atmosphere

A

Article

Correlation Structure and Co-Movement of Hunan Province’s
Air Pollution: Evidence from the Multiscale Temporal Networks

Fang Wang 1'2* and Zehui Zhang 2

check for
updates

Citation: Wang, F.; Zhang, Z.
Correlation Structure and
Co-Movement of Hunan Province’s
Air Pollution: Evidence from the
Multiscale Temporal Networks.
Atmosphere 2023, 14, 55. https://
doi.org/10.3390/atmos14010055

Academic Editor: Daekeun Kim

Received: 1 December 2022
Revised: 20 December 2022
Accepted: 23 December 2022
Published: 28 December 2022

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan
Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University,
Xiangtan 411105, China

College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China

*  Correspondence: onewang2021@163.com

Abstract: In recent years, air pollution has become one of the main factors harming the livable
environment for human beings. Governments have recognized the importance of controlling air
pollution and reached a consensus that regional joint control of air pollution is an effective means of
dealing with environmental degradation. In this work, we focus on the impact of fine particulate
matter and nitrogen compounds on the air quality of 14 prefecture-level cities in China’s Hunan
Province using the insights of complex networks, and further propose a joint treatment scheme
for these two pollutants. Multiscale temporal networks are constructed based on the height cross-
correlation coefficient, which allows us to assess the variable network structures concerning different
time scales. We use four network properties to assess the network structures for the pollutants.
Through the Jensen-Shannon divergence of the probability distribution of these network attributes,
it is found that NO, affects AQI more in a short time interval than in a longer time interval. The
correlation of both NO, and PM; 5 among the 14 cities in about 15 days can best reflect the air
quality in Hunan Province. In addition, instead of NO;, PM; 5 has become the culprit of air pollution
in Hunan Province. The co-movement of the pollutants among the 14 cities is significant. The
co-movement of the PMj 5 pollutants can last 45 days, while that of NO, pollutants will gradually
decrease over time. Furthermore, by using spectral clustering based on the network node correlation,
we classify the 14 cities into five regions and two regions for PM; 5 and NO,, respectively. It provides
a feasible implementation guide for the environmental governance of regional cooperation.

Keywords: pollution co-movement; height cross-correlation coefficient; multiscale networks; Jensen-
Shannon divergence; spectral clustering

1. Introduction

Environmental pollution has become a worldwide issue. The problem of air pollution
is particularly prominent because it is directly related to the respiratory health of all people
on earth. More and more governments have realized the importance of managing air
pollution and actively introduced a series of countermeasures [1].

In the work of controlling air pollution, it is an effective prerequisite to detect the
laws behind the monitored environmental data through statistical analysis. With the
advancement of modern statistical methods, it is of great importance to assess the trend
and propagation characteristics of smog from a statistical point of view [2-4]. A lot of
research shows that the study of the correlation between pollutants and meteorological
factors, as well as other pollutants, helps explore the formation and spread of pollution.
Researchers such as Shi [5] have investigated the relationship between temperature, rainfall,
PMj (an inhalable particle with a diameter < 10 pm), and ambient dioxins concentration
in Hong Kong city. Liu et al. [6] found that the air pollutants at most stations in China were
significantly negatively correlated with wind speed, precipitation, and relative humidity,
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but positively correlated with atmospheric pressure. Wang and Fan [7] proposed a coupling
correlation analysis for detecting the coupling of six pollutants in Beijing’s air quality index
(AQI) system. Long et al. [8] investigated the impact of rainfall and wind speed on the air
pollutants in the Sichuan Basin of China by using Pearson’s correlation coefficient. Using
the detrend multiple cross-correlation coefficient [9], Wang et al. [10] investigated the impact
of four typical air pollutants of PM; 5 (fine particulate matter diameter < 2.5 pm), PMyj,
NO;, and CO on the AQI of Beijing city. In addition, many meaningful works have focused
on the correlation between the neighboring regions, which is conducive to investigating the
propagation behavior and exploring the diffusion source [1,11-13]. Among them, Wang
etal. [11] developed a new time-lagged cross-correlation coefficient to find there are varying
degrees of time-lagged correlation of PM; 5 series between Beijing, Tianjin, Baoding, and
Zhangjiakou in North China. Chen et al. [12] evaluated Beijing air quality at the local and
regional scale by using weighted cross-correlogram spectral matching technology. To some
extent, these works allow us to assess the interaction of the pollutants among different
cities and confirm the co-movement of regional air pollution. However, the information
obtained from the correlation analysis of the pollutant concentration series is limited, since
the static structure (which can be regarded as a ‘low-dimension’ feature) of the series itself
cannot express the dynamic evolution process of the pollution concentration sequence,
which must be excavated by the ‘high-dimension” tools.

