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Abstract: The technique of machine learning has been increasingly applied in numerical weather
predictions. The aim of this study is to explore the application of a neural network in data assimilation
by making use of the convenience in obtaining the tangent linear and adjoint (TL/AD) of a neural
network (NN) and formulating a NN-based four-dimensional variational (4D-Var) DA system. A
NN-based shallow water (SW) model is developed in this study. The NN model consists of three
layers. The weights and biases in the NN-based SW model are trained with 60 years of hourly ERA5
geopotentials and wind field at 500 hPa as initial conditions and the corresponding 12-h forecasts by
Model for Prediction Across Scales (MPAS)-SW, in total of 534,697 sets of samples. The 12-h forecasts
from independent dates made by NN-based SW prove to closely emulate the simulations by the actual
MPAS-SW model. This study further shows that the TL/AD of an NN model can be easily developed
and validated. The ease of obtaining the TL/AD makes NN conveniently applicable in various aspects
within a data assimilation (DA) system. To demonstrate such, a continuous 4D-Var DA system is also
developed with the forward NN and its adjoint. To demonstrate the functionality of the NN-based
4D-Var DA system, the results from a higher resolution simulation will be treated as observations and
assimilated to analyze the low resolution initial conditions. The forecasts starting from the analyzed
initial conditions will be compared with those without assimilation to demonstrate improvements.

Keywords: machine learning; data assimilation; 4D-Var; neural network; MPAS-shallow water;
global modeling

1. Introduction

Forecasts of future atmospheric state has mainly been accomplished by numerical
weather predictions (NWP), which is a technology and capability after five decades of
development and improvement [1]. Data assimilation (DA) further promoted the capability
of NWP to more accurately predict future weather, which is achieved by better capturing
initial conditions for NWP and quantifying its uncertainties [2]. In recent years, machine
learning (ML), especially neural networks (NN), has been increasingly applied in the
atmospheric sciences and has shown great potential [3–6]. Its capability of recognizing
patterns in high-dimensional data sets without needing underlying theoretical equations
has been appealing and has benefited various research disciplines [7,8].

Various previous studies have applied ML to NWP. One area is postprocessing NWP
model outputs to reduce systematic biases. Ref. [9] used logistic regression and random
forests to calibrate the probabilistic precipitation forecasts and improve verification statis-
tics. Ref. [10] applied machine learning to postprocess NWP outputs in high-impact
weather events to further improve the forecast skill. Ref. [11] trained a nonlinear NN to
predict physical variables such as 2 m temperatures and achieved significant improvement
compared to conventional postprocessing methods. Ref. [12] applied deep learning in
precipitation nowcasting and 1-hour predictions from radar images. In [13], a deep NN
was trained with ensemble weather forecasts for postprocssing, which achieved a relative
improvement in ensemble forecast skill of over 14%. Ref. [3] developed a global prediction
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model using a Fourier Forecasting Neural Network that takes the atmospheric state in the
initial conditions and predicts a few 2D variable in future times. Ref. [14] proposed a deep
neural network in the form of Graph Neural Network (GNN) [15] to make forecasts in
six-hour increments and trained with ERA5 dataset. The forecast performance was shown
to outperform the global high resolution operational product, HRES, by the European
Centre for Medium-Range Weather Forecasts.

Hybrid modeling combining ML and NWP has also been explored in numerous recent
studies. Ref. [16] investigated the possibility of replacing the longwave radiative transfer
model with a NN-based model and achieved an accuracy comparable to the conventional
algorithm in a general circulation model. Ref. [17] emulated the longwave radiation
parameterization for the National Center for Atmospheric Research (NCAR) Community
Atmospheric Model with a NN and produced almost identical results 50–80 times faster.
Ref. [18] trained a deep neural network to resolve atmospheric subgrid processes in climate
modeling by learning from a multiscale model with explicit convections. As promising
as the results in these studies show, Ref. [19] pointed out that in hybrid modeling, the
feedback between the NN and the General Circulation Model (GCM) can cause instability
in simulations and make the experiment crash within days. Similarly, hybrid approaches
in DA have been explored in a few studies. Ref. [20] emulated the nonorographic gravity
wave drag parametrization with a NN and developed the corresponding tangent linear
and adjoint components, which were successfully used in a 4D-Var DA system. Ref. [21]
formulated a Lorenz96 model emulator with a NN, generated its Jacobians using the
emulator, and applied them in the contexts of 4D-Var DA.

