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Abstract: This study explores the spatio-temporal distribution and trends on monthly, seasonal,
and annual scales of rainfall in the central Punjab districts of Punjab province in Pakistan by using
observation and satellite data products. The daily observed data was acquired from the Pakistan
Metrological Department (PMD) between 1983 and 2020, along with one reanalysis, namely the
Climate Hazard Infrared Group Precipitation Station (CHIRPS) and one satellite-based daily Pre-
cipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks climate
data record (PERSIANN-CDR) using the Google Earth Engine (GEE) web-based API platform to
investigate the spatio-temporal fluctuations and inter-annual variability of rainfall in the study
domain. Several statistical indices were employed to check the data similarity between observed
and remotely sensed data products and applied to each district. Moreover, non-parametric tech-
niques, i.e., Mann–Kendall (MK) and Sen’s slope estimator were applied to measure the long-term
spatio-temporal trends. Remotely sensed data products reveal 422.50 mm (CHIRPS) and 571.08 mm
(PERSIANN-CDR) mean annual rainfall in central Punjab. Maximum mean rainfall was witnessed
during the monsoon season (70.5%), followed by pre-monsoon (15.2%) and winter (10.2%). Monthly
exploration divulges that maximum mean rainfall was noticed in July (26.5%), and the minimum
was in November (0.84%). The district-wise rainfall estimation shows maximum rainfall in Sialkot
(931.4 mm) and minimum in Pakpattan (289.2 mm). Phase-wise analysis of annual, seasonal, and
monthly trends demonstrated a sharp decreasing trend in Phase-1, averaging 3.4 mm/decade and an
increasing tendency in Phase-2, averaging 9.1 mm/decade. Maximum seasonal rainfall decreased in
phase-1 and increased Phase-2 during monsoon season, averaging 2.1 and 4.7 mm/decade, whereas
monthly investigation showed similar phase-wise tendencies in July (1.1 mm/decade) and August
(2.3 mm/decade). In addition, as district-wise analyses of annual, seasonal, and monthly trends in
the last four decades reveal, the maximum declined trend was in Sialkot (18.5 mm/decade), whereas
other districts witnessed an overall increasing trend throughout the years. Out of them, Gujrat district
experienced the maximum increasing trend in annual terns (50.81 mm/decade), and Faisalabad
(25.45 mm/decade) witnessed this during the monsoon season. The uneven variability and trends
have had a crucial imprint on the local environment, mainly in the primary activities.

Keywords: rainfall change; CHIRPS; PERSIANN-CDR; descriptive statistics; non-parametric trends;
Google Earth Engine; central Punjab
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1. Introduction

Rainfall is a key component and also a significant contributor to the global energy and
water cycle for determining the overall hydro-meteorology of any region [1,2]. Rainfall
has a various range of impressions on human civilization, agricultural applications [3], re-
gional biodiversity [4], vegetation distribution and growth, local water supply, hydropower
projects [5], and the inclusive geo-ecological equilibrium of a particular region [6]. In past
decades, global rainfall pattern, distribution and trends have unfortunately witnessed an
irregular nature, which resulted in drought [7], immense flooding [8], large-scale cloud
burst, and significant damage in terms of property and infrastructure [9]. It is supposed that
alterations in rainfall patterns would be linked to global temperature rises [10]. Recent stud-
ies suggested a declining annual trend over central Asia in the last few decades [2], whereas
Banerjee et al. [11] reported a slightly increasing trend in annual, seasonal, and monthly
rainfall over the north-west Himalayan region from 2000 to 2022. Moreover, additional stud-
ies have also reported an increasing trend of annual rainfall in the Hindu Kush Himalayan
Region [12], while Zhang et al. 2014 [13] found a slightly decreasing tendency of annual and
seasonal rainfall in China’s Yellow River Basin. Several current studies in Pakistan found
uneven rainfall patterns from 1980 to 2020, where Nawaz et al. [14] noticed an increasing
rainfall trend in Punjab province using numerous remotely sensed gridded datasets. On
the other hand, Nawaz et al. [15] observed an uneven distribution of trends in Punjab
province with increased air temperature in the last 50 years. They further examined the
dependency of elevation on rainfall trends and found higher elevation regions experienced
decreased amounts of rainfall with increased air temperature, whereas lower elevation
regions witnessed increased rainfall. Various other studies have been performed to estimate
rainfall distribution and trends in Pakistan and noticed an overall increased trend at annual
and seasonal scales in the last four decades [2,16,17]. Ullah et al. [2] reported a declined
trend in winter and post-monsoon periods and an increased trend during monsoon periods,
pre-monsoon periods, and winter, averaging 0.9 mm/decade from 1980 to 2016. Pakistan
is a highly agriculture-dependent country, and Punjab province is the largest agricultural
region [14], covering 100% of the nation’s annual food demand. It is a well-established fact
that rainfall is very crucial for agricultural productivity and irrigation. Thus, it is identically
important to study the rainfall dynamics and their long-term variability in Punjab province,
Pakistan. During the last four decades, this region has witnessed uneven alterations of
rainfall dynamics and allied agricultural productivity. Decreased rainfall after the 1980s had
critically impacted on agricultural production, which further coped with abrupt changes
after 2002 [14,15]. The central Punjab region is mostly dominated by the monsoonal rainfall
(>70%) [2,16,18], whereas moisture coming from the Bay of Bengal gradually transfers
towards the central Punjab region because of the low-pressure zone at the Pamir region due
to high temperatures [2,16]. Additionally, winter rainfall in the central Punjab region mainly
occurred due to the western disturbances, the presence of jet streams, and the returning
monsoon [2]. Ullah et al. [2] reported significant changes in seasonal rainfall, where abrupt
decline alteration was reported during the pre-monsoon and winter season before 2000; af-
terward, a slight increased tendency has been reported using 53 rainfall stations. However,
the availability of station-based observed data is very limited throughout Pakistan as well
as in Punjab province, so relying on high-resolution remotely sensed data is the best option
to cope with the station data scarcity [19,20]. Various satellite observations are obtainable,
such as Multi-satellite Precipitation Analysis (TMPA) [21], Tropical Rainfall Measuring Mis-
sion (TRMM) [22], Climate Prediction Centre MORPHing product (CMORH) [23], Climate
Hazard Group Infrared Precipitation with Stations (CHIRPS) [24], Multi-source Weighted-
Ensemble Precipitation (MSWEP) [25], the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Network (PERSIANN-CDR) [26], Global Precipitation
Measurement (GPM), and the Asian Precipitation-Highly-Resolved Observational Data
Integration Towards Evaluation (APHRODITE) [27]. A few recent studies were carried out
in India and Pakistan on the performance checking of gridded datasets using numerous
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statistical applications and found that CHIRPS and PERSIANN-CDR datasets properly
capture the rainfall events as compared to station data [2,6,11,14,15].

