10 0.30 ±
0.20 [25]

Dry—2019 1.60 ± 0.20 0.66 ± 0.10 2.42 ± 0.51 0.15 ± 0.10 0.50 ± 0.10 0.33 ±
0.20

Songkhla
Pre-
monsoon—
2018

1.22 ± 1.01 0.34 ± 0.14 3.00 ± 1.41 0.08 ± 0.04 0.25 ± 0.13 0.35 ±
0.19 [55]

Monsoon—
2018 0.42 ± 0.21 0.14 ± 0.07 3.15 ± 0.81 0.04 ± 0.03 0.12 ± 0.05 0.34 ±

0.29

Dry—2018 0.44 ± 0.22 0.18 ± 0.12 2.75 ± 1.10 0.05 ± 0.03 0.14 ± 0.09 0.37 ±
0.17

Unlike the OC/EC ratio, the char-EC/soot-EC ratio differs from each source; it is
frequently possible to identify the sources [83]. Only two factors can affect the char/soot
ratio: the primary emission source and particle deposition by scavenging. A higher
proportion of char/soot (generally >1.0) is suggestive of biomass fires; char contributes to
the total EC levels. In contrast, char/soot <1.0 suggests that emissions from diesel engines
are an essential contributor to the total EC concentrations [32,84]. The Char-EC/Soot-EC
ratios in nanoparticles in Thailand are almost constant and less than 1.0 in both the wet
and dry seasons, suggesting that motor vehicles are a key source of PM0.1 particles in
Thailand. However, only in Chiang Mai during the dry season, the Char-EC content and
Char-EC/Soot-EC were increased and higher than 1.0 because of open biomass burning to
smaller particles [32,55,70]. Therefore, the PM0.1 particles represent diesel engine emissions,
although sensitive to biomass emissions in Thailand, e.g., the Chiang Mai area, which
is recognized to have airborne particulate pollution from biomass burning for a long
time [85,86]. Moreover, the increased Char-EC content and Char-EC/Soot-EC ratio should
be studied in detail in future studies for the accuracy of carbonaceous nanoaerosols in
Thailand and elsewhere.
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2.4. PM0.1 Derived from Biomass Burning

In SEA, haze has occurred nearly every year during the dry season [85,86]. These haze
episodes generated PM that was derived from biomass combustion in the past decade [24,33].
Forest fires and slash and burn in agricultural areas are typical methods for removing
biomass residues in SEA [87]. Research reports addressed the high PM concentration that
is released from open biomass fires in Thailand [86,88,89]. Hata et al. (2014) [51] reported,
based on chamber experiments, that biomass fuel combustion releases around 80% of
all sub-micron particles and nanoparticles of approximately 30% of the total particles.
Similarly, open biomass fires during a haze episode in northern Thailand revealed that
more than 60% of the total PM is smaller than PM1.0 [32]. The size distribution of PM
released from open fires depends on fuel type, moisture content, and excess air during
combustion [90,91].

Biomass burning is a significant contributor to the production of ambient particles.
As reported by Hata et al. (2014) [51], in chamber experiments, biomass solid fuel com-
bustion accounted for more than 30% of the biomass burning and that the particle mass
concentration was smaller than <100 nm. However, in the atmospheric environment, PM0.1
particles are contained in the ambient atmosphere due to anthropogenic activities and
natural sources or chemical processes. Therefore, determining the actual emission sources
under ambient conditions is not an easy task. Phairaung et al. (2021) [32] reported on the
source apportionment of PM0.1 particles in Bangkok. They found that around 10% of the
ambient nanoparticles in Bangkok during haze episodes came from biomass fires. However,
PM0.1 particles, primarily derived from motor vehicle emissions, are also strongly affected
by forest fires in the north of Thailand [32]. Hence, this activity has an important influence
on the quality of ambient air during the dry season. As a result, the main emission sources
of PM0.1 are both natural and anthropogenic. Figure 1 shows the morphology of ambient
nanoparticles from Chiang Mai, Thailand, as observed in scanning electron microscope
(SEM) analysis. The particles from near emission sources during strong biomass fires
represent particles in the ultrafine mode (Dp < 100 nm).
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dominated as emission sources during the dry season).

3. Health Concerns of PM0.1 in Thailand

Smaller particles, especially nano-size particles, are recognized as being detrimental to
human health due to their small size, chemical makeup, and the fact that they accumulate
in ambient conditions [8]. Evidence collected in the past decade makes it clear that PM0.1
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affects public health. The Health Effects Institute (HEI) [14] suggests that the PM0.1 data
on health risk assessment are still an ongoing study and it cannot conclude or decide
on policy making for the control of ambient PM0.1 worldwide. However, health risks,
such as oxidative stress and inflammatory damage, may result from human exposure to
atmospheric PM0.1 through inhalation [8,10].

