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Abstract: In this study, the water-soluble inorganic ions (WSIIs) composition of fine particulate
matter (PM2.5) was measured in the northern Nanjing city from 2015 to 2021. NH4

+, NO3
− and

SO4
2− concentrations dominated in total WSIIs (Na+, NH4

+, K+, Mg2+, Ca2+, Cl−, NO3
− and SO4

2−),
accounting for 87.8%. The nitrate with highest average concentration among all ions was 11.0 µg·m−3.
Total WSIIs concentrations were higher in winter and lower in summer, with the highest levels in
December (45.6 µg·m−3) and the lowest levels in August (15.1 µg·m−3). NO3

−/SO4
2− was higher

than 1, indicating the important contribution of mobile sources. The aerosols exhibited a weak acidic
by the molar ratio of water-soluble anions and cations. Positive matrix factorization (PMF) analysis
results showed that secondary nitrate and sulfate were the major pollution sources in December 2016
and 2020. The contribution of secondary nitrate in 2020 increased by 47.6% compared to 2016, while
that of secondary sulfate decreased by 42.4%. The potential source contribution results demonstrated
that for secondary aerosol concentrations, the contribution of regional transport from north of Anhui
increased, while the contribution of local emissions decreased. The results from this study could
contribute to the better prevention and control of regional air pollution in the future.

Keywords: fine particle; inorganic ions; source apportionment; regional transportation; Nanjing city

1. Introduction

Over the past decades, atmospheric fine particle (PM2.5, particulate matters with
aerodynamic diameters equal to or less than 2.5 µm) pollution have had a significant
impact on human health, atmosphere visibility, and the ecosystem in China [1–3]. Water-
soluble inorganic ions have been considered as major components of PM2.5, accounting
for 20% to 70% of them [4,5]. Research found that WSIIs, especially secondary inorganic
aerosols (SNA, including SO4

2−, NO3
− and NH4

+), have effects on the hydroscopic nature
and acidity of PM2.5 [6–8].

Many studies have suggested that the WSIIs of PM2.5 were the major pollutant in
Chinese cities, especially in developed coastal areas such as Beijing–Tianjin–Hebei [9–11],
the Yangtze River Delta region [12,13], and the Pearl River Delta region [5,14]. The wide
range of WSIIs’ spatial variability may be associated with differences in the PM2.5 sources,
economic development, population density, and the effect of meteorological conditions [15].
Nanjing is one of the important cities in the in Yangtze River Delta. Previous studies
conducted in Nanjing have revealed the aerosol mass concentrations [16,17], chemical com-
ponents [18], spatial and temporal variations [17,19], possible sources [18,20,21], chemical
characteristics of haze episodes [22–24], the impact of aerosol on visibility [25], etc. These
studies have provided knowledge for understanding the characteristics, the behavior, and
the regional pollution of PM2.5. However, there has been limited study of the long-term
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measurement of WSIIs variability with 1-h time resolution. Their formation mechanisms
and source apportionments have seldom been reported in the Nanjing industrial zone.

In the current work, the WSIIs of PM2.5 were monitored online in the Nanjing in-
dustrial district from 2015 to 2021. The characteristics of water-soluble components in
PM2.5 were investigated and compared with different years. The secondary formation and
potential sources were explored by positive matrix factorization (PMF) and the potential
source contribution function (PSCF), respectively. Results from this study are essential
to understanding the chemical compositions of PM2.5 and the potential impacts of an-
thropogenic sources. The unique datasets could improve the understanding of aerosol
properties and thereby provide a valuable field measurement-based reference for mitigating
particle pollution.

2. Materials and Methods
2.1. Site Description and Instrumentation

The city of Nanjing is located in the Eastern part of China, and is the capital city of
Jiangsu Province. In this study, the sampling site for the measurement was set on top of the
meteorological building at the Nanjing University of Information Science and Technology
(NUIST, 32.21◦ N, 118.72◦ E, 62 m above ground level), northwest of Nanjing (Figure 1).
The Yangtze River waterway is located approximately 12 km to the Southeast. The distance
between the east and west sides of the sampling points is 1–2 km, which are the Ningliu
Expressway (G205) and Hushan Highway (G40), respectively. Previous studies have found
that vehicle exhaust on these roads can affect the observation location [26]. To the Southeast
(approximately 5 km) of the sampling point are the Nanjing Chemical Industrial Park
(NCIP), an iron and steel enterprise, and a coal-fired power plant. Thus, this region is in a
mixed district of traffic and industry.
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An online sampling instrument was set to measure the mass concentrations of the
water-soluble inorganic ion components (Na+, NH4