As one of the most important tools to explore our real world in the 21st century,
complex networks [14] build a bridge between the object phenomena in the world and
rational scientific research. The complex network theory brings a new perspective to
uncover the rich information of real systems. In practice, mapping time series to the
network helps to uncover the dynamic structure and evolution law while the simple
correlation analysis is difficult to complete. Generally, there are three classes of methods to
translate time series into the network, namely, proximity networks [15-17], visible graph
networks [18,19], and transition networks [20,21]. Among them, as one of the proximity
networks, the correlation network [15] is the simplest which makes use of correlation
relationships between different parts of a dynamical system’s trajectory [22]. Scientists in
various fields apply these tools to re-understand the world and gradually master the laws
behind the phenomenon [22]. In the past 20 years, a great number of new network methods
have been proposed to deal with various critical difficulties or real problems in different
fields, including problems of air pollution [23-27]. Among them, Song et al. [23] exploited
a network statistical model to assess the PM, 5 concentration in the region of Jing-Jin-Ji
of North China. Plocoste et al. [24] applied a multiplex visibility graphs network to find
the effect of wet scavenging by rainfall on PM; of the Guadeloupe archipelago. Zhang
et al. [25] developed a novel multiscale time-lagged networks framework to investigate
the interaction of air pollution among nine neighboring cities in North China. Dai and
Zhou [26] applied the planar maximally filtered graph network to investigate the correlation
among the six pollutants in 350 Chinese cities from temporal and spatial perspectives.

The successful application of the method of the complex networks of environmental
pollution monitoring provided the experience to study the interaction of regional air pollu-
tion, which motivated us to use this technique to probe into the co-movement of different
pollutants among the local regions in Hunan Province. This area is one of the core regions
in Central China’s Rising Strategy, whose economy is on a rapid growth track, while it is
simultaneously accompanied by deteriorating air quality. Due to its special geographical
location and climate environment, the air pollutants in the atmospheric circulation for
Hunan Province are difficult to dissipate. The source of air pollution mainly stems from
industrial pollution, vehicle exhaust emissions, and urban construction dust. According
to the Bulletin of the Second National Pollution Source Census in Hunan Province [28],
which was jointly released by the Departments of Ecological Environment, the Bureau
of Statistics, and Agriculture and Rural Affairs of Hunan Province on 9 December 2020,
multiple pollution sources cause the air pollution in Hunan Province. Overall, there were
228,000 tons of sulfur dioxide, 567,500 tons of nitrogen oxides, 597,600 tons of particulate
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matter, and 294,300 tons of volatile organic compounds in the emission of air pollutants
in 2017. Against this background, we focus on the statistical properties of the two main
pollutants, namely, NO, and PM; 5, and seek to compare their impact on Hunan's air
quality system. In addition, we try to aggregate the 14 cities of Hunan Province into several
regions for joint governance of environmental pollution among the cities.

We emphasize that this work is conducted based on the statistical perspective. Multi-
scale correlation analysis of the pollutants among the 14 cities will provide evidence for
the observed pollution phenomena (such as PM; 5 being the main air pollution of Hunan
Province). Network properties analysis will uncover the different network structures of the
two pollutants at different time scales. Spectral clustering will help to classify the 14 cities
into several regions for jointly governing the air pollutants. The findings may provide a
theoretical reference for further studies on the dynamics of the pollutants over time and
interregional joint treatment of air pollution.

2. Materials and Methods
2.1. Height Cross-Correlation Analysis (HXA)

To investigate the cross-correlation of the air pollutant series between every pair of
cities at different time scales, in this work, we apply height cross-correlation analysis
(HXA) [29] to calculate the multiscale cross-correlation coefficient [30,31]. The method
of HXA originated from the multi-affine analysis [32] which was widely used to deal
with univariate time series with statistical self-similarity. With the same idea, the HXA is
designed to analyze the cross-correlation between two fractal series, which is similar to the
well-known detrended cross-correlation analysis (DCCA) [33]. However, in some ways it
is quite different from the DCCA and does not need a fitting process in the local interval,
while the DCCA does. Thus, its calculation speed is faster. For the two series {x;} and {y;},
t=1,2,...,N. N is their sampling length. Define the profile series as

X(t) = é[xf G M

1

I
]
=3
L
<

et

where (x) and (y) denote the average values of series {x:} and {y;} over the entire time
sampling range, respectively. This step is necessary to avoid the influence of non-stationary
measures on the original series. Then, the mutual increment between the profile X(t) and
Y(t) with the interval L is determined by Equation (2), which may be regarded as the
covariance of time lag L,

N—-L
Fyll) = g L (X = X (4 D] [7() = V(¢ 1) @

When x; = y;, the above covariance degenerates to the variance of {x;} as

1 N-L )
(L) = 5 L X0 = X(-+ D) ®

Fyx(L) and Fyy(L) characterize the fluctuation information of the series {x;} itself and
two series between {x;} and {y;} with lag L, respectively. To qualify the strength of cross-
correlation between the {x;} and {y;}, like Pearson’s correlation coefficient, the HXA-based
cross-correlation coefficient can be defined as,

