
Citation: Ling, Y.; Liu, C.; Shan, Q.;

Hei, D.; Zhang, X.; Shi, C.; Jia, W.;

Wang, J. Inversion Method for

Multiple Nuclide Source Terms in

Nuclear Accidents Based on Deep

Learning Fusion Model. Atmosphere

2023, 14, 148. https://doi.org/

10.3390/atmos14010148

Academic Editor: Ian Crawford

Received: 4 November 2022

Revised: 30 December 2022

Accepted: 4 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Inversion Method for Multiple Nuclide Source Terms in
Nuclear Accidents Based on Deep Learning Fusion Model
Yongsheng Ling 1,2,3, Chengfeng Liu 1, Qing Shan 1, Daqian Hei 4, Xiaojun Zhang 5, Chao Shi 1, Wenbao Jia 1,*
and Jing Wang 3

1 Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China

2 Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions,
Suzhou 215021, China

3 Institute of Environmental Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
4 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
5 Suzhou Guanrui Information Technology Co., Ltd., Suzhou 215123, China
* Correspondence: jiawenbao@163.com

Abstract: During severe nuclear accidents, radioactive materials are expected to be released into the
atmosphere. Estimating the source term plays a significant role in assessing the consequences of an
accident to assist in actioning a proper emergency response. However, it is difficult to obtain
information on the source term directly through the instruments in the reactor because of the
unpredictable conditions induced by the accident. In this study, a deep learning-based method
to estimate the source term with field environmental monitoring data, which utilizes the bagging
method to fuse models based on the temporal convolutional network (TCN) and two-dimensional
convolutional neural network (2D-CNN), was developed. To reduce the complexity of the model,
the particle swarm optimization algorithm was used to optimize the parameters in the fusion model.
Seven typical radionuclides (Kr-88, I-131, Te-132, Xe-133, Cs-137, Ba-140, and Ce-144) were set as
mixed source terms, and the International Radiological Assessment System was used to generate
model training data. The results indicated that the average prediction error of the fusion model for
the seven nuclides in the test set was less than 10%, which significantly improved the estimation
accuracy compared with the results obtained by TCN or 2D-CNN. Noise analysis revealed the fusion
model to be robust, having potential applicability toward more complex nuclear accident scenarios.

Keywords: nuclear accident; radionuclides; source term estimation; gamma dose rate; convolutional
neural network

1. Introduction

Although the design of nuclear power plants is based on the principle of multi-barriers
with relatively good safety preparation, the Fukushima nuclear accident [1] warned that
nuclear accidents due to reactor design defects, personnel operation errors, and natural
disasters are still possible. After a nuclear accident, it is necessary to quickly estimate
the total amount and composition of radionuclides released. Subsequently, the dose
distribution in the area around the nuclear accident was simulated based on the estimated
source term to support decision makers in taking the most reasonable accident disposal
measures [2]. Therefore, estimating the source term is crucial.

There are two methods for source term estimation [3], of which one is to estimate
the release source term of a nuclear accident based on the operating conditions of a nu-
clear plant. The other is to estimate the release source term of a nuclear accident using
radioactive environmental monitoring data, which is also known as source term inversion.
After severe nuclear accidents, monitoring instruments in nuclear power plants are often
damaged [4], which makes it difficult to obtain the operating conditions of nuclear power
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plants. Therefore, source term inversions have received extensive attention. Because the
gamma dose rate in air can be measured rapidly and in real-time, there have been many
research methods to estimate source terms based on gamma dose rate monitoring data, in-
cluding optimal interpolation [5], data assimilation [6–8], Kalman filtering [9,10], Bayesian
methods [11,12], and least squares [13–18]. Since the Fukushima accident, more attentions
have been paid to source term inversion and more methods have been used to perform the
study [19–21]. However, these methods require long-term monitoring of data to ensure
that the algorithms converge. A poor initial value can lead to computational failure or
slow convergence, thereby requiring reliable a priori information as a basis. The neural
network approach eliminates this dilemma. It does not require prior information, and
with its powerful self-learning capability, it can identify the corresponding relationship
from the gamma dose rate monitoring data and predict the source term based on the
corresponding relationship.