In this study, we develop a feedforward NN [22] with an input layer, one hidden layer,
and the output layer to emulate the global shallow water (SW) dynamics in the Model
for Prediction Across Scales (MPAS) framework. We train the model on fluid heights and
winds from real atmospheric states and then developed the tangent linear and adjoint
models of the trained neural network to formulate a continuous 4D-Var DA system, which
are described in details in Section 2. The performance in analyzing initial conditions of
this DA system as well as the forecast improvements are examined and shown in Section 3.
Finally, Section 4 summarizes the study.

2. Methodology
2.1. MPAS-SW Dynamics

The SW dynamics under the MPAS spherical centroidal Voronoi tessellation (SCVT)
was developed in [23,24]. The forward nonlinear continuous SW dynamics can be written as:

∂h
∂t

+∇(hu) = 0, (1)

∂u
∂t

+ (u∇)u + f k× u = −g∇(h + b) (2)

where the fluid height h and edge-normal wind u are the model prognostic variables, f the
Coriolis parameter θ being latitudes, and b the bottom height. This dynamical relationship
has been widely applied in meteorology and oceanography. In this study, the height and
wind fields at 500 hPa from ERA5 (European Centre for Medium-Range Weather Forecasts
Reanalysis v5) [25] will first be interpolated into a 1000 km resolution mesh consisting
of 611 cells (shown in Figure 1a) and the MPAS-SW model will make forecasts forward
in time.
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Fig. 1: (a) Spatial distribution of the SCVT mesh at 1000 km with 611 cells globally. (b) The
neural network diagram showing the structure of the NN-based MPAS-SW model. The actual
number of the neurons for the input and output layers is N=1833, and N=3666 for the hidden
layer.

Figure 1. (a) Spatial distribution of the Spherical Centroidal Voronoi Tessellation (SCVT) mesh
at 1000 km with 611 cells globally. (b) The neural network diagram showing the structure of the
NN-based MPAS-SW model. The actual number of the neurons for the input and output layers is
N = 1833, and N = 3666 for the hidden layer.

2.2. NN Emulator of MPAS-SW

A feedforward NN is first formulated to emulate the SW dynamical behaviors reflected
in MPAS-SW simulations. The atmospheric state in MPAS-SW is essentially represented by
vectors. The forecasts are also vectors projected from those from a previous time. Similar
to the GNN [15], the benefits of such as representation include intrinsical handling of
the global spherical structure of the Earth, allowing to resolve the underlying multiscale
interactions between cells, and the potential of learning multiresolution models. Thus,
densely connected NN layers are chosen in this study. The NN model consists of three
layers: an input layer of 1833 values, a hidden layer with 3666 neurons, and an output layer
with 1833 neurons. The input layer holds the three variables including height h, zonal wind
velocity u, and meridional wind velocity v over the global domain in the initial condition,
all three of which are sampledat the 611 cell centers in the mesh shown in Figure 1a. Thus,
each layer has 1833 (611× 3) neurons. The output layer of the same 1833 dimension holds
the same three variables (h, u, and v) of the 12-h forecast. The number of neurons in the
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hidden layer, 3666, was determined based on heuristics. The hidden layer had an ELU
activation function [26] and 10% dropout [27], where ELU can be denoted as

y =

{
α(ex − 1) if x ≤ 0
x if x > 0

(3)

where α = 1 in this study, making both ELU and its derivative continuous. The authors
also experimented with various other choices of continuous activation functions includ-
ing identity, tanh, sigmoid, and Sigmoid linear unit. The ELU proves to yield the best
performances emulating the shallow water dynamics. The structure of the NN model is
illustrated in Figure 1b.