+, K+, Mg2+, Ca2+, Cl−, NO3
− and

SO4
2−) at 1 h time resolution. The MARGA (Monitoring AeRosol and Gases in the ambient
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air, Metrohm Ltd., Switzerland) is mainly composed of three parts: a sample box, detector
box, and connected pump. The sample box absorbs trace gases and collects aerosols of
PM2.5 using a horizontal wet rotating denuder (WRD) and steam jet aerosol collector (SJAC),
respectively. The ambient airflow into the sample box is regulated to a rate of 1 m3·h−1

by a mass flow controller. The detector box then analyzes these gases and aerosols by an
ion chromatography (IC) system. The instrument is placed in an air-conditioned cabin to
keep the temperature at 20–25 ◦C. The detection limits for Na+, NH4

+, K+, Mg2+, Ca2+, Cl−,
NO3

− and SO4
2− were 0.05, 0.05, 0.09, 0.06, 0.09, 0.01, 0.05 and 0.04 µg·m−3, respectively.

Details about the principles of MARGA and the comparison with other instruments can
be found in the published literature [27,28]. Meteorological data (ambient temperature (T)
and relative humidity (RH) were obtained from the China Meteorological Administration
(CMA), Nanjing University of Information Science & Technology (NUIST) station.

2.2. Positive Matrix Factorization Model

Positive matrix factorization (PMF) is an effective receptor model, which has been
widely used in the source apportionment of air pollutants [29–31]. In this work, the EPA
(United States Environmental Protection Agency) PMF 5.0 was applied to quantify the
contribution of sources to PM2.5. The input data included the concentration data matrix of
the eight species and the uncertainty data matrix. According to the published literature [32],
the data uncertainty was calculated. Setting the parameters of PMF 5.0 was in accordance
with the user guide and previous research [29,31–34]. The number of runs was set to twenty,
and the factor number was set from three to six for testing. In addition, the diagnostic
parameters were used for the selection on the best factor number.

2.3. Potential Source Contribution Function Analysis

To identify the probability of source regions, the potential source contribution function
(PSCF) was calculated. The PSCF values were calculated using the following equation:

PSCFij =
mij

nij
(1)

where mij is the number of trajectory endpoints of pollutant concentration exceeding a
given criterion value and nij denotes the total number of trajectory endpoints in the ijth
cell. The criterion values were chosen for the 70% percentile of hourly average values [35].
The spatial resolution was 0.5◦ × 0.5◦. Furthermore, the arbitrary weight function Wij was
multiplied to reduce uncertainty in cells with small nij values. More detailed information
on PSCF can be found in the literature [36–38].

3. Results and Discussion
3.1. General Patterns of WSIIs in PM2.5

Figure 2 displays the time sequence of the concentrations of WSIIs during the ob-
servation period. The diurnal concentrations ranged from 0.96 to 162.1 µg·m−3, with the
average value of 28.7 µg·m−3 (Table 1). Daily WSIIs concentrations changed over two
orders of magnitude. The arrangement of daily average concentrations of eight ions was:
NO3

−> SO4
2−> NH4

+> Cl−> Na+> K+> Ca2+>Mg2+. Among all the ions detected, nitrate,
sulfate, and ammonium were the three most dominant species, accounting for 37.0%, 29.6%,
and 21.2% of the total WSIIs, respectively. The large ratio of SNA (87.8%) implied that
secondary formation was the prime pollution source of atmospheric particles in Nanjing.
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Figure 2. Time-series of daily water-soluble inorganic ions in PM2.5.

Table 1. Statistical summary of the daily average concentrations (µg·m−3) of WSIIs.

Maximum Minimum Median Mean Standard
Deviation

Na+ 26.4 0.05 0.18 0.75 2.21
NH4

+ 38.0 0.10 5.01 6.26 4.85
K+ 19.7 0.09 0.28 0.50 1.09

Mg2+ 6.2 0.06 0.09 0.18 0.48
Ca2+ 3.6 0.09 0.25 0.34 0.29
Cl− 16.6 0.03 1.24 1.83 1.89

NO3
− 75.7 0.12 8.26 10.9 9.59

SO4
2− 44.3 0.06 7.30 8.72 5.94

total 162.1 0.99 23.3 28.7 20.5

The data of the ratio of nitrate to sulfate in this study were compared with those that
had been measured in Nanjing in previously published studies (see Table 2). The mass ratio
of NO3