In our previous study, we demonstrated that a backpropagation neural network model
can effectively predict a single nuclide [22] and classify complex multi-nuclide source
terms [23]. Thereafter, a recurrent neural network model was built to obtain the release
rates of the six nuclides by sequential processing of the gamma dose rates [24]. The MAPE
of the test dataset reached 15.92%, 6.57%, 18.45%, and 36.80% for the nuclides Sr-91, Te-132,
Xe-133, and I-131 at the 10th hour, respectively. However, the MAPE remained stable
at 67% for La-140 and Cs-137 [24]. To further reduce the prediction error, a temporal
convolutional neural network (TCN) model with a strong analysis capability for time
series was established [25]. Currently, it is noted that a two-dimensional convolutional
neural network (2D-CNN) is capable of extracting deeper features from the original data
by transforming the one-dimensional time-series signals into two-dimensional image
data using polar coordinates, which greatly improves the prediction accuracy of multiple
experiments [26]. In addition, a fusion algorithm that combines several deep-learning
models is highly conducive to enhancing the generalization ability, which can assist in
method adaptation to a wide variety of data.

In this study, a method for multiple nuclide source term inversion in nuclear accidents
based on a deep learning fusion model is proposed. The bagging algorithm was utilized to
fuse the TCN and 2D-CNN models to maximize their respective strengths. The weights
between them were optimized using the particle swarm algorithm. The gamma dose
rate and meteorological conditions were used as combined inputs of the model, and the
release rate of the multi-nuclide source term was used as the output of the model. Deep
learning-based inversion models for nuclear accident source terms require a large amount
of data to train the complex nonlinear relationship between off-site monitoring data and
the source term; therefore, it is necessary to obtain a large training dataset. In this study,
the International Radiological Assessment System (InterRAS) [27] was used to simulate
the atmospheric dispersion of radionuclides and generate the datasets required for the
model. The gamma dose rate and meteorological conditions were used as combined
inputs of the model, and the release rates of the multi-nuclide (seven typical radionuclides
(Kr-88, I-131, Te-132, Xe-133, Cs-137, Ba-140, and Ce-144) were the outputs of the model.
Additionally, Bayesian optimization and hyperband (BOHB) can be used to determine the
optimal hyperparameters in high-dimensional data space to obtain better performance.

2. Materials and Methods
2.1. Severe Nuclear Accident Model and Dataset Generation
2.1.1. Definition of the Multi-Nuclide Source Term

In this model, it is assumed that seven typical radionuclides—Kr-88, Te-132, I-131,
Xe-133, Cs-137, Ba-140, and Ce-144—are released into the environment at constant rates.
The duration of the release was set to 30 min. The approximate order-of-magnitude ranges
for the release rates of the seven radionuclides were calculated, as shown in Table 1. They
refer to the calculation results according to a severe nuclear accident with release category
PWR1 by referring to the core inventory of a 2905 MW-pressurized water reactor at the end
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of its lifetime described in the reactor safety study [28]. The detailed calculation process is
shown in the Table S1 from Supplementary Materials.

Table 1. Information on the seven radionuclides set as source item.

Nuclide Half-Life Activity per MW
(1012 Bq/MW)

Atmospheric Immersion
Dose Conversion Factor

(Sv s−1 per Bq m−3)

Ground Deposition Dose
Conversion Factor

(Sv s−1 per Bq m−2)

Approximate Order
of Magnitude of

Release Rate (Bq/h)

Kr-88 2.8 h 830 1.02 × 10−13 1018

Te-132 3.3 d 1400 1.03 × 10−14 2.28 × 10−16 1018

I-131 8.1 d 940 1.82 × 10−14 3.76 × 10−16 1018

Xe-133 5.3 d 1940 1.56 × 10−15 1019

Cs-137 30.1 y 70 7.74 × 10−18 2.85 × 10−19 1017

Ba-140 12.8 d 1800 8.58 × 10−15 1.80 × 10−16 1018

Ce-144 284 d 990 8.53 × 10−16 2.03 × 10−17 1018

2.1.2. Locations of Monitoring Sites

The two downwind monitoring points were 1 km and 5 km away from the release
point, respectively. Gamma dose rates were calculated.