The NN is trained and validated with hourly 500 hPa height h, zonal u, and meridional
wind velocities v from the ERA5 dataset over a 60 years (1959–2019) as features and the
corresponding 12-h MPAS-SW as targets, totaling 534,697 samples. The training underwent
60 epochs and a learning rate of 3× 10−4 using the Adam optimizer. Training took 0.5 h on
1 NVIDIA T4 GPU.

The variations of the mean square error as the loss function with respect to the epochs
is shown in Figure 2. The model was then independently tested on hourly 500 hPa height
and wind fields from 2020 and 2021. The root mean squared error (RMSE) compared
with the 12-h MPAS-SW forecasts were 6.32 m and 0.58 m/s in height and wind fields,
respectively. Taking the 500 hPa atmospheric state at 00 UTC on 1 January 2021 (shown in
Figure 3a) as the initial conditions, the 12-hour forecasts rendered by the NN and the MPAS-
SW are given in Figure 3b and Figure 3c, respectively. The distribution of the atmospheric
wave patterns from the NN visually resembles the MPAS-SW result to some extent. To
further demonstrate the NN emulation of SW dynamics, Figure 4 shows the the differences
between the 12-h forecasts and the initial conditions in the case of NN (Figure 4a) and
MPAS-SW (Figure 4b). It can be seen that most of the variations in the 12-h forecasts
from the initial conditions are captured in the NN results when compared with the actual
MPAS-SW simulations.

Fig. 2: Variations of the loss function with respect to the epochs in the NN training.Figure 2. Variations of the loss function with respect to the epochs in the NN training.
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Fig. 3: (a) The spatial distribution of the fields of height (shaded) and wind (vectors) at 00 UTC
January 1, 2021. (b)-(c) The 12-hour forecasts made by (b) the NN-based SW model and (c)
MPAS-SW model.

Figure 3. (a) The spatial distribution of the fields of height (shaded) and wind (vectors) at 00 UTC
1 January 2021. (b,c) The 12-h forecasts made by (b) the NN-based SW model and (c) MPAS-SW model.

Fig. 4: The differences in height (shaded) and wind (vectors) between the 12-hour forecasts by
(a) NN-based SW and (b) MPAS-SW with respect to the initial conditions.

Figure 4. The differences in height (shaded) and wind (vectors) between the 12-h forecasts by
(a) NN-based SW and (b) MPAS-SW with respect to the initial conditions.
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2.3. The Tangent Linear and Adjoint Models

A nonlinear forward forecast model can denoted as:

x(tr) =M(x(t0)) (4)

It takes the initial model state x(t0) at time t0 as the initial conditions and predicts the
model state x(tr) at time tr. The corresponding tangent linear model is then:

∆x(tr) = M(x(t0))∆x(t0) =
∂M(x(t0))

∂x
∆x(t0). (5)

The tangent linear model predicts the perturbation distributions forward in time
following the nonlinear trajectory given by the nonlinear forward model in Equation (4).
The adjoint model is simply the transpose of the tangent linear model as follows [28,29]:

∆x̂(t0) = MT(x)∆x̂(tr) (6)

The adjoint model simulates backward in time following the nonlinear trajectory and
yields the sensitivity distributions in initial conditions at t0 to a user-specified response
function at time t where t > t0. In the cases where prediction models simulate complex
behaviors, the tangent linear and adjoint models are developed at source code levels
line-by-line. When the adjoint model is applied in a 4D-Var data assimilation system,
the simulation propagated forward in time by the nonlinear forecast model will first be
compared with existent observation at the observation time. The discrepency, as a sensitivy
or forcing term, will then be taken by the adjoint model and be propagated backward in
time in a dynamically consistent manner to the model initial time to inform how the initial
condition should be adjusted so the simulation at the observation time can agree closer
to the observation. The same forward-backward implementation will be repeated with
multiple iterations until an optimal solution is found, which will be discussed further in
the next subsection.

