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Abstract: The longitudinal distribution of upper atmospheric density has been broadly studied.
However, the studies mostly focused on 24 h averaged distribution. This study presents the lon-
gitudinal distribution of thermospheric density at dawn and dusk, using observations collected
by the atmospheric density detector onboard the Chinese satellite APOD (Atmospheric Density
Detection and Precise Orbit Determination) during low solar activity. The APOD observations show
a significant relative longitudinal variation of thermospheric density with global maxima (∆ρrmax)
near the geomagnetic pole, especially in the winter hemisphere. The annual maximum of ∆ρrmax

appears in the Southern Hemisphere around the June solstices and reaches 26.3% and 39.6% at dawn
and dusk, respectively. The auroral heating and meridional wind might play a significant role in
the longitudinal variation of thermospheric density. We further compare the APOD observations
with the semi-empirical atmospheric model MSIS (Mass Spectrometer Incoherent Scatter Radar)
2.0 predictions under low solar activity conditions. The MSIS 2.0 model reproduces similar longi-
tudinal variations to the observations, with hemispheric asymmetry. The longitudinal variation of
thermospheric density from APOD should be related to the distribution of the atmospheric average
molecular weight from the model. More observational data are needed to verify the results of this
study further.

Keywords: thermospheric density; longitudinal distribution; dawn; dusk; low solar activity; APOD

1. Introduction

Variations in upper thermospheric density can cause perturbations in spacecraft or-
bits [1–3]. Thus, the variations under different space weather conditions have attracted
broad interest [4–8]. One of these variations is the longitude/UT variation of the ther-
mospheric density. The magnetospheric energy deposition could induce thermospheric
longitudinal variations through the auroral precipitation and Joule heating [4,9]. Observa-
tional studies were typically based on in-situ measurements collected by slowly-processing
polar satellites in low earth orbits subject to an inherent sampling limitation associated
with the orbits. The orbits typically take several months to cover 24 h local time. Therefore,
the results often entangle the local time variation with the seasonal variation. To conquer
this problem, Xu et al. [10] developed a method by averaging the data across multi-years.
The method could produce 24 h averaged longitudinal variations in different seasons,
but studying the longitudinal variations at different local times is still challenging. Using
observations by a detector onboard a sun-synchronous satellite will avoid this problem and
produce longitudinal distribution at a fixed local time.
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The longitudinal variations of thermospheric density at ~200 km at 1030 LT and
2230 LT have been studied from the SETA (Satellite Electrostatic Triaxial Accelerometer)
experiments in a sun-synchronous orbit [11,12]. The seasonal variations of thermospheric
mass density at dawn and dusk have been examined from the GOCE (Gravity field and
steady-state Ocean Circulation Explorer) satellite observations at 270 km [13]. However, the
longitudinal variations of upper thermospheric density are rarely studied above 300 km at
fixed local times. This is important because most low-orbit spacecraft fly through the upper
thermosphere. Furthermore, the longitudinal variations at dawn and dusk are unknown.
Given that the horizontal gradient of solar radiation is prominent in the sectors, a large
gradient of thermospheric density is also expected; therefore, the longitudinal distribution
may differ from that of other local times [14]. The Chinese APOD satellite flies in a circular
sun-synchronous orbit carrying an Atmospheric Density Detector (ADD) and detects the
thermospheric density around the terminator [15,16]. It allows us to study the longitudinal
variations around the terminator in the upper thermosphere during low solar activity.

Calabia et al. [17] assessed a new thermospheric mass density model using the APOD
observations. Zhang et al. [18] provided the seasonal oscillations of thermospheric density
from the APOD and other observations. The current paper studies the longitudinal distribu-
tions of thermospheric density at 460 km at dawn and dusk using the measurements from
the Chinese satellite APOD. The longitudinal distributions from APOD are compared with
those from the NRLMSIS 2.0 model [19], which is the newest version of the semi-empirical
model series of Mass Spectrometer Incoherent Scatter Radar (MSIS) [20]. This work focuses
on answering the following three open questions: (1) What is the longitudinal variation
of the thermospheric density at dawn dusk in different seasons under low solar activity
conditions? (2) Does the longitudinal variation at dawn differ from that at dusk? (3) Is the
longitudinal variation from the MSIS model similar to that from APOD?