2.1.3. Other Input Data

Other input data include release height, atmospheric stability, wind speed, mixed
layer height, and precipitation type. The range of values for these input parameters was set
based on historical meteorological data around the coastal nuclear power plant, as shown
in Table 2.

Table 2. Release height and meteorological parameter setting range.

Auxiliary Data Value Range Description

Release Height 0–60 m
Release height affects the maximum extent of
nuclide dispersion, and wind speed will vary at
different heights.

Atmospheric Stability A–G

Pasquill’s atmospheric stability category,
indicating the tendency and degree of the air mass
to return to or move away from the original
equilibrium position after the air is disturbed in a
vertical direction. A–G indicate conditions from an
extremely unstable to an extremely stable state.

Wind Speed 0–12 m/s Wind speed directly affects the diffusion rate
of radionuclides.

Mixed Layer Height 100–800 m Mixed layer height affects the diffusion of nuclides
in the vertical direction.

Precipitation Type

None
Light Rain (rainfall rate < 25 mm/h)

Medium Rain (rainfall rate between 25 and
75 mm/h)

Heavy Rain (rainfall rate > 75 mm/h)
Light Snow (visibility > 1 km)

Middle Snow (visibility between 0.5 and 1 km)
Heavy Snow (visibility < 0.5 km)

Precipitation will accelerate deposition of
the nuclide.

2.1.4. Dataset Generation

Source term data and other input data were randomly generated within the range
of values in Tables 1 and 2. The source term data and other input data were input into
InterRAS to calculate the gamma dose rates per hour in 10 h following the release at the
two monitoring sites. The meteorological parameters remained unchanged during the 10 h
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of the simulation. A total of 10,000 sets of data were computed, of which 9000 were used as
the training set of the neural network and the remaining 1000 were used as the test set. An
example of a dataset is presented in Table 3.

Table 3. A sample data set.

Source Term

Auxiliary Data Time (h)

Gamma Dose Rate (mSv/h)

Radionuclide Release
Rate (Bq/h)

1 Km
Downwind

5 Km
Downwind

88Kr 2.67 × 1018 Release Height
(m) 37 1 3240 538

132Te 4.7 × 1018 Wind Speed
(m/s) 8 2 3700 620

131I 9.8 × 1018 Mixed Layer
Height (m) 457 3 4500 800

133Xe 2.7 × 1019 Atmospheric
Stability C 4 4000 800

137Cs 6.98 × 1017 Precipitation
Type

Heavy
Snow 5 5000 800

140Ba 7.45 × 1018 6 6000 900
144Ce 3.63 × 1018 7 5000 900

8 5000 1000
9 6000 900

10 6000 1000

An in-house script was compiled using Python 3.7.7 and was used to implement the
numerous calculations, running on a personal computer with a 32-bit Win7 system.

2.2. Inversion Model Based on TCN
2.2.1. TCN Algorithm

An artificial neural network (ANN) is an algorithmic mathematical model that simu-
lates the structure and behavior of the biological nervous system for distributed parallel
information processing with strong robustness, memory capability, and self-learning ability.
A convolutional neural network (CNN) is a type of ANN that can analyze small pieces
of raw data to obtain deeper data features. A temporal convolutional neural network
(TCN) [29] based on a one-dimensional CNN can efficiently process time-sequential data
by introducing a causal dilated convolution structure.