In the case of densely connected neural networks, an individual layer in the forward
model can be rewritten as:

y = F(xW + b) (7)

where x is the input of the layer, W and b the weights and biases resulted from the training,
and F denotes activation functions. The tangent linear model in this case becomes:

δy =
∂F

∂(xW + b)
δxW (8)

The adjoint model is then:

δx̂ = δŷWT [
∂F

∂(xW + b)
]T (9)

A multilayer or deep NN is simply a repetition of the described above. In this study,
the hidden layer has an ELU activation function and the output layer has a linear activation
function, Equations (7)–(9) can be further reduced to:

y = xW + b (10)

δy = δxW (11)

δx̂ = δŷWT (12)

It is to be noted that, when a variational data assimilation system is aimed to be
developed, the activation function of choice is preferred to be continuous, such as the
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ELU defined in Equation (3), as discontinuity (like in the case of Rectified Linear Unit)
in activation functions or models in general will make the tangent linear approximation
invalid and cause the data assimilation system difficulty or failure to converge when
searching for the optimal solution.

2.4. A Continuous 4D-Var DA System

Given the forward and adjoint models, a 4D-Var DA framework can be built to
minimize the the following scalar cost function [30–32]:

J = Jb + Jo

=
1
2
(x0 − xb)

TB−1(x0 − xb)

+
1
2

N

∑
r=0

(Hr(xr)− yr)
TO−1

r (Hr(xr)− yr),

(13)

where x0 is the analysis to be solved for, xb the first guess, yr observations available within
the assimilation window, xr the model state advanced by modelM from x0 to observation
time tr, and Hr is the observation operator that maps the model state x at the observation
time tr to the observation space. The matrices B and O are the background and observation
error covariance matrices, respectively. Essentially, the term Jb measures the discrepency
between the analysis and the model background, weighted by the inverse of the background
error covariances, and the term Jo the discrepency between the analysis and the observation
weighted by the inverse of observation errors. The solved analysis x0 with the minimum of
J yields the minimum variance estimate. The gradient of the scalar J with respect to x0 can
be obtained following:

∇x0 J = B−1(x0 − xb) +
N

∑
r=0

MT
r HT

r O−1
r (Hr(xr)− yr), (14)

where MT denotes the adjoint model and xr is obtained by advancing analysis x0 forward
in time to the observation time with the forward model. In the presence of any observations,
the correctness of the overall gradient calculation can be validated with the following:

Φ(α) =
J(x0 + α∆x)− J(x0)

α∆xT∇J(x0)
= 1 + O(α), (15)

3. Experiment Design

The forward NN and its adjoint in Section 2.3 are applied into the equations in
Section 2.4 describing the 4D-Var DA system. The NN-based 4D-Var DA system is then
used to analyze the initial condition. As described in Section 2, the NN-based SW model
is trained with MPAS-SW simulation results at 1000 km resolutions. MPAS-SW was run
at 250 km resolution initialized with the ERA5 500 hPa atmospheric state at 00 UTC on
1 January 2021. The simulation results at 12 and 24 h will be interpolated into the 1000 km
mesh and assimilated as observations to help analyze the initial conditions at the NN native
resolutions. The matrices B and O are both kept diagonal and assigned with values of
RMSE from the test dataset described in Section 2.2. Taking the entire model state (h, u, and
v over the globe) as observations, the correctness of the gradient calculation is first checked
following Equation (15), the result of which are shown in Figure 5. As the scaling factor
decreases in magnitude, the quantity Φ(α) linearly approaches unity, as expected, proving
the accuracy of the calculated gradient of the cost function with respect to the model state
vector x. As the accuracy in gradient calculation is an essential and necessary step to ensure
that the 4D-Var DA system will perform as expected, the results in Figure 5 is a reassuring
signal for a working DA system.
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Fig. 5: Variations in the gradient-check results as a function of the log of the
scaling factor .

Figure 5. Variations in the gradient-check results log(|Φ(α)− 1|) as a function of the log of the scaling
factor α.