By considering the seasonality, variability, long-term trends, and distribution of rainfall
in the highest food production region in the country, this exploration aims to study the
spatio-temporal and inter-decadal dynamics in the last 38 years of rainfall in 19 districts of
central Punjab province.

The objectives of this study are described as follows:

1. Collect, calculate, and analyze the CHIRPS and PERSIANN-CDR gridded rainfall
products with surface observatories data from PMD of a chosen region;

2. Map seasonal, annual, and monthly rainfall variability and trends with suitable
performance analysis with in situ data;

3. Determine long-term inter-decadal district-wise distribution and trends of rainfall
on monthly, seasonal, and annual scales for the period of 1983–2020 by using non-
parametric tests.

2. Study Area

With a total area of 205,344 sq. km, Punjab is the most populous and second largest
province in Pakistan after Baluchistan, with geographical coordinates of 31.17◦ N and
72.70◦ E (Figure 1). From the total area of Punjab province, the 19 districts of central Punjab
consist of 68,577 sq. km, which is 33.39% of the total. Of 110.01 million people live in Punjab
province, and 63.67 million live in 19 districts of central Punjab, which is 58% of the total.
Due to canal irrigation and rainfall, especially in summer, a significant part of agricultural
products is produced in central Punjab [28–30]. In Punjab province, central Punjab districts
produced 45% of wheat, 69% of corn, and 83% of rice in 2019–2020. Climatologically,
this area is located in the subtropical dry region, having mean annual temperature ranges
between 16.3 ◦C to 29.3 ◦C. Rainfall of this region varies from south–central to north-eastern,
whereas it reaches its maximum during the monsoon season (50–75%) [31]. The monsoon
system provides the majority of rainfall, filling yearly agricultural needs in the central
Punjab region [32]. Recent increased frequency of unpredictable occurrences of rainfall
impacted rice, maize, wheat, sugarcane, and cotton production along with other minor
crops, such as millet, vegetables, and tree fruits, including citrus and mango in the central
Punjab districts, including Nankana Sahib, Sialkot, Gujranwala, Hafizabad, Sheikhupura,
and Sargodha [33]. This region is fairly vulnerable to climate change because of the large
variety and intense events that occur during the summer and winter monsoon precipitation
seasons [34–38]. Spatial and temporal evaluation of the GPPs (gridded satellite precipitation
products) is vital to examine in-depth hydro-meteorological scenarios across the study
region, where observed data are inadequate.
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Figure 1. (a) Location of central Punjab, Pakistan; (b) Districts of central Punjab region; (c) Digital
elevation model of central Punjab with PMD metrological observatories; (d) District-wise land use
and land cover pattern of central Punjab.

3. Materials and Methods
3.1. Observed Data

Daily rainfall surface observatory data of three selected stations were obtained from
the Climate Data Processing Centre (CPCD) of the Pakistan Meteorological Department
(PMD) for the period of 38 years (1983–2020) (Table 1). Station-observed data is already
quality-controlled and has been situated at the same place for the last four decades by PMD
(except in Sargodha where PMD handed over the task to the Pakistan Air Force in 2016) for
calculating long-term variability [2,14]. Therefore, our prime considerations to select the
data were (i) recent time and long-term data availability, and (ii) fewer data gaps, as seen
in Table 1.