RO X = X+ L) [Y(H) = Y (E+ L)
Pk} = P2 (L)F,(L) R [X(H) = X(t+ L) @

The p(L) can quantitatively describe the cross-correlation between the two series at
varying scales. The p(L) is dimensionless with —1 < p(L) < 1.
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To test the significance of the p(L) at a given scale L, we use the Monte Carlo method
to calculate the critical value [31]. To do so, 10,000 repetitions of shuffled AQI/PM, 5/NO,
series between two cities are employed to compute the p(L) at scale L. Then, the probability
density function (PDF) is obtained, which is expected to be a normal distribution according
to the central limit theorem. Given a significance level « (in this work, we took a = 0.05),
let the integral of PDF between —po(L) and py(L) be equal to 1 — «, then we can obtain the
po(L), which is just the critical value of p(L) at scale L. The area above the py(L) indicates
statistically significant cross-correlations between two series, while the area below py(L)
would suggest insignificant cross-correlations [34].

2.2. Complex Networks Construction and Properties
2.2.1. Network Construction

For the multivariable series, the simplest idea to construct a complex network involves
using the correlation between every pair of series [15]—namely, each air pollutant factor
series is considered as a network node (N), and the correlation between two pairs of time
series is taken as the basis for edge (E) connection. In this spirit, the HXA-based cross-
correlation coefficient given by Equation (4) is employed here to construct the network edge.
According to the statistical test of p(L), for a given scale L, we use Equation (5) to determine
the edge weight (W) w;; between the nodes i and j. Then, a family of AQI/PM;5/NO,
networks G = (N, E, W, L) of 14 cities in Hunan Province can be constructed. They are all
undirected weighted networks.

wi(L) = {Pij(L) pij(L) > po(L) 5)

0 otherwise

2.2.2. Network Topological Properties

To uncover the proposed dynamical structure of the AQI/PM; 5/NO, networks with
varying scales, four topological properties [14] are employed for our consideration, namely,
node strength, clustering coefficient, average path length, and graph density, where the
former three is for every node and the latter is for characterizing the global feature of
the network.

(1) Node strength

In the weighted network, the strength of node i is defined as the sum of the weights of
node i and all its neighbors [14], given by,

NS(i)= ) wj, (6)

jev(i)

where V(i) represents a set consisting of all nodes connected to node i. wj; is the edge
weight value given by Equation (5). Then, the average node strength of the network is

1 N
ma:NZNwL @)
i=1

where N is the number of nodes in our network. Here, N = 14, the same as below.
(2) Clustering coefficient

The clustering coefficient describes the group nature between the node neighbors,
which expresses the medium-range topological information of a node in the corresponding
network. There are several definitions of the clustering coefficient for the weighted net-
work [35-37]. In this work, we utilized the definition introduced by Holme et al. [36], as

shown below:
L wij - Wik - Wik
j#k

cc@ = max(w;j) ¥ wijwi”
7k
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where wj; is the edge weight connecting the nodes i and j. Consequently, the average
clustering coefficient over the network is determined by

N
(cC) = ; cC(i). )

(38) Average path length

The shortest path between two nodes i and j in an unweighted network refers to
the path connecting the two nodes with the least number of sides. The distance between
nodes i and j is defined as the number of edges on the shortest path connecting the two
nodes. In the weighted network, the shortest path between two nodes refers to the path
with the smallest sum of weights (heterogeneous network) or reciprocal sum of weights
(homogeneous network) connecting the edges of these two nodes [38]. The path length
of node i to j is the sum of the edge weights on the shortest path connecting the nodes i
and j. In this work, we used the Floyd algorithm [39] to calculate the path length between
every two nodes. Since the homogeneous network is considered in our work, we took
1/wj; in the Floyd algorithm to compute the path length of the node i to j. The average path
length of each node refers to the average distance from the node to all nodes connected to
it, determined by

1 1
APL loyd(—), 10
0= g, I o) (10)
where #V (i) denotes the number of nodes connected to node i. Hence, the average of
average path length over the network is:

(APL) = APL(i). (11)

N

I Mz

(4) Graph Density
Graph density [14] refers to the closeness of communication between nodes in a
network, which can be used to measure the interaction degree of pollutants between
stations. The value of graph density is limited in the range of [0,1]. The higher graph
density means that the nodes are more closely connected. The calculation of the directed
network’s graph density is as follows:
M

GD = NN T (12)

where M is the number of edges in the network.