− to SO4
2− has been used to evaluate the importance of mobile sources vs stationary

sources [39]. Previous studies have indicated that a ratio of NO3
−/SO4

2− greater than 1.0
suggests that mobile sources (vehicle emission) make a greater contribution [14]. It was
indicated that mobile sources made more important contributions than stationary sources
(coal burning) to the fine particle pollution of Nanjing in recent years. The main reasons
may be the soaring number of vehicles and the operation of desulfurization engineering in
the large cities [40,41]. Yu et al. [42] found that air pollution was reduced with the execution
of the Air Pollution Prevention and Control Action Plan (APPCAP) in 2013.
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Table 2. Concentrations of NO3
− and SO4

2− and values of NO3
− to SO4

2− in PM2.5 measured by
different research at Nanjing (µg·m−3).

Study Period Method NO3− SO42− NO3−/SO42− References Language

February 2001–December 2001 Offline 7.5 16.3 0.46 [17] English
January 2007–October 2007 Offline 9.1 28.0 0.33 [43] Chinese

January 2010–December 2010 Offline 2.8 16.3 0.17 [44] Chinese
August 2012–June 2013 Offline 10.3 30.8 0.33 [45] Chinese

October 2013–November 2014 Online 18.9 28.3 0.67 [46] English
December 2014–November 2015 Offline 11.8 14.9 0.79 [18] English

December 2014–April 2015 Offline 16.3 16.6 0.98 [47] English
July 2014–May 2015 Offline 15.0 18.0 0.83 [48] English

December 2015–January 2016 Offline 26.5 19.0 1.39 [49] English
March 2016–August 2017 Online 16.7 14.9 1.12 [50] English

January 2017–December 2017 Online 12.8 9.3 1.38 [42] English
November 2017–June 2018 Online 14.2 9.1 1.56 [51] English

September 2018–September 2019 Offline 12.5 9.1 1.37 [52] English
May 2019–October 2019 Offline 17.3 11.0 1.57 [53] Chinese
February 2015–May 2021 Online 10.9 8.8 1.24 This work English

Figure 3 presents the seasonal mass concentration and proportion of eight ion com-
ponents in WSIIs. The seasonal variation of WSII in this work was in the decreasing
order of winter (43.2 µg·m−3) > spring (28.1 µg·m−3) > autumn (24.2 µg·m−3) > summer
(21.7 µg·m−3). Monthly average concentrations of WSIIs were the highest in December
(45.6 µg·m−3) and the lowest in August (15.1 µg·m−3). Compared with summer, NH4

+,
NO3

−, and SO4
2− concentrations in winter all increased by up to 2.05, 2.58, and 1.43 times,

respectively. It was likely that enhancing the use of fossil fuels in winter led to increased
concentrations of pollutants such as SO2, NOX, and particulate matter, etc., further raising
the concentration level of SNA [54]. In addition, high temperatures in summer promotes
the volatilization of ammonium in particles and reduces NH4

− in PM2.5 [55]. The sea-
sonal variations of Cl− mass concentrations were similar to that of SNA of the PM2.5
mass concentration; those contributions were greater in winter and lower in summer. The
highest chloride concentration (3.1 µg·m−3) was due to the high emission sources in coal
combustion in winter [13]. For K+ produced mainly from biomass burning, its average
concentration was highest in winter (0.8 µg·m−3).

3.2. Variability of SNA

SNA were the dominant water-soluble ions in PM2.5 in Nanjing, accounting for more
than 50%. of them Figure 4 demonstrates the average mass concentrations and percent-
ages of SNA in December 2016 and 2020. Compared with sulfate and ammonium in
2016, the mean mass concentrations of SO4

2− (6.8 µg·m−3) greatly decreased and NH4
+

(9.9 µg·m−3) slightly decreased in 2020. The decrease of SO4
2− and NH4

+ proved to be the
primary industrial emission reduction due to the emission reduction policy of the Chinese
government [56]. Furthermore, the mean mass concentrations of NO3

− (24.2 µg·m−3) in De-
cember 2020 was about 1.5 times higher than those in December 2016, which indicated the
important contribution of nitrate ions emitted from mobile source gasoline-fueled vehicles.
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3.3. Aerosol Acidity and Chemical Forms of WSIIs

The ion balance equations were usually applied to comprehend the acid-base neu-
tralization characteristics of PM2.5 [54]. The anion equivalent (AE) and cation equivalent
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(CE) were computed by converting the concentrations (µg·m−3) into micro equivalents
(µmol·m−3) as follows:

AE =
Cl−

35.5
+

NO−
3

62
+

SO2−
4

48
(2)