To ensure no information “leakage” from the future to the past, the causal convolution
structure is used in the TCN model. In this causal convolution structure, the output at
time t is convolved only with the input at time t and prior to it. Suppose that we are given
input time-sequential data x0, x1, . . . , xt and the corresponding outputs y0, y1, . . . , yt,
at each time. The causal convolution structure is that to predict the output yt for some
time t, we are constrained to only use those inputs that have been previously observed:
x0, x1, . . . , xt. Formally, the causal convolution structure is a function f : Xt+1 → Yt+1

which produces a mapping

ŷ0, ŷ1, . . . , ŷt = f (x0, x1, . . . , xt) (1)

Figure 1 shows a causal convolution structure in which the output at time t + 5 is
related only to xt−4, . . . , xt, xt+5. In addition, to allow the TCN to have a wider receptive
field, a dilation convolution structure was applied to the TCN model. Figure 2 shows the
dilated causal convolution structure with expansion numbers of 1, 2, 4, and 8, which has a
receptive field of 10 time steps using four convolution operations. Additionally, to maintain
the same spatial dimension of the input and output, 0 was added before the beginning of
the time series.
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2.2.2. Multi-Nuclide Source Term Inversion Model Based on TCN

The inversion model of multi-nuclide source terms for nuclear accidents constructed
based on TCN units is shown in Figure 3.

(a) First, the gamma dose rate data from the two monitoring points are pre-processed by
converting the gamma dose rate for 10 h into a 10 × 10 matrix, i.e., the first row is the
gamma dose rate at time step 1, the tenth row is the gamma dose rate at time steps 1
to 10, and all missing data are filled with the default value “0”.

(b) To avoid the distortion effects of using default values, a masking unit [30] was used
to mask the fixed values in the input sequence signal, locating the time steps to be
skipped. If the input data are equal to the given value, the time step is omitted in all
the subsequent layers of the model. As shown in Figure 3c, only one valid data point
remains in the first row after processing through the mask unit.

(c) The gamma dose rate at the tenth time step was used as an example. Sequence
information of the gamma dose rate was extracted using the TCN. Feature extraction
of gamma dose rate data from two monitoring points was done using n convolution
kernels. The nonlinear activation function of the data features was computed by the
ReLU activation function, which introduced nonlinear elements to the neurons and
allowed the neural network to approximate any other nonlinear function. The deep
network was dispersed to avoid overfitting by the weight regularization layer [31]
and the dropout layer [32].

(d) Gamma dose rate data, release height, atmospheric stability, wind speed, mixed layer
height, and precipitation type were combined as input data.

(e) Input data were fed to the full connection layer, and the release rates of the seven
nuclides were output.
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layer; (e) Full Connection layer.

2.3. Inversion Model Based on 2D-CNN

The extraction of one-dimensional time series features can be directly analyzed using
recurrent neural networks and time series CNNs. Recent studies have shown that a one-
dimensional time series signal can be transformed into two-dimensional image data via
polar coordinate conversion. Feature extraction was then performed using a 2D-CNN.
There was a significant improvement in prediction accuracy for several experiments [26].

2.3.1. Gramian Angular Field

The Gramian angular field [26] is used to encode the time series into images. The
one-dimensional time series was converted from Cartesian to polar coordinates. It was
then converted into a two-dimensional image by the operation of the Gramian matrix. In
addition, it could also be converted to the original time series by an inverse operation with
good interpretability. The Gramian angular field was processed as follows:
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(1) First, the one-dimensional time series was normalized, and the normalized time series
was denoted by X.

(2) The timestamp of X was then used as the radius. The value corresponding to the
time stamp was used as the cosine angle. The X was re-projected to polar coordinates
based on the radius and cosine angle.

(3) Finally, X was converted into a Gramian angular summation field (GASF) in image
format based on the sum of the trigonometric functions between each point. The X
was converted into a Gramian angular difference field (GADF) based on the difference
in trigonometric functions. GASF and GADF are defined in Equations (2) and (3).

GASF =
[
cos
(
φi + φj

)]
= Xi · Xj −

√
I − Xi

2·
√

I − Xj
2 (2)

GADF =
[
sin
(
φi + φj

)]
= Xi·

√
I − Xj

2 −
√

I − Xi
2·Xj (3)

where I represents the unit vector in polar coordinates and φ is the angle between the
two time vectors.

2.3.2. 2D-CNN Algorithm

A CNN is a deep feedforward network that has been successfully used in image fields,
such as image classification and retrieval, and target detection and segmentation [33]. A
2D-CNN generally consists of three structures: a convolutional layer, a pooling layer, and a
fully connected layer.