2. Data and Methods

The Chinese APOD satellites, including APOD-A, -B, -C, and -D, were launched into
circular sun-synchronous orbits in 2015. Onboard APOD-A is an Atmospheric Density
Detector (ADD), which samples the thermospheric density at a rate of 1 Hz, corresponding
to a spatial resolution of ~8 km. This paper uses the thermospheric density observations
only from APOD-A and refers to APOD-A as APOD. The principle of the ADD and the
data processing method were detailed by Li et al. [15] and Tang et al. [16]. The longitudinal
distribution of thermospheric mass density is constructed using the observations under
quiet geomagnetic conditions (ap < 10) in 2017 and 2018 when the sun was at a low activity
level with an annual average of F10.7 around 77 and 70, respectively.

The data observed are processed in the descending and ascending legs separately.
These two legs cross the equator at the local time around 0730 LT and 1930 LT and here-
inafter are referred to as dawn and dusk sectors. To exclude the altitude and local time
variations associated with the APOD orbit, we normalized the mass densities using the
MSIS 2.0 model [19] to fixed reference heights of 460 km [4,21] at local times 0730 LT and
1930 LT, respectively. In each sector and each month, the data are binned in grids of 5◦ in
latitude and 20◦ in longitude from 82.5◦ S to 82.5◦ N. Figure 1, as an example, displays a
histogram of the data collected in July. The histogram indicates that the observations are
sufficient at all given grids, allowing reliable statistics.
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Figure 1. Global distributions of the samplings from APOD at dawn (left) and dusk (right) in July.

The monthly averaged APOD density (ρ) is calculated in each grid at dawn or dusk,
respectively. Then Equation (1) is used to obtain the zonal mean of the monthly averaged
thermospheric density (ρ),

ρ =
1

2π

2π∫
0

ρdλ (1)

where λ denotes longitude.
Equation (2) is used to estimate the relative longitudinal variation of thermospheric

density,
∆ρr = ρ/ρ − 1 (2)

The semi-empirical model series of Mass Spectrometer Incoherent Scatter Radar
(MSIS) [20] are widely used in thermospheric research and aerospace engineering and
can predict the composition, total mass density, number density, and temperature from the
ground to the exosphere. The semi-empirical model series has been upgraded to the latest
version as NRLMSIS 2.0 [19], in which the development focuses primarily on altitudes
below 100 km; N2 and O densities in the thermosphere were also improved. Predictions
of spacecraft orbits are subject to the uncertainty of the atmospheric model [22]. Note
that NRLMSIS 2.0 will be referred to simply as MSIS hereafter. Using the MSIS, we cal-
culated thermospheric densities along the APOD orbit and reproduced the longitudinal
distributions.

The empirical model HL-TWiM (High-latitude Thermospheric Wind Model) presents
a good characterization of the high-latitude neutral winds in geomagnetic coordinates for
both hemispheres at altitudes between 210 and 320 km [23]. The model synthesizes the
most historical high-latitude wind measurements (45–90 Mlat) and provides a valuable
specification of thermospheric neutral wind as a function of DOY (Day Of Year), latitude,
longitude, local time, and geomagnetic conditions in magnetic coordinates. The paper uses
this model to study the relationship between the thermospheric wind and the longitudinal
distribution of the thermospheric density.

3. Results and Discussion

Figures 2 and 3 show the global distributions of relative longitudinal variation (∆ρr)
from APOD in different months at dawn and dusk, respectively. The most prominent
feature is one region with high ∆ρr in each hemisphere. In the northern hemisphere, the
zonal maximum of ∆ρr (∆ρrmax) appears at 60–100◦ W at dawn except for 40◦ W in June
and appears at 80–120◦ W at dusk except 60◦ W in November. In the southern hemisphere,
∆ρrmax appears at 80–120◦ E at dawn except 60◦ E in January and appears at 160–200◦ E at
dusk except 140◦ E in February. From November to February, the high-density region in
the northern hemisphere is more pronounced. The global ∆ρrmax appears at 65–75◦ N in
latitude and 60–120◦ W in longitude. From April to September, the high-density region in
the Southern Hemisphere is more pronounced, and ∆ρrmax is located at 50–75◦ S and 100–
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180◦ E. The location of ∆ρrmax is close to the geomagnetic pole, which was at (~83◦ N, ~84◦

W) in the northern hemisphere and (~75◦ S, ~125◦ E) in the Southern Hemisphere in 2017–
2018, according to the altitude-adjusted corrected geomagnetic (AACGM) coordinates [24].
It is known that auroral heating occurs mainly around the geomagnetic pole [25–28], which
causes the enhancement of temperature (thermospheric density) in the lower (upper)
thermosphere [29]. Thus, the maximum of ∆ρr occurring near the geomagnetic pole can
be attributed to the aurora heating, including the aurora particles precipitation and Joule
heating.
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Figure 2. The global distributions of the relative longitudinal variation (∆ρr) from APOD at 0730 LT
(dawn) in each month. White dots denote the position of the south geomagnetic pole.