Table 1. Data utilized to examine the rainfall distribution and trends in central Punjab.

Station-Observed Data (Collected from PMD)

Latitude Longitude Elevation (in m) Period Available
Observation (in %)

Stations
Lahore 31◦33′ N 74◦20′ E 214.00 1983–2020 100

Faisalabad 31◦26′ N 73◦08′ E 185.6 1983–2020 99.99
Sialkot 32◦31′ N 74◦32′ E 255.1 1983–2020 99.99

Gridded Data (Downloaded from Google Earth Engine Platform)

Data Type Source Year Spatial Resolution
CHIRPS UCSB/CHG 1983–2020 0.05◦

PERSIANN-CDR NOAA/NCDC 1983–2020 0.25◦
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3.2. Remotely Sensed Data

Two different sources of precipitation datasets were obtained and used; one was
the CHIRPS, and the second was the PERSIANN-CDR satellite-based data. Both were
extracted through the Google Earth Engine (GEE) web-based remote sensing platform
for the period of 1983–2020 (Table 1). The CHIRPS data is a combination of in situ, satel-
lite and global precipitation prediction system (https://www.chc.ucsb.edu, accessed at
10 November 2022), which was taken from the Climate Hazard Group website with the
help of GEE [6]. The PERSIANN-CDR dataset is available via the NOAA National Cen-
ters for Environmental Information (NCEI) program (https://www.ncdc.noaa.gov/cdr,
accessed at 10 November 2022) and was also taken from GEE via the CHRS data portal
(http://chrsdata.eng.uci.edu, accessed at 10 November 2022) [39].

3.3. Data Processing and Statistical Application

Monthly, seasonal, and annual gridded rainfall products were assimilated from the
GEE platform through the use of the ‘ee.ImageCollection’ algorithm and complete request of
filter command (ee.Filter.calendarRange) for the study period (1983–2020) for this research.
Subsequently, the ‘clip’ function was used to limit the study region and to extract the
actual data as per the study domain. For matching similar spatial information with station
data, the nearest point-pixel rainfall values of the gridded dataset were derived in GEE
in accordance with station locations using GEE algorithms (the code can be found at
Banerjee et al.) [6]. Afterward, pixel-based long-term spatio-temporal trends for gridded
data sets were achieved in GEE by the use of the ‘ee.Reducer.senSlope’ algorithm. The
gridded daily rainfall records were then aggregated to seasonal totals, namely pre-monsoon,
monsoon, post-monsoon, and winter, and also on annual scale. As per recommendations
by the Pakistan Meteorological Department (PMD), the season was considered in the
following way: winter = January and February; pre-monsoon = March, April, and May;
monsoon = June, July, August, and September; post-monsoon = October, November, and
December [36,40,41]. To calculate the long-term trend, the serial auto-correlation technique
has been employed to check the data similarity of a particular time-series, and then non-
parametric techniques i.e., Mann–Kendall (MK) and Sen’s slope estimator were applied to
check the statistical significance and actual amount of alteration throughout the decades
for two distinctive phases (1983–2001 and 2002–2022) at the 95% significance level [6,11],
as per the status of long-term rainfall distribution and observed abrupt changes after 2001
due to the remarkable presence of the EL Nino (1998) and subsequent rapid increase in
temperature and decreased rainfall pattern throughout the country [40]. Previous studies
in this region also highlighted changing pattern of rainfall after 2002, so that we divide
the entire study period into two phases to investigate inter-decal rainfall variability and
trends (Figure S1) [14,15,40]. All of the significance tests and trend calculations at annual,
seasonal, and monthly scales were performed using the GEE web-based API platform and
MATLAB programming language.

The observed rainfall of three stations in central Punjab on a daily scale were obtained
from the PMD archive for the period of 1983 to 2020. The missing values of possible stations
were filled by taking long-term daily averages [6]. Observed rainfall records in a region,
such as central Punjab, are scarce and unobtainable, because most of the rainfall data
stations were established after 2004, so accessing long-term observed empirical data is still
a big challenge for the research community. To ensure that high-quality satellite rainfall
data concerning the station-observed data could be used for further investigation, several
descriptive statistics were then applied to check data distribution and the relative perfor-
mance of the gridded datasets. The statistical indices include (a) bias, (b) multiplicative
bias (MBias), (c) relative bias (RBias), (d) mean error (ME), (e) mean absolute error (MAE),
(f) root mean square error (RMSE), and (g) correlation coefficient (CC). To measure the
uncertainty and assess the level of inaccuracy in an averaging of large-scale estimates, the
following approaches were used: (i) cumulative distribution frequency (CDF) and (j) the
Taylor diagram; all of the mathematical equations can be found in Banerjee et al. [6].

https://www.chc.ucsb.edu
https://www.ncdc.noaa.gov/cdr
http://chrsdata.eng.uci.edu
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4. Results
4.1. The Outcome from Descriptive Statistics