The convolutional layer, as the core of the CNN, consists of several feature planes
that extract different features from the input through convolutional operations. The first
convolutional layer extracts low-level features, such as edges, lines, and corners. Higher-
level convolutional layers extract higher-level features [34]. As shown in Figure 4, the
convolutional kernel slides on the input image sequentially, and the sliding direction is
from left to right and from top to bottom. For each slide, convolution performs a dot
product calculation with the input image corresponding to its sliding window position,
which preserves the spatial features of the input image. The max pooling layer compresses
images, mainly to speed up the convergence process of neural networks and improve the
stability of the training process [35]. In the CNN structure, after multiple convolutional
and sampling layers, one or more fully connected layers are connected, and each neuron
in the fully connected layer is fully connected to all the neurons in the layer before it.
Fully connected layers can integrate local information with category differentiation in the
convolutional or sampling layers.
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2.3.3. Multi-Nuclide Source Term Inversion Model Based on 2D-CNN

The inversion model of the multi-nuclide source term for nuclear accidents, con-
structed based on 2D-CNN units, is shown in Figure 5. First, the gamma dose rates of the
two monitoring points were input and transformed by the Gramian angular field to form
two two-dimensional images. Then, 2D-CNN layers were used for feature extraction, while
weight regularization, pooling, and dropout were used to disperse the deep network to
avoid overfitting. Next, after flattening the multi-dimensional data into one-dimensional
data, they were connected to five auxiliary data points. Finally, the data were fed into the
fully connected layer, and the release rates of the seven nuclides were output.
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2.4. Model Fusion Method Based on Improved Bagging Method

Model fusion, also known as ensemble learning [36], is used to accomplish learning
tasks by constructing and combining multiple base learners. The main premise is that by
combining multiple models, the deviation of a single base learner may be compensated
for by other base learners. As a result, the overall prediction performance of the ensemble
learner will outperform that of the single base learner, allowing the model to have better
generalization capabilities.

2.4.1. Bagging

The main idea of bagging, also known as bootstrap aggregation, is to generate a
series of independent observed data of the same size and distribution as the original data.
Subsequently, multiple base learners are constructed based on the observed data, and
the output of the base learners is used as the input of the meta learner. The process of
constructing a fusion model using the bagging method is as follows:

(1) First, n times with put-back sampling is performed from the training dataset M of size
n to obtain dataset M1, which is repeated N times to obtain N datasets M1, . . . , MN
of size n.

(2) Then, N base algorithm models are selected, and N base learners are constructed with
the input data set M1, . . . , MN .

(3) Finally, the output of the fusion model is obtained by linearly averaging the output of
each base learner.
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2.4.2. Multi-Nuclide Source Term Inversion Model Based on Fusion Model

As shown in Figure 6, the original 9000 sets of training datasets were randomly
drawn 9000 times in a putback form, meaning that a set of training datasets can be drawn
repeatedly, which will form a new collection with 9000 training datasets. The above process
was repeated 10 times to form 10 new collections. Five used the TCN model as the base
learner, and the other five used the 2D-CNN model. The weights of the base learners in
the model were adjusted using a particle swarm optimization (PSO) algorithm, and the
output of each base learner was multiplied by its weight separately as the output of the
fusion model to obtain the final prediction results.
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2.5. BOHB Algorithm

The hyperparameters of deep learning typically interact with each other, and it is often
difficult to obtain optimal results using the single-variable method. Black-box optimization
models based on Bayesian optimization have excellent performance in several deep learn-
ing tuning tasks [37], and Bayesian optimization can theoretically approximate optimal
results [38]; however, exponential explosions often occur when applied to high-latitude
computations. The BOHB algorithm [39], combined with the probabilistic sampling of
Bayesian optimization and the step-by-step halving process of hyperband optimization,
plays an important role in determining the number of groups of hyperparameters to run
and the budget allocated to each group. To avoid the effects caused by random parameter
selection, the Bayesian optimization model helps the hyperband optimization algorithm to
select parameters at the beginning of each cycle using previously available data. Once the
hyperparameters generated by the Bayesian optimization reach the required number of
configurations for the iteration, these configurations are used to start the successive halving
operation. Successive halving operations can effectively reduce search time and cover a
wider search space in less time.