Figures 2 and 3 show that the maximum of ∆ρr in the Southern Hemisphere is greater
than in the Northern Hemisphere at both dawn and dusk from April to August. During
November and February, the maximum of ∆ρr in the Northern Hemisphere is greater
than in the Southern Hemisphere. For example, in December, the maximum of ∆ρr in
the Northern Hemisphere is 13.2% and 25.4% at dawn and dusk, respectively, while
the maximum in the Southern Hemisphere is only 9.0% and 7.1% at dawn and dusk,
respectively. It indicates that ∆ρrmax in the winter hemisphere is higher than in the summer
hemisphere around the solstices. The difference of ∆ρrmax between the summer and winter
hemispheres may be caused by the difference in the solar EUV energy input into the
thermosphere between the two hemispheres. At the same latitude in two hemispheres,
the solar elevating angle in the winter hemisphere is smaller than in the summer, and
some polar regions in the winter hemisphere are not even lit by the Sun. Therefore, the
EUV energy input into the thermosphere and ρ in the winter hemisphere are much less
than those in the summer hemisphere, which causes the lower background thermosphere
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density in the winter hemisphere. According to Equation (2), ∆ρr is inversely proportional
to the value of ρ. Thus, ∆ρrmax caused by the auroral heating in the winter hemisphere was
more significant than in the summer hemisphere.
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In Figures 2 and 3, the ∆ρrmax maximizes annually at 26.3% and 39.6% in July in
the Southern Hemisphere near the geomagnetic pole (~75◦ S, ~125◦ E) at dawn and dusk,
respectively. The annual maximum of ∆ρrmax in the Northern Hemisphere appears in Febru-
ary and December at dawn and dusk, with values of 15.8% and 25.4%, respectively. The
annual maximum in the Southern Hemisphere is much greater than in the Northern Hemi-
sphere. The difference in ∆ρrmax between the two hemispheres should be mainly caused by
the different geomagnetic pole positions relative to the geographic poles. Since the aurora
heating is mainly around the geomagnetic pole [25–28] and the southern geomagnetic pole
is further off the geographical pole, the effects of auroral heating on the thermosphere in the
Southern Hemisphere are harder to cover all longitudes. Thus, the longitudinal variation
of thermospheric density in the Southern Hemisphere should be relatively stronger in
the Northern Hemisphere under the same other conditions. Xu et al. [10] analyzed the
longitudinal variation of thermospheric density using the CHAMP and GRACE satellite
observations. Their results showed that the maximal longitude variations averaged for all
local times also appear near the geomagnetic poles. Similar to the APOD observations, the
CHAMP and GRACE satellite observations showed an apparent hemispheric asymmetry
in the longitudinal structure, more pronounced in the Southern Hemisphere than in the
Northern Hemisphere. To sum up, the main feature of the global distribution around the
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terminator from APOD is similar to the distribution averaged over all local times from
GRACE.

There is a low-density region in each hemisphere, which is close to the high-density
region in latitude and far away from the high-density region in longitude. In the Northern
Hemisphere, the minimum of ∆ρr (∆ρrmin) appears at 80–160◦ E at dawn and appears at
80–140◦ W at dusk. In the Southern Hemisphere, ∆ρrmin appears at 60–100◦ W at dawn
except for 40◦ W in November and appears at 0–40◦ E at dusk except for 60◦ E in December.
∆ρrmin in the Southern Hemisphere is less than in the Northern Hemisphere at both dawn
and dusk from April to August. However, from November to February, the minima of ∆ρr
in the Northern Hemisphere is less than in the Southern Hemisphere, which is in summer.
For example, in the December Northern Hemisphere, the ∆ρr minimizes at −11.3% and
−20.4% at dawn and dusk, respectively, while in the Southern Hemisphere it minimizes at
−7.8% and −8.4% at dawn and dusk, respectively.