Descriptive statistics revealed a blend of under- (PERSIANN-CRD) and over-estimation
(CHIRPS) (Table 2) of rainfall counts as per the observed data. The ME value showed that
both CHIRPS (−0.19 mm) and PERSIANN-CDR (−0.12 mm) slightly underestimate the
daily rainfall at the Lahore and Sialkot stations, while at the Faisalabad station CHIRPS
(−0.11 mm) closely underestimated the rainfall, and PERSIANN-CDR (0.08 mm) overes-
timated the rainfall (Table 2) at daily scales. The lower value of RMSE at three stations
indicates a good spatial association between in situ and remotely sensed data products.
The MAE value of both datasets is in the range of 1.64 mm to 2.82 mm, which indicates that
gridded data is finely fitted with observed data with the least mean absolute error. A very
small or negligible parentage spatial bias for three stations was observed through CHIRPS
(0.23 mm to 0.28 mm) and PERSIANN-CDR (−0.1 to 0.155 mm) data. The low values of
MBias (−0.61 to−1.5) indicate the less systematic errors within the datasets. The correlation
coefficient (CC) and linear regression for both the gridded and station data showed a strong
association (Figure 2) in terms of monthly rainfall distribution. The association of CHIRPS
(r = 0.78) is relatively better as compared to PERSIANN-CDR (r = 0.76). The maximum
correlation coefficient value was noticed at the Lahore station, followed by Faisalabad and
Sialkot (Table 2). Additionally, the cumulative distribution frequency (CDF) graph shows
the spatial distribution for average monthly rainfall (Figure 2e), which presents that more
than 90% of mean monthly rainfall is evenly distributed among CHIRPS, PERSIANN-CDR,
and surface observatories.
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Figure 2. (a–c) show the relationship between the observed and gridded data (r2), (d) bias, (e) RMSE,
and (f) the CDF of gridded data with corresponding observatories from 1983–2020.

4.2. Phase-Wise Annual, Seasonal and Monthly Distribution of Rainfall in Central Punjab
(CHIRPS, PERSIANN-CDR)

Phase-wise annual, seasonal, and monthly distribution of rainfall in central Punjab
have been determined using CHIRPS and PERSIANN-CDR (Figure 3) datasets. The mean
annual investigation as per the CHIRPS data shows comparatively inferior rainfall in
Phase-1 (385.8 mm) compared to Phase-2 (459.2 mm), whereas PERSIANN-CDR reveals
relatively higher rainfall in the last four decades (Figure S2). The seasonal average of two
distinctive phases shows that the maximum rainfall is during monsoon season (70.5%),
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followed by pre-monsoon (12.5%), and winter (9.6%) (Figure 3a,b). In addition to this, the
mean monthly investigation exhibits maximum rainfall in July, August, and September,
followed by January and February (Figure 3c,d).

Table 2. Statistical indices to examine the similarity amid satellite data (CHIRPS and PERSIANN-
CDR) and observed datasets.

Station Data ME (mm) RMSE (mm) MAE (mm) Bias (mm) MBias (mm) RBias (%) CC

Lahore
CHIRPS −0.19 10.01 2.77 0.29 −1.31 0.00 0.78

PERSIANN-CDR −0.12 9.55 2.83 0.15 −1.57 0.00 0.76

Faisalabad
CHIRPS −0.11 6.34 1.64 0.23 −0.62 0.00 0.62

PERSIANN-CDR 0.08 6.57 1.88 −0.10 −1.29 −0.00 0.63

Sialkot
CHIRPS −0.09 1.99 1.18 −0.21 0.88 0.00 0.74

PERSIANN-CDR 0.13 2.12 2.97 0.29 1.15 0.00 0.73
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Figure 3. Phase-wise distribution of rainfall with error bars in central Punjab (from 1983–2001 and
2002–2020). (a) Mean annual and seasonal rainfall of CHIRPS; (b) mean annual and seasonal rainfall of
PERSIAN-CDR; (c) mean monthly rainfall of CHIRPS; (d) mean monthly rainfall of PERSIANN-CDR.

Out of the two phases, maximum rainfall is observed in Phase-2, whereas dispersal of
the PERSIANN-CDR exhibits relatively higher rainfall as compared to the CHIRPS data
(Figure 3a–d).