In the same manner, studies of PM0.1 in Thailand make it clear that there are health ef-
fects from these particles. Only a few studies have appeared on health risk assessment from
PM0.1 as related to the chemical composition of these particles. Chomanee et al. (2020) [26]
reported on a health risk assessment of nanoparticle-bound PAHs in southern Thailand
during a period of transboundary particulate pollution. It is known that the lower SEA suf-
fers from the effects of large peat-land fires during the dry season, around July–September,
almost every year. This research suggests that the health effects from carcinogenic PAHs
during a strong haze period are higher than normal, by around 2–5 times. Public health
concerns in this region should focus on smaller particles in some periods from cross-border
pollution that depend on the intensity of emission sources, wind speed, wind direction,
and meteorology during those periods.

Similarly, Phairuang et al. (2022) [28] reported on the year-long health effects of
PM0.1-bound trace elements in southern Thailand in 2018. They found that the health
risk from hazardous components is generally highly recognized during the pre-monsoon
season. Toxic elements from peat-land fires that are transported from other sources to
southern Thailand depend on the speed and direction of the wind. Cross-border particulate
pollution must be investigated in more detail, with emphasis on the origin and health
concerns during haze episodes in this region. During the normal period, the primary
emission sources of PM0.1 are land transportation [25].

In other parts of Thailand, our knowledge of the health risks from PM0.1 related to the
chemical components remains limited. Phairuang et al. (2021) [53] reported that the health
risk assessment from PM0.1-bound metals in Bangkok, Thailand, was substantial during a
smog haze period. PM0.1-bound elements in Bangkok differ with the season but are gener-
ally related to road transport emissions. It is well known that in the Bangkok Metropolitan
Region air quality worsens during periods of heavy traffic congestion [32,47,49]. There is
general agreement that the production of PM0.1 worldwide is derived from motor vehicles
in urban areas [40,50]. Diesel and benzene engines are the primary sources of ambient
nanoparticles in mega-cities [92,93]. However, open biomass burning, e.g., forest fires, crop
waste, and grass burning, significantly contribute to PM0.1 during intense haze episodes
in many countries [5,32]. Most studies have concluded that inhaled airborne PM0.1 has
adverse effects on human health. Data of relationships between PM0.1 and sickness are
limited. It appears that we are not fully aware of the life-threatening hazards of ambient
NPs in air pollution from biomass fires on human health in Thailand.

4. Challenges in Studies of PM0.1 in Thailand

In the past decade, Thailand has been faced with particulate pollution almost yearly. In
particular, in the dry season, emissions from open fires and meteorological conditions can
temporarily affect the particle concentration [85,94]. Phairuang et al. (2019) [32] examined
the influence of biomass fires on air quality in Thailand, i.e., Bangkok and Chiang Mai,
in a case study of size-fractionated particulate matter ranging from small to nano-sized.
The influence of biomass burning strongly affects ambient PM0.1 in Bangkok, although
many reports have suggested that the main contribution of PM2.5 in BMR is from motor
vehicles [47,49]. On the other hand, PM0.1 is ubiquitous in the atmospheric environment
in the northern part of Thailand during the dry season, as in Chiang Mai, the economic
city in the northern part of Thailand. This is a new challenge in the studies of biomass
burning, especially crop waste burning and woodland fires in agricultural countries, to
understand the production of ambient nanoparticles [5,32,55]. The apportionment of
the sources of PM0.1 is very limited in Thailand due to the small amount of mass and
chemical composition. Moreover, a recent study of particle size distribution in Bangkok
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by Panyametheekul et al. (2022) [95] found that the particle number concentration of
samples collected from three locations in Bangkok revealed that up to 90% of the PM0.1
was produced in comparison with other sizes. Consequently, in the case of PM0.1, both the
number and mass particle concentration are subjects that need to be examined in terms of
air quality management in Thailand’s land based on heavy particulate pollution in the past
decade.

It is generally assumed that PM0.1 particles are highly toxic substances compared to
larger particles because they have a vast surface area per volume that can carry and absorb
hazardous chemicals such as heavy metals, carbon components, and carcinogenic PAHs [8].
In the past decade, strong evidence has appeared to suggest that PM2.5 and PM10 induce
human illness, including respiratory symptoms, cardiovascular effects, and chronic ob-
structive pulmonary disease (COPD), which contribute to mortality and morbidity [96–99].
This is especially true in northern Thailand, which experiences particulate pollution almost
yearly. Many reports have revealed that the smoke haze episodes induce more people to
visit hospitals in the north of Thailand [100,101]. However, there is no evidence of risks to
health from nanoaerosols. Although the northern part of Thailand, during the dry season,
has a high mass concentration of PM0.1 particles [32], the relationship and epidemiological
survey of ultrafine particles and health effects still underestimate human public health due
to insufficient information concerning the source, characteristics, and abundance of such
small particles.