As is shown in Figures 2 and 3, the longitudinal variations of ∆ρr around the geomag-
netic pole significantly expand to the middle and low latitudes. The expansion diminishes
with latitude decreasing, and the values of ∆ρr at low latitudes vary between −10% and
10% in most months. The expansion also changes with the seasons. Near the solstices,
the longitudinal variation around the geomagnetic pole in the summer hemisphere can
control the low latitudes and extend to the other hemisphere. Otherwise, the longitudinal
variations around the geomagnetic pole in the winter hemisphere have weaker impacts
on the mid-low latitudes, although the maxima of ∆ρr in the winter hemisphere are larger.
The difference in equatorward expansion could be related to the meridional wind in the
mid-low latitudes. To clarify the contribution of meridional wind to the equatorward
expansion and the asymmetry of ∆ρrmax between the two hemispheres, we calculated the
meridional wind in the middle and high latitudes at dawn (0730 LT) and dusk (1930 LT)
using the empirical model HL-TWiM. The seasonal distribution of meridional wind be-
tween 30–80◦ N at 84◦ W and 30–80◦ S at 125◦ E is given in the upper panel of Figure 4.
According to Figure 4, during the solstices, the thermospheric prevailing meridional wind
is equatorward in the summer hemisphere and at latitudes 30–40◦ N (S) in the winter
hemisphere. The equatorward wind should facilitate the longitude variations of ∆ρrmax
around the magnetic pole in the summer hemisphere extending to low latitudes. It may
help reduce the value of ∆ρrmax in the summer hemisphere.

Figures 2 and 3 show that ∆ρrmax from APOD appears at (50–60◦ S, 80–140◦ E) at
dawn and (70–75◦ S, ~180◦ E) at dusk from April to August. The global ∆ρrmax appears
at (65–75◦ N, 60–120◦ W) at dawn and at (~75◦ N, 60–100◦ W) at dusk from November to
February. Comparing the latitudes of ∆ρrmax at dawn and dusk, the latitudes of ∆ρrmax at
dusk are higher and closer to the geomagnetic pole in the two hemispheres. According
to the longitudes of ∆ρrmax, the positions of ∆ρrmax at dusk are in the east of that at dawn,
especially in the southern hemisphere. The difference between the latitudes where ∆ρrmax
appears at dawn and dusk may be related to the meridional wind.

According to the HL-TWiM empirical model results in the upper panel in Figure 4,
the mid-high latitude thermospheric wind is poleward with a maximum of 76 ms−1 at
50◦ S at dusk. At dawn, it is equatorward or poleward with lower values relative to dusk
between 50◦ S and 75◦ S. Take December as an example. The thermospheric meridional
wind between 50◦ N and 75◦ N is less than 15 ms−1 at dawn, weaker than that at dusk.