4.3. District-Wise Distributions of Annual, Seasonal, and Monthly Rainfall (CHIRPS,
PERSIANN-CDR)

District-wise distribution of mean annual, seasonal, and monthly rainfall has been
carried out using CHIRPS and PERSIANN-CDR datasets for 38 years (1983–2020) in central
Punjab (Figure 4). Maximum mean annual rainfall was experienced in Sialkot (904.2 mm),
followed by Narowal (860.36 mm), and Gujrat (840.9 mm) as per the CHIRPS data, whereas
PERSIANN-CDR data show the maximum rainfall as being in the Sialkot (958.46 mm),
Narowal (912.9 mm), and Gujrat (898.78 mm) districts (Figure S2). Concurrently, the
seasonal assessment reveals that maximum rainfall occurs in Sialkot (702.40 mm), followed
by Narowal (656.7 mm), and Gujrat (618.00 mm), with the CHIRPS dataset during monsoon
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season (71.24% out of the total rainfall in central Punjab) (Table 3). Moreover, PERSIANN-
CDR shows maximum rainfall during the same season in Sialkot (690.5 mm), Narowal
(670.48 mm), and Gujrat (608.7 mm) districts (Figure 4a,b). Apart from the monsoon season,
the pre-monsoon and winter seasons also received a significant amount of rain throughout
the years; CHIRPS shows maximum rainfall in Gujrat (95.6 mm), followed by Sargodha
(88.18 mm), and Narowal (87.4 mm) during the pre-monsoon season (14.74% out of the
total rainfall in central Punjab), while PERSIANN-CDR highlights the maximum, albeit
lower, rainfall as compared to CHIRPS in Gujrat (151.9 mm), Mandi Bahauddin (135.7 mm),
and Sialkot (133.9 mm) (Figure 4c,d). Furthermore, maximum rainfall during winter season
(9.96% out of the total rainfall in central Punjab) as per CHIRPS occurs in Gujrat (89.5 mm),
Narowal (88.2 mm), and Sialkot (74.5 mm), where similar distribution pattern has been
noticed in PERSIANN-CDR also. Furthermore, monthly exploration reveals maximum
rainfall in June (43.6 mm), July (123.1 mm), August (109.9 mm), and September (56.7 mm)
in CHIRPS data, while PERSIANN-CDR exhibits maximum rainfall in June (56.3 mm), July
(151.9 mm), August (128.4 mm) and September (59.5 mm) (Figure 4e,f).
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Table 3. Phase-wise annual, seasonal, and monthly distribution of rainfall in central Punjab from gridded datasets (1983–2020).

Data Period January February March April May June July August September October November December Annual Pre-
Monsoon Monsoon Post-

Monsoon Winter

CHIRPS
1983–2001 17.61 19.20 24.14 13.37 12.73 33.45 110.68 99.64 41.48 4.23 1.81 7.51 385.83 50.23 285.24 13.55 36.81

2002–2020 21.39 28.51 30.21 21.03 15.48 49.42 115.01 104.62 58.01 5.36 3.10 7.04 459.19 66.72 327.06 15.51 49.90

PERSIANN-
CDR

1983–2001 19.98 27.56 34.98 31.44 22.89 51.22 166.20 134.20 47.15 10.99 4.37 11.77 562.74 89.31 398.77 27.12 47.54

2002–2020 28.80 40.37 41.28 33.39 26.05 58.24 133.79 121.25 68.70 9.83 8.11 9.60 579.44 100.73 381.98 27.55 69.18



Atmosphere 2023, 14, 60 10 of 19

Monthly scale investigation revealed that maximum rainfall was noticed in June to
September, averaging 19.5% of the total (Figure 4e,f), whereas December and January also
experience remarkable rainfall throughout the years.

4.4. Phase-Wise Annual, Seasonal, and Monthly Trends of Rainfall in Central Punjab (CHIRPS,
PERSIANN-CDR)

Phase-wise annual, seasonal, and monthly trends and also percentage change in rain-
fall in central Punjab using CHIRPS and PERSIANN-CDR datasets have been achieved
(Figure 5). Both distinctive phases show a versatile temporal tendency, where Phase-1,
annually detecting a statistically insignificant decreasing trend in both datasets, is an av-
erage of 5%/decade. Moreover, Phase-2 experiences a statistically significant increasing
tendency in both datasets, around 19%/decade (Figure S2). Seasonal investigation ex-
hibits an overall insignificant decreasing trend, averaging 14.3%/decade, except during
post-monsoon season (−4.2%/decade) and winter (0.49 mm/decade). On the other hand,
Phase-2 witnessed an overall statistically significant increasing trend in both the datasets,
averaging 10.5 mm/decade (Figure 5a,b). Maximum seasonal trends occurred during
monsoon season, followed by pre-monsoon and winter seasons (Figure 5a). Additionally,
monthly exploration exhibits the uneven distribution of trend, where CHIRPS observed
a maximum statistically significant reduction in Phase-1 in March (−28.5%/decade), fol-
lowed by September, February, and December (Figure S2). Along with this, CHIRPS data
during Phase-2 experienced an overall increasing trend, where the maximum statistically
significant tendencies were observed in July (37.4%/decade) and April (13.3%/decade)
(Figure 5e,f). However, PERSIANN-CDR witnessed relatively higher statistically sig-
nificant changes in the month of April (31.4%/decade) and slightly lesser ones in June
(26.8%/decade), as compared to CHIRPS data (Table S1).
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Figure 5. Phase-wise trends and mean percentage change in rainfall in central Punjab through
CHIRPS and PERSIANN-CDR (1983–2001 and 2002–2020). (a) Trends on annual and seasonal scales;
(b) trends on a monthly scale; (c) percentage mean annual and seasonal change in CHIRPS from
Phase-1 to Phase-2; (d) percentage mean annual and seasonal change in PERSIAN-CDR from Phase-1
to Phase-2; (e) percentage mean monthly change in CHIRPS from Phase-1 to Phase-2; (f) percentage
mean monthly change in PERSIANN-CDR from Phase-1 to Phase-2.
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4.5. District-Wise Trend of Annual, Seasonal and Monthly Rainfall (CHIRPS, PERSIANN-CDR)