2.3. Jensen-Shannon Divergence

In information theory, Kullback-Leibler (K-L) divergence and Jensen-Shannon (J-S) di-
vergence [40] are used to measure the difference in probability distribution between two
signals. The larger the value is, the more obvious the difference is expected. K-L divergence
is the fact the relative entropy, whose discrete form is defined by:

p(x)
q(x)’

where P and Q are two probability distributions of random variable x. Apparently,
Dg_r(P||Q) > 0. The two distribution is identical in the case of Dx_ (P||Q) = 0. In
general, Dg_1 (P||Q) # Dg—_(Q||P), implying the K-L divergence is not symmetrical. To
make up for this defect, J-S divergence is designed to be regarded as the ‘distance’ between

Dk-L(P|Q) =) _p(x)log, (13)
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two probability distributions, thus, it has symmetry. In addition, the J-S divergence is
dimensionless with a range [0,1], which is defined by:

D1-s(P|Q) = 3Dt (pIEEE I ) 4 Ipy (219

In the following analysis, we utilized the J-S divergence to examine the probability dis-
tribution’s difference of the cross-correlation coefficient and network topological properties
between AQI and the two pollutants.

2.4. Spectral Clustering

Spectral clustering is a clustering algorithm with superior performance that has pre-
vailed over the last 20 years. It derives new features of clustering objects through matrix
spectral analysis theory and utilizes the new features to cluster original data. It is simple to
implement and has the advantage of identifying clustering for non-convex distribution [41].
For our network G = (N, E, W, L), and the edge weight wj; is the cross-correlation coefficient
determined by Equation (5). The larger wj; is, the closer the nodes I and j are. In this regard,
the distance between the nodes i and j should be defined by:

1

i) = wij(L)

(15)

Then, we use the Gaussian kernel function to measure the similarity of the nodes i and
j- Here, we weigh the time scales to synthesize the influence of different scales on similarity.
Hence the similarity is given by

. N2
wjj = exp (—ZL a - d(i,j) ), (16)

202

where ¢ is a parameter and taking 1 in this work. a; is the weight of the distance at the
time scale L, which is determined by

(XL—maX{O, p(L) —po(L) } (17)

Y1 [o(L) — po(L)]*

where [o(L) — po(L)]" = max{0, o(L) — po(L)}. So far, the adjacency matrix W = (wjj) is
obtained. Furthermore, define D as a diagonal matrix with the element d; = Y; wij. Thus,
the Laplace matrix is calculated by

L=D—-W. (18)

Next, normalize the Laplace matrix L as,
L* = D zLD:2. (19)

Consequently, calculate the K eigenvectors corresponding to the K least eigenvalues
of L and form them to the characteristic matrix, which is an input of clustering. K-means
clustering is considered for this purpose.

2.5. Method Discussion

In this work, we utilize the above methods to conduct our study. In practice, an
HXA-based coefficient is a useful tool to quantitatively evaluate the correlation of the
pollutant concentration series between two cities. Network analysis helps us uncover rich
information about the AQI and the two pollutants while traditional time series analysis
cannot. J-S divergence is employed to compare the difference of PDF of the statistical
properties between AQI and the two pollutants. Finally, we apply spectral clustering to
aggregate the studied cities into several regions for joint governance of environmental
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pollution among the cities. It is worth noting that none of the above methods is unique to
our studied purpose. However, they are common methods and easy to implement.

3. Case Study
3.1. Data Description

Hunan Province (24.7° N~30.1° N, 108.8° E~114.2° E) is located in the transition
zone from Yunnan and Guizhou Plateau to the Jiangnan hills, and from the Nanling
Mountains to the Jianghan Plain. It is surrounded by mountains on three sides and
stretches across the Yangtze River and the Pearl River. It is a subtropical monsoon climate.
With the implementation of the Plan for the Rise of Central China and the acceleration
of urbanization, the industry has developed rapidly, while the level of air pollution is
increasing. In addition, the imbalance of regional development leads to different types and
levels of air pollution, which increases the difficulty of air pollution control. In general,
different linkage behavior in neighboring cities has been observed for different pollutants.
Moreover, in our previous work, we have found that six air pollutants (PM; 5, PMy, SO,,
CO, NO,, and O3) have significantly different effects on the air quality index (AQI) [6,9,42].
Specifically, the correlation between the AQI and fine particulate matter (PM; 5 and PMj()
is stronger than that of AQI and traditional pollutants (NO, and SO,), implying that
urban pollution has been gradually transformed into fine particulate matter pollution from
traditional industrial waste gas pollution such as nitrogen compounds and sulfide [42]. In
this work, we focus on the regional similarity of air pollution and co-movement among
the 14 cities (Changde [CD], Changsha [CS], Chengzhou [CZ], Huaihua [HH], Hengyang
[HY], Loudi [LD], Shaoyang [SY], Xiangtan [XT], Xiangxi [XX], Yiyang [YI], Yueyang [YU],
Yongzhou [YZ], Zhangjiajie [Z]], Zhuzhou [ZZ]) in Hunan Province from the perspective of
a complex network. To do so, we chose the time series of AQI and two pollutants, PM; 5 and
NOy, for consideration. The dataset included daily average data recorded from 1 December
2015 to 30 November 2018 (1096 observation samples for each series), downloaded from
http:/ /www.tiangihoubao.com/aqi/ (accessed on 19 June 2021). The mean values and
standard deviation over the sampling range are listed in Table 1.