The largest meridional wind speed reaches above 50 ms−1, around 60◦ N at dusk. The
more intensive poleward wind might induce the location of ∆ρrmax extending to the polar
region at dusk. In addition, the difference in longitudes where ∆ρrmax appears at dawn
and dusk could be attributed to the zonal wind. From the lower panel of Figure 4, the
zonal wind at the latitude where ∆ρrmax appears is westward in the two hemispheres at
dawn. The westward wind facilitates the westward extension of ∆ρrmax at dawn. At dusk,
the zonal wind at the latitude where ∆ρrmax appears is eastward in two hemispheres. The
eastward wind facilitates the eastward extension in ∆ρrmax at dusk. The zonal winds could
explain the difference in the longitude where ∆ρrmax appears at dawn and dusk. The zonal
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wind in the southern hemisphere reaches more than 70 ms−1, which is more significant
than in the Northern Hemisphere. Thus, the difference in the longitude, where ∆ρrmax
appears between dawn and dusk, is pronounced in the Southern Hemisphere. The exact
reason may need further study through additional observation and numerical simulation.
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Figure 5 shows the seasonal variation of ∆ρrmax and ∆ρrmin from APOD at dawn and
dusk. The left panel shows that the annual maximum of ∆ρrmax from APOD occurs in July
at both dawn and dusk. Xu et al. [10] showed that the annual maximum of ∆ρrmax from the
GRACE observations occurred during equinoxes. The difference in peak occurrence time
may be due to the different solar activity levels and local times. The results in Xu et al. [10]
are averaged over all local times at high, middle, and low solar activity levels. The results
from APOD in the paper are only for around the terminator at a low solar activity level.
Xu et al. [30] and Shreedevit et al. [31] showed that the seasonal variation of ionospheric
density at the high latitudes in the Southern Hemisphere has significant solar activity
and local time dependence. Their results showed that the ionospheric density at the high
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latitudes of the Southern Hemisphere usually has a semiannual anomaly with peaks during
the equinoxes for high and middle solar activity conditions, especially during the daytime.
The larger ionospheric density may produce larger conductivity and Joule heating during
the equinoxes. This could cause GRACE’s largest longitudinal variations of thermospheric
density to occur during the equinoxes. It has been reported that the ionospheric density
at the high latitudes in the Southern Hemisphere has no significant semiannual anomaly
and has a relatively low value during the equinoxes under low solar activity conditions
(e.g., [30,31]). Thus, the ∆ρrmax from APOD in this paper has no significant peaks during
the equinoxes.
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The left panel in Figure 5 shows that the annual maximum of ∆ρrmax from APOD reach
26.3% and 39.6% at dawn and dusk, respectively, in July, much greater than the annual
maximum of ∆ρrmax at 480 km from GRACE value 15.2% [10]. The results from the GRACE
observation in Xu et al. [10] are for all local times. According to the above results at dawn
and dusk from APOD (see Figures 2 and 3), there are significant differences in the peak
locations for different local times. So, the maxima of averaged ∆ρr for the two local times
could be less than ∆ρrmax at dawn or dusk. Suppose all the observations at both dawn
and dusk from APOD are used together to obtain the mean relative longitude variation
around the terminator. In that case, the maximum will be ~24%, which is closer to the
maximum from the GRACE data. So, the various locations of ∆ρrmax at different local times
could bring the lower values of ∆ρrmax averaged for all local times. Furthermore, the data
observed from 2017 to 2018 in 5◦ latitude × 1 month bins are used in this work, while the
data from 2003 to 2008 in 10◦ latitude × 2 month bins were used by Xu et al. [10]. The
different time windows and bins can also contribute to the different results. In addition, the
difference in ∆ρrmax may also be due to the different solar activity levels in different years.

The left panel in Figure 5 shows that ∆ρrmax from APOD at dusk is significantly greater
than at dawn in most months. For example, ∆ρrmax in June reaches 23.0% and 38.7% at
dawn and at dusk, respectively. The difference in ∆ρrmax between dawn and dusk may be
related to their different latitudes. From above, we know that ∆ρrmax is located at a higher
latitude at dusk than at dawn around the solstices. Since a degree in longitude at a higher
latitude represents a shorter length, the area of a higher-density region should be larger at
dawn than at dusk. The larger area of the higher-density region should contribute to the
lower ∆ρrmax at dawn. The observations from CHAMP [32] also show that the high-latitude
density response is less significant around the dawn sector in both hemispheres.

The right panel in Figure 5 shows that ∆ρrmin from April to August is larger than in
the other months. The annual minima of ∆ρrmin from APOD reach −25.6% and −40.1%
at dawn and dusk. ∆ρrmin from APOD at dusk is significantly less than at dawn in most
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months. For example, ∆ρrmax in June reaches −23.6% and −37.9% at dawn and at dusk,
respectively.

Figures 6 and 7 show the longitude variations of thermospheric density (∆ρr) from the
MSIS 2.0 model at 460 km at dawn and dusk, respectively. Similar to the APOD data, the
MSIS 2.0 predictions exhibit one zonal peak near the geomagnetic pole in the Northern and
Southern Hemispheres. The annual maxima of ∆ρrmax in the Southern Hemisphere at dawn
and dusk from MSIS 2.0 appear in August with values of 28.8% and 34.7%, respectively.
The annual maximum of ∆ρrmax in the Northern Hemisphere from MSIS 2.0 occurs between
December and February at dawn and dusk, and both values are ~14%. They are slightly
less than the annual maxima from APOD. Figures 6 and 7 show that ∆ρrmax from MSIS
2.0 in the Southern Hemisphere is larger than those in the Northern Hemisphere at dawn
and dusk from March to September. The MSIS annual maximum of ∆ρrmax appears in the
Southern Hemisphere, as the results from APOD show. There are some differences between
∆ρrmax from APOD and MSIS 2.0. From November to February, ∆ρrmax from MSIS 2.0 in
the Southern Hemisphere is larger, while ∆ρrmax from APOD in the Northern Hemisphere
is larger. Take December as an example. In December, ∆ρrmax in the Northern Hemisphere
from APOD is 13.2% and 25.4% at dawn and dusk, respectively. ∆ρrmax from MSIS 2.0 is
only 9.0% and 14.3%, respectively. In the Southern Hemisphere, ∆ρrmax from APOD in
December is only 9.0% and 7.1% at dawn and dusk, respectively. ∆ρrmax from the MSIS 2.0
model is 13.4% and 18.8%, respectively. Thus, ∆ρrmax from MSIS 2.0 appears in the Southern
Hemisphere in all months. Correspondingly, ∆ρrmax from APOD appears in the Southern
Hemisphere near the equinoxes and in the winter hemisphere around the solstices. The
MSIS 2.0 model might overestimate the longitudinal variations of thermospheric density in
the Southern Hemisphere and underestimate them in the Northern Hemisphere around
the December solstice.
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Figure 7. Same as Figure 3, except for the MSIS 2.0 model predictions.