The present study further investigates the district-wise rainfall trend of two grid-
ded datasets for the last four decades. Out of 19 districts, CHIRPS showed a max-
imum annual statistically significant trend in Gujrat (50.8 mm/decade), followed by
Narowal (47.9 mm/decade), Mandi Bahauddin (41.7 mm), Sarghoda (39.5 mm), and Sialkot
(37.2 mm/decade) (Table S2). Contrary to this, PERSIANN-CDR demonstrated a relatively
low tendency, where the maximum trend was observed in Chiniot (29.5 mm/decade). Sea-
sonal investigation illustrates a significant increase during monsoon season in both datasets,
where Gujrat witnessed a higher increasing trend (29.4 mm/decade) (Figure 6a,b). However,
PERSIANN-CDR showed a moderately low seasonal tendency during the monsoon period,
where maximum changes were noticed in Jhang (23.5 mm/decade) (Table S3). Additionally,
pre-monsoon and winter seasons also experienced a statistically significant increasing trend
throughout the years. Maximum changes were observed in Chiniot (10.2 mm/decade),
followed by Faisalabad (10.1 mm/decade) and Toba Tek Singh (9.6 mm/decade), during
pre-monsoon season. On the other hand, Gujrat witnessed the maximum changes during
the winter season (11.8 mm/decade), followed by Sialkot (9.9 mm/decade), and Narowal
(9.4 mm/decade).
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In addition, the study further explores long-term monthly alteration using both the
gridded datasets. Maximum significant increasing changes were noticed in Gujrat district
in September (9.6 mm/decade), June (8.9 mm/decade), and July (7.3 mm/decade) based
on CHIRPS data. On the other hand, PERSIANN-CDR showed maximum alteration in
Kasur district (13.1 mm/decade), trailed by Nankana Sahib (12.4 mm/decade), and Okara
(10.6 mm/decade) in September.

5. Discussion

In places where in-situ data is scarce, the use of remotely sensed rainfall data is
critical for assimilation, estimation, and forecasting, as well as enhancing model simulation
performance to well understand the land–atmosphere interactions [42,43]. In this study, we
intensively examined the performance of gridded datasets using two surface observatories
by employing several statistical indices and found more than 90% similar rainfall counts in
the last 38 years (1983–2020). Investigations of monthly, seasonal (winter, pre-monsoon,
monsoon, and post-monsoon), and annual distribution, and trends of rainfall, using non-
parametric statistical techniques revealed 9.59 mm/decade to 50.81 mm/decade increase in
rainfall annually in central Punjab districts in the last 38 years at the 95% confidence level.

5.1. Validation of Gridded Data in Comparison to In-Situ Data (1983–2020)

There have always been concerns regarding the availability of long-term climate data,
especially due to the missing surface observatory data in crucial regions, such as central
Punjab in Pakistan. Due to unreachability, long-term observation stations are an exception
and, hence, we relied on remotely sensed and reanalysis products to estimate uncertainties
that cannot be handled with station rainfall data. Reanalysis (CHIRPS) and satellite-derived
(PERSIANN-CDR) rainfall outputs can be compared and statistically assessed in terms of
relative performance versus limited observational data using the GEE cloud computing
capability. So far, limited research has been conducted for the validity of the CHIRPS and
PERSIANN-CDR in Pakistan against the in situ data, but none so far provide deep insight
at a regional level, such as central Punjab [19,44].

Because of the presence of cold clouds, ice, and snow, satellite products are inadequate
in their capability to predict rainfall in mountainous locations [45]. The CHIRPS sometimes
under- or overestimates in situ data in different parts of the world [46,47]. On a daily
scale, CHIRPS performance was noted as being subpar; however, it was better evaluated
across West Africa on a monthly, seasonal, and annual scale [48]. The dissimilarity is due
to orographic features, different climate zones, and composite surface topography [47,49].
The performance of the CHIRPS was found to be satisfactory over the upper Blue Nile
basin in Ethiopia and over the Central Andes of Argentina [50,51]. The CHIRPS performs
relatively well in India and China as compared to other products [6,52]. In our study,
however, CHIRPS slightly underestimates the rainfall in both stations, but it has ample
capability to count rainfall as compared to observed data. A very low bias, Mbias, Rbias,
and high CC is found. The accuracy of CHIRPS is established in Pakistan at monthly and
seasonal scales in different climate zones [44]. Another study of CHIRPS in Pakistan found
similar results [19].