3.1. A Single Observation Experiment

The value of height at a single location of [35.24◦ N, 164.48◦ W] from the high-
resolution simulations 12 h into the forecast is assimilated. The minimum of the cost
function was reached after four iterations as shown in Figure 6a. The norm of the gradient
decreased by nearly five orders of magnitude, indicating a local minimum. The analysis
increment in both heights and winds are plotted in Figure 6b, with the observation location
marked as a white cross. It can be seen that an anticyclonic adjustment was generated
near the observation location with some additional adjustments away from the observation
location due to the gravity wave mode in the SW dynamics. Notice that only the height
at the given location is observed and the background error covariance is kept diagonal
in this study, both height and wind adjustments are generated in the analyzed solution,
demonstrating the flow dependency in 4D-Var solutions. As simple as this experiment is, a
single point observation experiment can be a rather straightforward way of showing the
function and feasibility of a DA system.
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Fig. 6: (a) Variation of the cost function (solid curve) and the norm of the gradient (dashed curve)
with respect to the number of iterations when assimilating a single point observation. (b) The
analysis increment in height (shaded) and wind (vectors) after assimilating only the height at the
location marked with a white cross.

Figure 6. (a) Variation of the cost function (solid curve) and the norm of the gradient (dashed curve)
with respect to the number of iterations when assimilating a single point observation. (b) The analysis
increment in height (shaded) and wind (vectors) after assimilating only the height at the location
marked with a white cross.

3.2. Full Vector Observation Experiment

The entire atmospheric state (h, u, and v over the global domain) 12 and 24 h after the
analysis time simulated by the 250 km resolution MPAS-SW run will be assimilated with
the NN-based 4D-Var DA system. The analyzed initial conditions will be used to make
forecasts with MPAS-SW at 1000 km resolutions. A control experiment of 1000 km forecast
will be made without assimilating any observations, to demonstrate the improvements
when observations are assimilated. The predictions with and without DA will be compared
against the 250 km simulation results. The evolution of the cost function (solid curve) and
the norm of its gradient (dashed curve) are plotted in Figure 7a. After 25 iterations, the
value of the gradient norm decreased by more than four orders of magnitude, indicating
an extreme point with the solved model state x. The corresponding analysis increment
calculated after convergence is given in Figure 7b. Most of the adjustments are located in
mid to high latitude regions, especially in the Northern Hemisphere.
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Fig. 7: (a) Variation of the cost function (solid curve) and the norm of the gradient (dashed curve)
with respect to the number of iterations when assimilating the observations of the entire model
state. (b) The analysis increment in height (shaded) and wind (vectors).

Figure 7. (a) Variation of the cost function (solid curve) and the norm of the gradient (dashed curve)
with respect to the number of iterations when assimilating the observations of the entire model state.
(b) The analysis increment in height (shaded) and wind (vectors).

Two MPAS-SW simulations at 1000 km are then initialized with the atmospheric
state with and without assimilating observations. As the observations come from the
250 km resolution experiment, the 1000 km forecast results from both simulations are
compared against the 250 km forecasts in the form of RMSE. Figure 8 shows the differences
in RMSE between the control run and that with DA. It shows that in the first four days,
the control outperforms the DA experiment when compared with the 250 km simulation
results. However, starting from day four, the DA experiment becomes better than the
control and this advantage is maintained over 20 days of forecasts. To compare the forecasts
from the two experiments spatially, the differences in forecasts between the control and
the 250 km simulation are shown in Figure 9a and those between the DA run and the
250 km simulation are shown in Figure 9b. It can be visually seen that the magnitude of
differences in Figure 9b is greater than those in Figure 9a, indicating an inferior performance
as also illustrated in Figure 8. The same comparison with the 5-day forecasts are shown in
Figure 10. In contrast, the magnitude of differences in both heights and winds in the control
run are greater than those in the DA experiment, proving forecasts improvements after
assimilating observations with the NN-based DA system.
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Fig. 8: The differences in root mean squared errors (RMSE) between the control and DA
experiments with respect to the forecast lead time.

Figure 8. The differences in root mean squared errors (RMSE) between the control and DA experi-
ments with respect to the forecast lead time.

Fig. 9: Differences in 2-day forecasts (a) between the control experiment and referenced high
resolution simulations and (b) between the DA experiment and the referenced high-resolution
simulations.

Figure 9. Differences in 2-day forecasts (a) between the control experiment and referenced high resolu-
tion simulations and (b) between the DA experiment and the referenced high-resolution simulations.
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Fig. 10: Differences in 5-day forecasts (a) between the control experiment and referenced high
resolution simulations and (b) between the DA experiment and the referenced high-resolution
simulations.