In this study, BOHB was used to optimize the number of convolutional kernels,
convolutional kernel width, number of fully connected layer neurons, and batch size for
the TCN and 2D-CNN models.

2.6. PSO Algorithm

The PSO [40] is an optimization algorithm based on an iterative model that was
initially used for optimization in continuous spaces. In the continuous space coordinate
system, the mathematical description of the particle swarm algorithm is as follows: A
population of m particles travels at a certain speed in a D-dimensional search space, and
each particle varies its position based on its own search for the historical best point and
the historical best points of other particles in the population when searching. The ith
particle of the particle swarm is composed of three D-dimensional vectors: current position
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(xi = (xi1, xi2, . . . , xiD)), historical optimal position (xi = (xi1, xi2, . . . , xiD)), and speed
(vi = (vi1, vi2, . . . , viD)), where i = 1, 2, . . . , n. The current position is considered a set
of coordinates describing a spatial point, and at each iteration of the algorithm, the current
position xi is evaluated as the problem solution. If the current position is better than the
historical optimal position pi, a second vector pi exists for the coordinates of the target
position. In addition, the best position searched thus far in the whole particle swarm is
denoted as pg =

(
pg1, pg2, . . . , pgD

)
.

In this study, the PSO algorithm was used to optimize the weights of the fusion model.
The PSO was built using Sko [41], an advanced wrapper package in Python 3.7.

2.7. Estimation Metrics

To assess the overall performance of the model, estimation metrics are required to
verify the effectiveness of the model; therefore, the following four evaluation metrics were
selected in this study. (1) The loss values were set to the mean squared error (MSE). (2) The
mean absolute error (MAE) was used to assess the overall performance of the model.
(3) Two metrics, namely, absolute percentage error (APE). (4) Mean absolute percentage
error (MAPE), were used to reflect the estimation performance more intuitively. These
metrics are calculated as follows:

Loss = MSE =
1
m ∑m

i=1( fi − yi)
2 (4)

MAE =
1
m ∑m

i=1| fi − yi| (5)

APE =
| fi − yi|

yi
(6)

MAPE =
1
m ∑m

i=1
| fi − yi|

yi
(7)

where yi is the true value, fi the predicted value of the model, and m the number of samples
in the dataset.

3. Results
3.1. Hyperparameter Optimization of TCN and 2D-CNN Models

Hyperparameters set for the models before starting the learning process play a significant
role in improving the performance and effectiveness of neural network learning. Therefore, it
is necessary to optimize these parameters to obtain a preferable set of hyperparameters.

3.1.1. Learning Rate

The learning rate is a hyperparameter that updates the weights during gradient
descent; that is η of the following equation:

ωn+1 = ωn − η × ∂L(ωn)

∂ωn (8)

where ωn is the neural network weight at moment n, ωn+1 is the weight at moment n + 1,
and L is the loss function (MSE). Thus, the learning rate η directly determines the update
rate of the neural network weights. At a low learning rate, the update rate of the loss
function is slow, which easily leads to overfitting of the model. At a high learning rate,
the loss function will vibrate substantially, and the model is prone to gradient explosion,
leading to difficulty in convergence of the model. Therefore, it is important to select a
suitable learning rate.

In Keras, which is a neural network kit [42], the learning rate is set within the opti-
mizer; therefore, it is necessary to first select an optimal optimizer from among the seven
optimizers (as shown in Figure 7a) and subsequently choose the best learning rate based
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on the best optimizer. When selecting the best optimizer, other hyperparameters were set
to the default values of Keras.
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From Figure 7a, the lowest MAE was obtained with the optimizer of Nadam for the
2D-CNN model when the number of training epochs reached 100. Therefore, the preferable
learning rate of 10−2 from the optimizer of Nadam can be determined from Figure 7b. Similarly,
the best optimizer for the TCN model was Nadam and the best learning rate was 10−2.