5. Option and Recommendations concerning PM0.1 in Thailand
5.1. Evaluation of PM0.1: Present Status and Characteristics, Comparison between Sites

Airborne particles can migrate over long distances and can cross the borders between
countries and regions on a global scale. PM2.5 can be transported in the atmosphere for
an extended period, change its properties via further chemical reactions [102,103], and
can change into fine or coarse particles, known as secondary particles. The effectiveness
of the secondary formation of particles suggests that it is more significant than primary
formation in that they can contain both hazardous chemicals and are easily carried in
the atmosphere [104,105]. For monitoring carbonaceous compounds in suburban areas
compared to urban areas in Thailand, it was found that the average concentrations of
ambient carbonaceous compounds in a suburban area (Klong Luang, Pathumtani, Thailand)
were higher than that in an urban area (Bangkok Metropolitan Region (BMR)) [105,106].

However, information on the long-range transport of ambient nanoparticles continues
to be limited. Collecting PM0.1 from cities in Thailand and other countries during a high
smoke episode and comparing and examining cross borders among cities and countries
are needed if we are to develop a better understanding of the impact of atmospheric PM0.1.
Building a monitoring network through monitoring ambient nanoaerosols is a priority
in studying PM0.1 in Thailand. Phairuang et al. (2019) [32] reported that the transport
of ambient PM0.1 in Thailand can cover a distance of around 100–200 km. Nevertheless,
Inerb et al. (2022) [25] reported that during intense forest fire episodes in lower southern
Asia, the nanoparticles produced from peat-land fires could be transported around 800 km
from Indonesia to the southern part of Thailand. High international collaboration and links
between climate and air pollution policies should be compulsory to control small particles’
ambient air quality effects. Therefore, a monitoring network to discuss the contribution of
near emission sources and possible transboundary transportation continues to be a chal-
lenge. There has only been one monitoring network to study ambient nanoaerosols in East
and Southeast Asia, namely, the East Asia Nanoparticle Monitoring Network (EA-Nanonet).
The EA-Nanonet was established in 2013 to monitor the emission of nanoparticles and
their characteristics, transport, and behavior in many East and Southeast Asian countries,
including Japan, China, Thailand, Vietnam, Malaysia, Indonesia, and Cambodia [107].
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5.2. Information on PM0.1 Emission Sources

PM0.1 is a small particle that is produced both naturally and by humans, primarily
from combustion processes and chemical reactions in the atmosphere [8,10]. In the past
decade, nanoparticles were generally produced from diesel engines and contained a high
level of carbon and metal. The emission inventory (EI) of PM0.1 particles and chemical
relationships has not been extensively studied in Thailand. However, some information
on emission factors (EF) from solid biomass burning in Thailand has appeared [90,91].
Interestingly, other emission sources, e.g., coal combustion, motor vehicles, power plants,
and non-combustion sources, are still lacking in Thailand. Moreover, particle number
concentration (PNC), which usually measures a smaller particle, is still lacking in Thailand.
There is a vast gap in emission inventories due to a lack of EFs and other default values
that are needed to calculate the accuracy of EI.

5.3. Summary of Facts on PM0.1 for Policy Making

Ambient PM0.1, both number and mass concentration in the ambient air, comes from
various sources and influences human health via personal exposure. An inventory of PM0.1
should be seriously addressed. This is scientific information to support policy makers in
the near future. It cannot be ignored that the higher the concentration of small particles
is, the higher the amount of heavy metal or other toxic materials will be. Developing a
standard or even guidelines for a reasonable value for public health is needed. Further,
we need to understand the origins, transportation, transformation (new particles), and
effects on public health of ambient PM0.1 to identify appropriate procedures to resolve the
problem sustainably. The production of new particulate aerosols possibly increases with
an increase in the concentration of UFPs under conditions of high relative humidity (RH)
above 70%, especially in tropical countries. UFPs should then be an indicator to convince
decision makers of the need for policy making. Summarizing ambient nanoparticles will
help develop clean air policies in Thailand.

6. Conclusions

The study of ambient PM0.1 particles in Thailand has been ongoing for a decade
and is focused on particle mass concentration, the characteristics of the carbon contained
by these particles, and the health effects of these particles. The health-related effects of
ambient PM0.1 have not resulted in support for air quality management in Thailand and
also most of the Asian countries because, unlike coarse and fine particles, of a lack of
this type of information. Evaluations of PM0.1, the present status, characteristics, and
comparison between sites play an important role in atmospheric systems. Local sources
and transboundary ultrafine particulate pollution should be considered for future studies.
Other chemical substances in PM0.1 have not been studied extensively in Thailand. They
could, however, also be an essential factor in air pollution, which merits future study
in a more detailed investigation into the nature and health-related effects. As a result,
summarizing factual information concerning PM0.1 for policy making will fill the gap until
more in-depth studies of ambient particulate matter can be carried out. This promises to
have a long-term impact on achieving a blue sky over Thailand through coherent policies
and management.
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