Table 1. Descriptive statistics of AQI, PMj, 5, and NO; of 14 cities of Hunan Province.

) AQI PM, 5 (ug/m?) NO; (mg/m®)
City Name Location
Mean(Std) K S Mean(Std) K S Mean(Std) K S
CD 29.02° N, 111.51° E 7342 (37.67) 9.86 191 48.01(32.32) 11.69 2.04 19.37(10.59) 413 1.05
Cs 28.12° N, 112.59° E 75.91(39.62) 699 1.67 49.65(3341) 756 178 34.52(16.14) 3.67 0.99
cz 25.46° N, 113.02° E 61.46(2840) 686 153 3545(25.22) 642 155  24.50(9.88) 3.63 087
HH 27.33° N, 109.58° E 65.71(27.01) 548 133 37.39(25.07) 475 130  15.65(9.06) 452 1.28
HY 26.53° N, 112.37° E 70.65 (38.10) 624 153  46.77 (32.12) 7.08 1.63 27.13(12.84) 400 1.12
LD 27.44° N, 111.59° E 62.11(28.09) 1211 195 37.57(23.34) 1635 249  19.23(9.17) 438 117
SY 27.14° N, 111.28° E 7229 (38.57) 884 190 49.12(32.80) 1572 243 19.83(10.04) 496 1.32
XT 27.52° N, 112.53° E 74.90 (38.27) 6.03 1.53  48.48 (32.25) 622 159  32.05(14.98) 3.72 1.02
XX 28.18° N, 109.43° E 5740 (2549) 6.03 129 34.89(21.51) 583 142  14.32(6.92) 575 1.38
YI 28.36° N, 112.20° E 68.60 (30.63) 895 1.83 40.04(26.92) 8.67 192 2451(12.07) 351 098
YU 29.22° N, 113.06° E 71.05(32.33)  16.65 2.19  46.20(28.28) 39.56 348 22.29(10.38) 326 0.80
YZ 26.13° N, 111.37° E 66.04 (31.86) 627 149 4395(26.54) 592 142 21.59(11.03) 527 1.31
Z] 29.08° N, 110.29° E 6249 (30.16) 889 199 37.20(26.63) 7.58 1.85  17.14(6.20) 569 1.30
77 27.51° N, 113.09° E 72.19 (38.71) 798 1.81 47.07 (32.54) 9.78 2.08  30.90 (13.79) 3.34 0.80

Tips: the number in the parentheses beside the mean value is the standard deviation. The letter K denotes kurtosis
and S denotes skewness, respectively.

3.2. Correlation Analysis

To assess the correlation of AQI as well as PM, 5 and NO, among the 14 cities from
different time scales, we set 15 time scales (L in Equations (2)—(4) refers to time interval at
time points of t and t+L) from 3 days to 45 days, with a step size of 3 days. The calculation
of correlations in different time intervals helps access the seasonal trend (cycle) in the
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studied pollutants’ time series. Firstly, we calculated the multiscale p(L) for every pair of
cities (91 pairs in all) according to Equation (4), as shown in Figure 1, in which the critical
values (black dotted line) at every time scale is also shown. For the series AQI (Figure 1a)
and PM, 5 (Figure 1b), the p(L) of the 91 pairs of cities are larger than the critical value
at every time scale, which suggests there is a strong co-movement of the fine particulate
pollution among the 14 cities. However, the p(L) of many pairs of cites is below the black
dotted line shown in Figure 1c, which means the NO,’s correlation among the 14 cities
cannot be significant at some scales. It explains that NO,’s emissions are unbalanced in the
Hunan Province. As mentioned above, NO, is mainly produced by industrial production,
while the regional economic development in Hunan Province is proportional to the local
industrial development. Therefore, the NO; pollution level is proportional to economic
development. As expected, and seen in Table 1, the regions worst affected by NO, pollution
are located in the cities with relatively developed economy, such as Changsha (CS, the
provincial capital of Hunan Province), Xiangtan (XT), and Zhuzhou (ZZ). These three cities
are now in the process of integration. The average p(L) of each pair of the three cities over
all given scales is 0.8135. In contrast, the three cities with the least pollution were Xiangxi
(XX), Zhangjiajie (Z]), and Huaihua (HH). The average p(L) of each pair of the three cities
over all given scales was 0.3024, which is less than that between the former three cities
apparently. In contrast, the PM; 5 pollution prevails in all the cities. The average p(L) of
each pair of the 14 cities over all given scales reached 0.9169.

0.2
312213039 3 12213039 3 12213039
Time scale Time scale Time scale

Figure 1. HXA-based cross-correlation coefficient of the AQI (a) and the two pollutants (b,c) between
every pair of cities with respect to time scale. The black dotted line denotes the critical value under
0.05 significant level. The area above this line means correlation significance.