3.1.2. Other Hyperparameters

In addition to the learning rate, there are four important parameters that have a
significant impact on the prediction accuracy of the models: number of convolutional
kernels, width of convolutional kernels, number of fully connected layer neurons, and
batch size. These were adjusted using the BOHB algorithm in the ranges listed in Table 4.

Table 4. Parameter search range based on 2D-CNN and TCN models.

Parameter Value Range

Number of convolutional kernels 0–64
Width of convolutional kernels 2, 4, 8

Number of fully connected layer neurons 8–256

From Figure 8, a parallel coordinate plot of the combinations of the four parameters
and their corresponding MAE shows that the lowest MSE of the 2D-CNN model corre-
sponding to these parameters can be below 0.02, which indicates that the BOHB algorithm
can reduce the prediction deviation of the model compared to the model without tuning
the parameters. The best configurations for the 2D-CNN model searched by BOHB are
listed in Table 5. Similarly, the best configurations for the TCN model were obtained, as
listed in Table 5.
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Figure 8. Parallel coordinate plots corresponding to the four parameter configurations and target
values for BOHB search in the 2D-CNN model.

Table 5. Optimal parameter values of multi-nuclide source term inversion model based on 2D-CNN
and TCN.

Model Optimizer Learning
Rate

Number of
Convolution

Kernels

Convolution
Kernel
Width

Fully Connected
Layers Number of

Neurons
Batch Size Loss

2D-CNN Nadam 10−2 48 2 96 128 0.0138
TCN Nadam 10−2 40 8 48 2048 0.0196

3.1.3. Multi-Nuclide Emission Rate Estimation Performance of TCN and 2D-CNN Models

As shown in Figure 9, the MAPE of the release rate from both the TCN and 2D-CNN
models decreased rapidly in the first few steps. For the TCN model, the MAPEs for all
nuclides falls below 30% when the time step reaches the fourth hour. Among them, the
MAPEs for Kr-88 and Te-132 reached approximately 10%. For the 2D-CNN model, when
the time step reached the sixth hour, the MAPEs for all nuclides fall below 30%, and only
the MAPE for Kr-88 can reach below 10%; however, for the other nuclides, the MAPEs
can reach below 20% in the final time step. In the initial period, the results from the TCN
model were superior to those from the 2D-CNN model. This is because when the length of
the sequence is short, the Gramian angular field expanding the one-dimensional sequence
into two dimensions leads to distortion of the original information. This indicates that the
TCN model has a strong prediction ability using less gamma dose rate data because of its
strong feature extraction ability of convolutional operation, which is important for rapid
estimation of the source term after a nuclear accident. In addition, the 2D-CNN model has
a lower prediction deviation at the final time step because the feature extraction ability of
two-dimensional convolution is stronger than that of one-dimensional convolution, which
can provide more reliable prediction results.

Thus, it can be helpful to improve the prediction accuracy if the two models can be
effectively fused.
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3.2. Fusion of TCN and 2D-CNN Models Based on Bagging Method
3.2.1. Weight Optimization through PSO Algorithm

As shown in Figure 6, before 10 re-sampled datasets are fed into the fusion model,
their respective weights should be determined because different combinations of the
10 weights will affect the fusion result. The determination process is performed using the
PSO algorithm, which searches for weights between 0 and 1.

Figure 10 shows the probability distribution of each weight in the PSO search process,
in which the ordinate values at the widest positions in the shapes are the best weights
because when the weights take these values, the probability of obtaining a low prediction
deviation is the highest. Thus, the optimal weights searched by the PSO algorithm and the
corresponding loss values were determined, as listed in Table 6.
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Table 6. Optimal weighting values searched by particle swarm search algorithm.