The PERSIANN-CDR consistently overestimates the rainfall as compared to other
rainfall satellite products and in situ data [18,53–55]. It underestimates the rainfall on a
daily scale and overestimates on a seasonal and annual scale. The inability of infrared-
based retrievals to accurately predict rainfall in PERSIANN-CDR may be the cause of
overestimation [56,57]. However, the accuracy of PERSIANN-CDR is established in drought
and rainfall studies with low error and bias [58–60]. Growing number of literatures have
examined the effectiveness of the PERSIANN-CDR daily rainfall product in recent years
to capture rainfall counts in different parts of the world and estimated its effectiveness in
terms of long-term capturing and performance for hydrological modeling [61–63]. In our
study, the PERSIANN-CDR underestimates the rainfall at Lahore station and overestimated
it at Faisalabad station. However, the accuracy of the PERSIANN-CDR is established with
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high CC, and with low bias and ME. Similar findings are reported in the literature in
Pakistan [44].

Our analysis also demonstrates the authenticity of two gridded data sets, with CHIRPS
showing better agreement with observatory rainfall than PERSIANN-CDR. Similar tem-
poral trends and patterns are seen in the monthly, yearly, and seasonal distributions from
1983 to 2020 from the two observatories (Figure 7).
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Figure 7. Taylor diagram exhibiting spatial association between station data and satellite data sets.

5.2. Variability and Trends in Rainfall

The comparison of the spatio-temporal distribution and trends of rainfall between the
CHIRPS and PERSIANN-CDR (district-wise) datasets across central Punjab from 1983 to
2020 on a monthly, seasonal, and yearly scale was achieved. Both the datasets showed heavy
rainfall in central Punjab during the monsoon season (70.5%), followed by pre-monsoon
(15.2%) and winter (10.2%). The heavy monsoonal rainfall occurred due to uneven distribu-
tion of pressure gradients in the Pamir region and the Bay of Bengal, which brings sufficient
moisture and rainfall throughout the months [11,16,64,65]. Additionally, the pre-monsoon
and winter rainfall occurred due to the presence of western disturbances originating from
the Mediterranean Sea and bringing more moisture towards southwest regions because
of a highly intensified upper air westerly Jetstream [17,18,66]. Less rainfall during the
post-monsoon season is a result of an early end of the monsoon season, but the convective
systems control rainfall during that season [67,68]. The variability in connective systems can
increase or decrease the rainfall in the post-monsoon season. Similar findings are reported
in the literature [2,19,69]. District-wise investigation suggests that Sargodha and Faisalabad
have experienced a statistically significant increasing trend in the monsoon season due to
vast temperature fluctuations, land–ocean interactions, and sufficient moisture from the
Arabian Sea and the Bay of Bengal.

Moreover, Narowal and Sialkot have witnessed a decreased tendency throughout
the years, which can be attributed by the intense global atmospheric circulation patterns
i.e., the El Niño–southern oscillation (ENSO), the Atlantic multi-decadal oscillation (AMO),
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inter-decadal Pacific oscillation (IPO), and urbanization and climate change [16,65,70].
Another study also found similar results in that region [70].

Additionally, anthropogenic activities, such as industrial growth, infrastructural activ-
ities, urbanization, and global increasing air temperature are also liable [38]. In Phase-2,
annually, rainfall increased by 19%, which can be ascribed to the increasing tendency
towards extreme events and huge temperature gradients, resulting in rapid land-ocean
interactions [11,71,72].

5.3. Environmental and Socio-Economic Impacts of Rainfall Changes

Alterations in annual, seasonal, and monthly rainfall have had a critical impact on
environment setup, particularly in rain-fed regions, such as central Punjab. Increased
inconsistency in rainfall during the summer monsoon season, rising temperatures in arable
parts, and severe water stress (such as floods and droughts) all agglomerate to have a
negative impression on agricultural practices and productivity [73,74].

5.3.1. Effects of Decreasing Rainfall (Phase-I: 1983–2001)

Long-term trend analysis of central Punjab from 1983 to 2001 (Phase-1) witnessed
declining rainfall (averaging 3.4 mm/decade), which resulted in a deterioration of agri-
cultural productivity, averaging 6–18% [75]. Seasonal rainfall in this time phase also
experienced a decreasing trend, averaging 0.09 mm/decade. This can be attributed to the
El Niño–southern Oscillation (ENSO), the Atlantic multi-decadal oscillation (AMO), the
inter-decadal Pacific oscillation (IPO), as well as urbanization and climate change [76–79].