To more clearly show the influence of p(L) on the edge weight for the PM;5’s and
NO,’s network, we draw the probability density function (PDF) of the w(L) for the three
environmental factors at small (L = 6 d), medium (L = 21 d) and large (L =45 d) scales in the
left panel of Figure 2. To better visualize the different profiles of the w(L)’s distributions, all
histograms are rescaled so that the peak value is 1. The peak of the three PDFs moves to the
right as the scale increases. However, the PDF shape of the AQI and PM; 5 are so consistent,
that they are quite different from that of NO,. The J-S divergence calculated for the AQI
versus PMj, 5 and AQI versus NO; confirms this, as shown in the right panel of Figure 2.
The J-S divergence between the AQI and PM; 5 closes to zero at every given scale, which
is in agreement with the result obtained from the cross-sample entropy [42]. In contrast,
the J-S divergence between the AQI and NO, increases concerning the time scales, which
is explained by the difference in the PDF between the AQI and NO; increases over time.
It indicates that NO; affects AQI more in short-time intervals than in long-time intervals.
Meanwhile, the fact that it is significantly far from zero indicates that the propagation
behavior of NO, among the 14 cities in Hunan Province is dissimilar to that of PM; s,
especially at larger time scales. This finding indicates that PM; 5 has replaced NO, as the
main culprit of air pollution in Hunan Province.
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L)
Figure 2. The left panel is the PDF of scale-dependent edge weights for three indexes of AQI, PM; 5,
and NO; at three given time scales, namely, small scale (a, d, g), median scale (b, e, h) and large
scale (c, f, i). There is a similar shape of the PDF between the AQI and PM, 5, while a significant
difference can be observed between them and that of NO,. The right panel is the J-S divergence of
the edge weight of AQI’s network and that of the two pollutants’ networks with respect to different
time scales.

3.3. Network Structural Analysis

Next, according to the rule given by Equation (5), the networks are constructed for the
AQI as well as the two pollutants respectively, at the given time scales. It is easy to know
that the networks of AQI and PM; 5 are fully connected because the correlation of all pairs
of cities is significant as shown in Figure 1a,b. In contrast, Figure 1c illustrates the partial of
correlation coefficients located below the critical line, demonstrating that the network of
NO; is not fully connected. To show this, take networks at the above three given scales as
examples, as shown in Figure 3. The number of edges in the network of L = 6d is more than
that in the network of L = 21d, while the latter is more than that in the network of L = 45d.
Another important finding is that the degree and strength are out-of-balance among the 14
nodes for the NO,/s network. The difference may help distinguish them and further cluster
them for regional joint pollution control. This point will be elaborated on in Section 3.4.

P = e o
e i )
"!'444,‘? ® ®
S Il)!/ ) ®
oo )
(b) L=21d (c) L =45d

Figure 3. Networks graph of NO; at (a) small time scale, (b) medium time scale, and (c) large
time scale.

In the following section, we investigate the network’s topological properties regarding
three environmental factors. In the left panel of Figure 4, we show the PDF of node strength,
clustering coefficients, and average path length of the AQI, PM; 5, and NO; networks by
integrating all scale information. Similarly to the left panel of Figure 3, all histograms are
rescaled so that the peak value is 1. Unsurprisingly, the PDF shapes of the three topological
properties of the AQI’s network are highly consistent with those of the PM; 5, while they
are different from that of NO,. The consistency of these network attributes between AQI
and PM; 5 explains that the main factor affecting AQI in Hunan Province from 2015 to 2018
is PMj 5 rather than NO,. Seen from the figure, some findings can be concluded as follows.
Firstly, the node strength of PM 5 is greater than that of NO, (the peak of PDF of PM; 5
is more to the right than that of NO;), while the high node strength of PM; 5 (the mean
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value is more than 10) means that PM; 5 pollution is dominant in Hunan Province, and the
co-movement among the 14 cities is stronger than that of NO,. Secondly, the clustering
coefficient also supports the above conclusion. The insignificant correlation between some
pairs of cities leads to the sparse join in the adjacency matrix of NO,, which makes it harder
to form triangles, and thus the average clustering coefficient of NOj; is smaller. Thirdly, the
decreased edge connection also gives rise to the higher average path length of NO, than
that of the PM, 5, demonstrating that the PMj; 5 is more widely spread among the 14 cities
than NO,.