Figure 10. Differences in 5-day forecasts (a) between the control experiment and referenced high resolu-
tion simulations and (b) between the DA experiment and the referenced high-resolution simulations.

3.3. Discussion

In some of the previous studies, the applications of NN techniques in data assimilation
has been explored such as replacing physics parameterization components with a NN [20]
or a DA system with Lorenz 96 model [21]. Some studies were even exploring the possibility
of scaling ML to the entire NWP system like in [3,14]. This study endeavors to extend the
application of NN and make use of the convenience in obtaining the TL/AD of an NN
with a global shallow water model to formulate a 4D-Var DA system. The convenience
of obtaining the TL/AD from a NN is applicable and can potentially benefit various
components in a NWP and DA system demonstrated in the aforementioned studies. One
example can be to use NN to approximate certain parts of moist physics parameterizations
in the nonlinear forward model, which is a process that often involve nonlinear and/or
discontinuous calculations and will make the tangent linear approximation invalid and
thus make the 4D-Var technique fail. NN can potentially be useful to emulate the physical
process while mitigate the nonlinearity/discontinuity. The tangent linear and adjoint of
the physics NN can then be conveniently obtained and more reliably incorporated in a
variational DA system. The analyses obtained from the purely NN-based 4D-Var DA prove
to improve the forecast performances compared with a control experiment, demonstrating
the promising prospect of further applications of NN in DA systems.

The potential next steps for this research are numerous. The NN design in this setup
was relatively straight forward since it only had a single hidden layer. Additional hidden
layers with more sophisticated NN techniques may be experimented in later studies to
produce better emulating results. Similar techniques are readily applicable in substituting
moise physics parameterizations or observation operators in a DA system. Furthermore,
the analyzed results produced in this study may also be compared with a 4D-Var DA system
that needs be developed with the traditional MPAS-SW model adjoint. Finally, applying
these techniques to larger models such as the MPAS-Atmosphere model will demonstrate
whether these techniques are feasible for NWP operations. The recent advances of ML
applications in NWP are especially encouraging in this aspect.
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4. Conclusions

This study proposes a NN-based SW model that emulates SW dynamics and makes
predictions given an initial condition. The NN-based SW model was trained with 60 years
(1959 to 2019) of hourly ERA5 atmospheric state and the corresponding 12-h predictions
made with MPAS-SW at 1000 km resolution. Taking the ERA5 atmospheric state in 2020
and 2021 and their MPAS-SW predictions as an independent evaluation, the predictions
made with the trained NN have an RMSE value of 6.32 m in fluid heights and 0.58 m/s
in wind field. An example of the NN-based prediction result is shown to well capture the
atmospheric evolution simulated by shallow water dynamics.

The tangent linear and adjoint models of a NN can be conveniently developed, the
process of which is described in this study. The NN-based SW model and its adjoint are
used to formulate a continuous 4D-Var DA system. Synthetic observations are made with a
MPAS-SW experiment at 250 km resolution that is four times higher than the trained NN
native 1000 km resolution. In the presence of observations, the calculation of the gradient of
the cost function is checked for correctness to ensure that the minimum of the cost function
can be found in the 4D-Var DA system.

In a single point observation experiment, the height value at a single point is assim-
ilated as observation. A convergence is achieved rapidly in five iterations. The analysis
increment by differing the analyzed initial conditions from the first guess show both local
and remote impacts propagated by gravity waves, indicating flow dependency in the
solution, even with a simple diagonal background error covariance. In the second DA
experiment, the entire model state vectors, i.e., both height and wind fields over the global
domain, 12 and 24 h into the forecasts are assimilated. A convergence was achieved with
25 iterations, in which the norm of the cost function gradient decreased by nearly five
orders of magnitude. The analysis increments show adjustments throughout the global
domain with greater magnitudes in mid and high latitude regions. Forecasts are created
with MPAS-SW at 1000 km initialized with the first guess and the analyzed initial con-
ditions. These forecasts are shown to be closer to the 250 km simulations that served as
observations. These encouraging results demonstrate the feasibility of the tangent linear
and adjoint components obtained from neural networks and the potential value of the
proposed DA system.
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