Base Learner Weight Value Base Learner Weight Value

TCN w1 0.39 2D-CNN w6 0.37
TCN w2 0.48 2D-CNN w7 0.21
TCN w3 0.32 2D-CNN w8 0.52
TCN w4 0.76 2D-CNN w9 0.14
TCN w5 0.71 2D-CNN w10 0.42

Fusion Model Loss: 0.0082

3.2.2. Multi-Nuclide Emission Rate Estimation Performance

The MAPEs with time steps for the seven nuclides obtained by the fusion model in
the test dataset are shown in Figure 11. It was observed that the MAPEs at the fourth hour
all decreased below 20%, and all of them reached below 10% at the final time step. The
MAPEs of the predicted values of Kr-188 and Te-132 were 7.1% and 5.2%, respectively.
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Figure 11. Prediction results of fusion model with time step.

Compared with the results of the TCN or 2D-CNN models, the MAPEs obtained with
the fusion model showed a significant decrease in both the fifth and final time steps. This
suggests that the fusion model, which inherits the advantages of the TCN and 2D-CNN
models, effectively improves the prediction ability. The MAPE values of the seven nuclides
at the final time step are listed in Table 7.

Table 7. The MAPE of seven nuclides predicted by each model at the final time step.

Model MAPE (%)

TCN 17.31
2D-CNN 14.53

Fusion Model 8.64

In Figure 12, an enhanced box plot, shows a detailed APE distribution over time for all
data samples in the test dataset. There are several black horizontal lines, called quantiles, in
each shape, which represent the quantiles of 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. As
shown in Figure 12, at the first time step, when inputting only one hour of gamma dose rate
data, more than 1/8 of the samples for all nuclides (except Kr-88) have an APE over 100%. At
the third time step, most samples of Kr-88 and Te-132 have an APE below 50%. At the final
time step, although a small percentage of samples have high APEs, all medians are located at
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a very low level. Additionally, in the last three time steps, the shapes barely change, which
suggests that 10 h of gamma dose rate data are sufficient for the source term inversion model.
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3.3. Noise Analysis

In practical situations, all measurement data are inevitably biased, and the robustness
of the model can be verified by adding noise to the input data. As shown in Figure 13,
the performance of the fusion model in estimating the multi-nuclide release rate was
examined by adding 1–50% noise to the input data for the final time step. Noise analysis
was performed for the input parameters of gamma dose rate, wind speed, release height,
and mixed layer height.
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As shown in Figure 13, the MAPE increases significantly with an increase in the
gamma dose rate, which indicates that the noise of the gamma dose rate significantly affects
the estimation of multi-nuclide release rates. Among the four input parameters, the gamma
dose rate is the most important input for estimating multi-nuclide release rates. The MAPE
of most nuclides from the noise of the gamma dose rate can be maintained at approximately
30%, with good robustness of the fusion model at a relative noise level of 10%.

As shown in Figure 13b,c, the noise at release and mixed layer heights had little effect
on the estimation of the multi-nuclide release rate, and the MAPE of most radionuclides
increased slowly with noise, remaining below 15%, even at a 50% noise level.

Wind speed is a key parameter in the diffusion of all nuclides. As shown in Figure 13d,
for all nuclides (except Kr-88), the MAPEs remained below 20%, even at a 50% noise level.
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The estimation of Kr-88 is more sensitive to the noise of wind speed than to that of the
gamma dose rate because it is a radioactive gas and has a short half-life (2.84 h).

4. Conclusions

In this study, an inversion method is proposed for multiple nuclide source terms in
nuclear accidents based on a deep learning fusion model. It can further improve prediction
accuracy compared with TCN and 2D-CNN models when performing the inversion under
an assumed situation with a homogeneous release of seven nuclides and constant meteoro-
logical conditions. The MAPE of the fusion model at the final time step using the weights
optimized by the PSO algorithm can reach below 10%.

Additionally, the prediction performance of the fusion model was tested by adding
noise to the input data. The results show that the fusion model is not sensitive to the
noise of meteorological conditions; however, the noise of the gamma dose rate has a
significant impact on the prediction of the fusion model. When there is 20% noise in the
gamma dose rate, the prediction deviation of the fusion model for the nuclide release rate
is approximately 30%; therefore, it suggests that it is important to obtain gamma dose rate
data as accurately as possible to improve the estimation performance of the fusion model.
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