To compare the difference of the above distributions between AQI and the two pol-
lutants quantitatively, we calculate the J-S divergence of AQI and the two pollutants to
the given time scales, as shown in the right panel of Figure 4. It is easy to find that the
J-S divergence of the three PDFs between AQI and PM; 5 is smaller than that between
AQI and NO; at most time scales. Additionally, a relatively large fluctuation of the J-S
divergence between AQI and NO, can be observed, suggesting that the consistency of
dynamics between AQI and NO; undergoes great changes along with various time scales.
More specifically, the consistency of node strength between the AQI and the two pollutants
reaches the maximum and minimum at 9 days and 15 days, respectively, implying that
the correlation of the pollutants’ concentration in 15 days can best reflect the correlation of
AQI among them. This finding may provide a time window for the relevant government
departments to jointly control pollution. By comparison, the J-S divergence of AQI and
NO; has larger values of clustering coefficient more than 36 days, which indicates that
the clustering behavior of NO; among the 14 cities is different from that of AQI at long
time intervals. The average path length has a similar effect. By comparison, PM; 5 has a
greater impact on AQI since the values of J-S divergence are close to 0. This finding would
help environmental workers think more about regional collaborative governance for the
PMj; 5 pollutant.

Node strength  Clustering coefficient Average path length 0.15 - . . i i i
- ; Node strength |—=—AQI vs. PM,
il - ’ ‘ 0.1 —+— AQIvs.NO, °

jany

0246810120507 09 1.1 1.3 1 2 3 4 5 3 9 15 21 27 33 39 45

NS

cC APL Time scale

Figure 4. PDF of node strength (the first column), clustering coefficient (the second column), and
average path length (the third column) for three indexes of AQI (the first row), PM; 5 (the second
row) and NO; (the third row). There is a similar shape of the PDF between the AQI and PM, 5, while
a significant difference can be observed between them and that of NO,. The right panel shows the J-S
divergence of the PDF of the clustering coefficient, node strength, and average path length of the AQI
series and the two pollutants’ series for the 14 cities at different time scales.

Finally, let us focus on the global network properties of the three air environment
factors with respect to the different time scales, as shown in Figure 5. The figures of average
network properties of node strength, average path length, clustering coefficient as well as
graph density show again that the AQI is closer to PM; 5 than NO, at every given time
scale. It confirms again that the AQI mainly depends on PM; 5. The dynamical change
process of the four network attributes with the various time scales allows us to easily access
the network structure. Specifically, the average node strength ((NS)) of AQI and PM; 5
is increased with lengthening time scales, while the (NS) of NO; tends to be stable after
21 days. The rate of change for both AQI and PMj; 5 is larger than that of NO,, suggesting
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that the co-movement of PM; 5 is more significant among the 14 cities with increasing time
scales. This finding is supported by the decreasing global average path length ((APL)), as
shown in Figure 5b, which explains that PMj; 5 is easy to diffuse among different cities as
time goes on while the NO, transmission is much more difficult. The average clustering
coefficient ((CC)) also confirms this conclusion. The stable value of (CC) for both AQI
and PM; 5 with the different time scales shows that the high regional co-movement of
the PM; 5 continued from a short period to a long period in Hunan Province. In contrast,
the (CC) of NO, fell off after about 36 days, implying that the aggregation effect of NO,
among the 14 cities is significantly weakened after approximately one month. It shows
that the correlation of NO, among the 14 cities does not last over the long term. In the
end, the fact that the graph density of both AQI and PM; 5 is always 1 means the two
networks are always fully connected, while the graph density of NO,’s network decreases
with the increasing time scales. This is because the correlated significance of the NO,
between every pair of cities gradually weakens with the lengthening of time scale, which
causes some nodes to be disconnected. The above results confirm that the co-movement
of the PM2.5 pollutants among the 14 cities is significantly stronger than NO; pollutants.
The co-movement of the PM2.5 pollutant can last 45 days while that of the NO; pollutant
decreases over time. By analyzing correlations of the topological properties at the given
scales (see Figure 6—the darker the color is, the stronger the negative correlation is, with
the positive correlation increasing with lighter colors), it can be found that: the (NS) shows
a strong positive correlation with (CC) and strong negative correlation with (APL) for the
AQI and PM, 5. However, the abnormal trend of (CC) for NO, destroys the correlation
between it and the other two properties of NO,. In addition, except (CC) of NO,, the other
properties show a positive correlation with the identical properties between the different

environmental factors.
\\Mw; ’
o
[=%
i\'\%&&“& <

d11
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Figure 5. The four networks’ properties to different time scales for the AQI, PM, 5, and NO, series.
(a—d) is <NS>, <APL>, <CC>, and GD, respectively.
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Figure 6. Diagram for the correlation matrix of topological parameters. The subscripts 1, 2, and 3 of
the three parameters represent AQI, PM; 5, and NO;, respectively.
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3.4. Clustering Analysis