Insufficient rainfall also resulted in less productivity of good quality cotton [80],
which further caused fluctuations in the local economy [81]. Adequate rainfall during the
wheat growing season also resulted from less production and growing, which troubled
the country’s food supply [82]. Massive reductions in livestock due to decreasing patterns
of rainfall in central Punjab districts have been reported, which leads to poverty in rural
areas [83]. Nevertheless, approximately 3 million people were impacted by the severe
drought that occurred from 1998 to 2002, which also affected the national economy overall,
and ecology and the agricultural industry in particular [84–86]. Recent studies have
reported that the severe drought between 2000 and 2001 had an undesirable impact on
the green sector’s growth rate (−2.6%) as equated to subsequent years [87]. This declining
pattern of rainfall also impacted the national water availability (a 51% reduction) and
lessened river discharge from 162 billion m3 to 109 billion m3, which triggered a lowering
GDP growth to 4.7% instead of the preliminary objective of 5.2% [88,89], as a significant
proportion of population throughout the years directly or indirectly depended on water
supply and allied primary activities. In rain-fed area, such as central districts of Punjab
province, farm households are surrounded by uncertainty, which causes a reduction in
livestock yield due to decreasing patterns of rainfall. It also increases the challenges of
water availability and leads to poverty in rural areas [83]. More than 3 million people were
impacted by the drought from 1998 to 2002, which also crippled the national economy [84].
Thus, it significantly affected the ecology and the agricultural industry [85,86]. In Pakistan,
the severe drought between 2000 and 2001 harmed the green sector’s growth rate (−2.6%),
as compared to 2001 to 2002 [87]. Pakistan had a 51% increase in water shortage from the
previous year, decreasing water flows in main rivers to 109 billion m3 from 162 billion m3,
and lowering GDP growth to 4.7% instead of the preliminary objective of 5.2% [88,89]. As a
result, a significant portion of the population’s food security and way of life was seriously
impacted, along with agricultural and animal productivity.

5.3.2. Effects of Increasing Rainfall (Phase-II: 2002–2020)

An annual increasing trend has been observed in Phase-2, according to CHIRPS
data, by 10.01 mm/decade, whereas PERSIANN-CDR shows a relatively lower trend
(7.94 mm/decade), which has adverse effects on the local economy, mainly in primary ac-
tivities. This increased effect of rainfall meaningfully impacted on agricultural productivity
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in central Punjab [90]. Recent growing investigators have looked into the enlarged impacts
of rainfall on harvest and yield variation and found a decreased tendency from 5% to 15%
throughout September and October in rice yield in the districts of Lahore, Gujranwala,
and Sheikhupura due to unnecessary heavy rainfall on mature crops [88,89]. Increased
rainfall also resulted in floods in Punjab, mainly in the Dera Ghazi Khan, Rajanpur, and
Rahim Yar Khan districts in 2010 and 2011, which had a massive impact on local primary
production [91]. Contrary to this, a heavy increase in rainfall during the monsoon season
(4.5 mm/decade in Phase-2) occasioned enormous infrastructure and property loss and
also damaged about 150,000 tons of upright settled wheat crops.

6. Summary and Conclusions

The foremost intention of this study was to examine the spatio-temporal long-term
phase-wise distributions and trends of annual, seasonal, and monthly rainfall in the central
Punjab region, Pakistan, by using both observed and gridded (CHIRPS and PERSIANN-
CDR) datasets. Several descriptive statistics and non-parametric statistical trend estimations
were utilized to check the data performance and durable alterations by employing advanced
web-based cloud platform computing (GEE) and MATLAB programming language. The
key findings can be summarized as follows.

1. The present study initially dealt with the performance checking of remotely sensed
gridded datasets (CHIRPS and PERSIANN-CDR) using station-observed data by em-
ploying numerous statistical indices and found CHIRPS has a higher spatio-temporal
association with station-observed data (r2 = 0.76) than PERSIANN-CDR (r2 = 0.63),
along with comparatively low bias and RMSE;

2. Long-term annual, seasonal, and monthly distribution of this study highlights maxi-
mum rainfall in Sialkot (904.24 mm), followed by the Narowal (860.36 mm) and Gujrat
(840.99 mm) districts. In seasonal and monthly scales, monsoon season contributes
71.24% of rainfall, whereas highest rainfall observed in the month of July (26.79%). In
addition, out of the 19 districts, the maximum annual statistically significant increas-
ing trend was noticed in Gujrat (50.8 mm/decade), whereas seasonal dynamics show
that the maximum increased during the monsoon season in Jhang (23.5 mm/decade).
Furthermore, the maximum monthly change was observed in Gujrat district in the
month of September (9.6 mm/decade);

3. The present study intensively investigated phase-wise long-term alteration in central
Punjab and found a statistically decreasing trend in Phase-1 (3.5 mm/decade) and
increasing in Phase-2 (7.5 mm/decade). Maximum seasonal changes were noticed
during the monsoon season. Furthermore, the maximum statistically significant
tendency was observed in July (3.3 mm/decade) and April (1.0 mm/decade) in
Phase-2, whereas Phase-1 witnessed a statistically significant reduction in March
(0.9 mm/decade);

4. This uneven nature of inter-annual long-term rainfall has had a crucial imprint on the
local infrastructure and property as well as primary activities (mainly agriculture).
Less rainfall in Phase-1 critically accelerated remarkable loss in agricultural produc-
tivity pf 4.7%, whereas the increased rainfall scenario in Phase-2 resulted in massive
loss of mature standing crops of about 150,000 tons and damage to property due to
unpredicted floods;

5. The foremost lacuna of this study is the availability of maximum ground rainfall
records; however, only three observational stations were available as per the study
period (1983–2020). That is why relying on remotely sensed data is identically signifi-
cant in this case to exhibit overall spatial variations throughout the study domain. To
achieve this aim, the applications and usefulness of a cloud computing system, such
as GEE, is more efficient to gather a large quantity of datasets in a single platform
with higher computational capacity.
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