As described above, the comparison of the APOD density between dusk and dawn
indicates that ∆ρrmax at dusk from APOD is located at a higher latitude with larger values
than at dawn. It can be seen in Figures 6 and 7 that the MSIS 2.0 results have the same
characteristics. ∆ρrmax from MSIS 2.0 is located at 45–50◦ S and 45–60◦ N at dawn and
located at 70–75◦ S and 60–75◦ N at dusk. It is the same as the observations in two
hemispheres from APOD that ∆ρrmax from MSIS at dusk is located at a higher latitude than
at dawn. In addition, it can be seen that the value of ∆ρrmax from MSIS 2.0 is also more
pronounced at dusk than at dawn, similar to the result from APOD. For example, ∆ρrmax
from the MSIS 2.0 model in August is 28.8% and 34.7% at dawn and dusk, respectively.

The thermospheric mass density is the product of the average molecular weight
and number density. The thermospheric composition and number density also have
complicated spatial and temporal variations [33]. To further analyze the cause of the
longitudinal distribution of the thermospheric density, the average molecular weight and
number density of the atmosphere at 460 km from the MSIS model are calculated. The
relative longitudinal distribution of the average molecular weight and number density
versus the zonal mean values at dawn and dusk are given, as shown in Figures 8–11,
respectively. Figures 8–11 demonstrate both the atmospheric average molecular weight
and number density maxima near the geomagnetic pole in the Northern or Southern
Hemispheres. The maximum atmospheric average molecular weight appears in the winter
hemisphere during the solstices, and the maximum atmospheric number density appears
in the Southern Hemisphere. So ∆ρrmax from MSIS 2.0 is located in the winter hemisphere
during the solstices, more pronounced in the Southern Hemisphere than in the Northern
Hemisphere. In some sense, the longitudinal variation of ∆ρrmax from APOD should
also be related to the distribution of the atmospheric average molecular weight from the
MSIS model, as the average molecular weight from the model is used in the inversion of
the atmospheric density [16]. More observational data are needed to verify the current
study further.
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Figures 12 and 13 show the longitudinal distribution of thermospheric temperature
at 460 km from the MSIS model. There is a significantly high-temperature region around
the geomagnetic pole at each hemisphere every month. The global maximum occurs
in the southern hemisphere. The longitudinal distribution of the MSIS temperature is
close to that of the MSIS density. The temperature denotes the thermal energy in the
thermosphere. Thus, the longitudinal distribution of density could be related to the thermal
energy and the atmospheric temperature. The high density and temperature region around
the geomagnetic pole could be related to the aurora heating.
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4. Conclusions

The paper focuses on the longitudinal distributions of upper thermospheric density
at dawn and dusk under quiet geomagnetic conditions at low solar activity levels using
the Atmospheric Density Detector (ADD) observations aboard the APOD satellite. The
measurements from ADD/APOD are compared with the MSIS 2.0 model predictions. The
relative longitudinal variations from the MSIS model density generally compare well with
those from the observations. Both the APOD observations and the MSIS model predictions
show a significant longitudinal variation of thermospheric density with maxima near the
geomagnetic pole, especially in the winter hemisphere. The annual maxima of ∆ρrmax
for APOD appear in the Southern Hemisphere around the July solstices. The values of
maxima at dawn and dusk reach 26.3% and 39.6%, respectively. In most months of the year,
∆ρrmax at dusk for APOD is located at a higher latitude with larger values than at dawn.
The auroral heating and meridional wind might play a significant role in the longitudinal
variation of thermospheric density. The distribution of thermospheric density is related
to the atmospheric average molecular weight from the MSIS model in some sense. More
observational data are needed to verify the results of this study further.
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