In this subsection, we focus on the clustering of the two pollutants for the 14 cities in
Hunan Province to provide a theoretical basis for regional joint air pollution control. To
do so, we utilize the spectral clustering algorithm introduced in Section 2.4. The critical
problem of clustering is to determine the number of classes (K). Here, we employ two
indicators, i.e., Davies-Bouldin and silhouette coefficient to fulfill this task. As seen in
Figure 7, the two indicators show the consistent optimal K for each pollutant index, namely,
K =5 for PMj 5 and K = 2 for NO,. Therefore, we wish to cluster the 14 cities into 5 regions
and 2 regions for the co-governance of PM; 5 and NO;, respectively. As shown in Figure 8,
for PM; 5, the clustering basically conforms to geographical proximity, indicating that the
factor of geographical proximity is still the primary consideration for the co-governance
of PM;5. Accordingly, the cities in the same region should establish a mechanism of
regional joint prevention and control coordination, regional information sharing, unified
emergency response, and joint law enforcement for limiting automobile exhaust emissions,
industrial dust, dust smog, etc. For NO,, the 13 cities are clustered together except for
Zhangjiajie city (Z]). Zhangjiajie city is a tourist city with large forest coverage, where less
fossil fuel combustion takes place. For the 13 cities, the provincial government should
implement unified deployment to shut down the ill-formed chemical plants and small-
scale but highly-polluting mining processing activities, and limit emissions from thermal
power plants.

PM,
0.75
0.72
o 0.69
2 >
0.664

NO.

0.63

0.6

0.64 N
0.85
O O
2 061 075 %
0.58 0.65
2 3 4 5
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Tiem paasenany

5 6 7 3 4 5 6 7
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3
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Figure 7. Evaluation of spectral clustering algorithm of PM; 5 and NO, with respect to the value of
K. Two criteria are used, namely, the Davies-Bouldin index (DB) and silhouette coefficient (SC). The
criterion values in the green rectangle refer to the optimal K.

Figure 8. Clustering of the PM; 5 (left panel) and NO, (right panel) of 14 cities in Hunan Province.

4. Discussion and Conclusions

In this work, we initiated a study on the air quality of 14 cities in Hunan Province
from a multiscale statistical perspective. It mainly focused on the impact of fine particulate
matter (PM; 5) and nitrogen compounds (NO,) on air quality (AQI) at different time scales.
In addition, a regional cooperation joint pollution control program was provided according
to the clustering analysis for the two pollutants of 14 cities. To this end, several physical
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statistical methods were employed to study the above issues. We utilized the HXA method
to calculate a family of cross-correlation coefficients at different time scales for the 91 pairs
of cities. Additionally, a significant test was used to determine the correlation’s significance,
which is the base of the establishment of the network edge connection. Accordingly, the
air pollutant networks were constructed at different time scales among the 14 cities. Four
common network properties of node strength, clustering coefficient, average path length,
and graph density were then used to analyze the network structures of different time scales.
J-S divergence was used to assess the difference between those network properties. Three
main findings can be concluded. Firstly, the correlation of the pollutants’ concentration
among the 14 cities in 15 days can best reflect the air quality of Hunan Province. Compared
with NO,, PM; 5 influences the air quality of Hunan Province more on each time scale.
Secondly, NO, affects the air quality of the 14 cities more in short-time intervals than in long-
time intervals. In contrast, PM, 5 dominated in AQI of Hunan Province in both short and
long-time intervals. Moreover, the aggregation effect of NO; prevails in short and median
time scales, while that of PM, 5 is more serious. Thirdly, the co-movement of the PM; 5
pollutants among the 14 cities is significantly stronger than that of the NO, pollutants. The
co-movement of the PMj; 5 pollutants can last at least 45 days, while that of NO; pollutants
will gradually decline as time goes on. Furthermore, in considering the mobility of air
pollution, which will affect the air quality of surrounding areas, according to the node
strength attribute, we utilized the spectral clustering algorithm to cluster the 14 cities into
five regions and two regions for jointly governing the PM; 5 pollutant and NO, pollutant,
respectively. For the co-governance of PM, 5 pollutants, the classification of five regions
basically conforms to geographical proximity, indicating that the factor of geographical
proximity is still the primary consideration for the co-governance of PM; 5. However, for
the NO,, the 13 cities are clustered together, except Zhangjiajie city (Z]). According to our
statistical analysis of the air pollutants in Hunan Province, our suggestions are, on one
hand, to strengthen the governance for the internal pollution sources of a city and develop
air pollution prevention strategies for the city according to its specific pollutants, and on
the other, uniting the regions to coordinate resources and carry out regional joint control in
an orderly, step-by-step way.

Finally, we highlight that this work is conducted based on the statistical perspective.
Most existing studies on air pollution in Hunan Province are from the perspective of the
formation and diffusion mechanism of pollutants. This work is based on data-driven
processes, which is an important supplement to the existing research mechanisms. We
emphasize again that none of the methods employed is unique for our studied purpose, but
they are common methods and easy to implement. The findings can provide a reference for
environmental scientists or environmental protection departments. Given the powerful
information mining function of complex networks, in our forthcoming work we would
like to investigate the spread of pollutants in the existing networks of 14 cities of Hunan
Province and further trace the source of the pollutants by using the network node attributes,
such as shortest propagation paths or transfer rates and attraction rates. Another interesting
area of research to consider is the interaction between different pollutants by using multiple
networks technology [43].
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