CE =
Na+

23
+

NH+
4

18
+

K+

39
+

Mg+

12
+

Ca2+

20
(3)

Figure 5 reveals the scatter diagram of AE vs. CE during the observation periods.
There was a strong correlation between AE and CE with correlation coefficient (R2 = 0.98).
The slope of linear regression was slightly greater than 1, suggesting that Nanjing fine
particles generally showed neutral or weak acidic characteristics. The average AE/CE
value of 1.04 was similar to previous research results in Nanjing [20].
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of the particulate composition. The calculation of NF is based on the fact that SO4

2− and
NO3

− are considered as the dominant acidifying anions [57]. In this study, Na+/Cl−

equivalent ratios were estimated as 0.36, lower than that in seawater (1.1) [58], indicating
that the contribution of Cl− in neutralization could not be neglected because it could
have other sources in addition to sea salt [59]. The NFs are calculated by the following
equations [15]:

NF
(

NH+
4
)
=

[
NH+

4
]

2
[
nssSO2−

4

]
+
[
NO−

3
]
+ [Cl−]− [Na+]/1.1

(4)

NF
(
nssK+

)
=

[nssK+]

2
[
nssSO2−

4

]
+
[
NO−

3
]
+ [Cl−]− [Na+]/1.1

(5)

NF
(

nssMg2+
)
=

[
nssMg2+][

nssSO2−
4

]
+ 2
[
NO−

3
]
+ 2[Cl−]− 2[Na+]/1.1

(6)

NF
(

nssCa2+
)
=

[
nssCa2+][

nssSO2−
4

]
+ 2
[
NO−

3
]
+ 2[Cl−]− 2[Na+]/1.1

(7)
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Here, nssK+, nssMg2+, nssCa2+ and nssSO4
2− represent the non-sea salt (nss) fractions

calculated using the equation as given by earlier studies [60].

nssX = Xi − Na+i ×
(

X
Na+

)
sea

(8)

where, Xi and Na+
i refers to the concentration of the ion and Na+ in aerosol samples and

(X/Na+) sea is the seawater ratio of the respective ion and Na+. The (X/Na+) sea ratios for
K+, Mg2+, Ca2+, and SO4

2− are 0.037, 0.120, 0.0385 and 0.2516, respectively [61,62].
Table 3 illustrates the NFs values estimated for four cations in PM2.5. The results

revealed that the neutralization capacities of ions ranked as: NH4
+ > nssK+ > nssCa2+ >

nssMg2+. The ammonium was the dominant neutralizing cation with the maximum NF
value (0.85), which was similar to the previous research results [57]. The NF values of nssK+,
and nssMg2+ and nssCa2+ were all below 0.2, suggesting the relatively small influence of
these ions on the neutralization. K+ was the second major contributor to neutralization
of aerosol acidity, possibly due to the biomass burning activities [63]. The contribution of
Ca2+ in neutralizing the aerosol acidity may be attributed to the effect of dust [57]. Mg2+

contributed the least to the neutralization of aerosol acidity.

Table 3. The neutralization factors (NF) calculated for NH4
+, nssK+, nssMg2+ and nssCa2+.

NF Value (µmol·m−3)

NH4
+ 0.85

nssK+ 0.05
nssMg2+ 0.02
nssCa2+ 0.03

Molar concentrations of NH4
+ versus anions (SO4

2−, NO3
− and Cl−) are exhibited in

Figure 6. The slope of linear regressions between 2 × [SO4
2−] and [NH4

+] are lower than 1,
which suggests that NH4

+ was sufficient to neutralize SO4
2− to form (NH4)2SO4; this means

that the chemical form of sulfate radical in this study was more ammonium sulfate than
ammonium bisulfate. Figure 6b shows the stoichiometry between [NO3

−] + 2 × [SO4
2−]

and [NH4
+], and the slope of linear regressions was slightly less than 1. This result indicted

that sufficient NH4
+ could neutralize NO3

− and SO4
2−, which suggests that NH4NO3 and

(NH4)2SO4 may be dominant chemical forms of WSIIs in our research process. The scatter
plots of [Cl−] + [NO3

−] + 2[SO4
2−] and [NH4

+] are illustrated in Figure 6c. The slope of
linear regressions between [Cl−] + [NO3

−] + 2[SO4
2−] and [NH4

+] was higher than 1, which
suggested that there were insufficient levels of NH4

+ for Cl− association to form NH4Cl.
Previous researchers also found that NH4

+ was not sufficient to completely neutralize
Cl− [13]. In addition to NH4Cl, excess Cl− could combine with other cations such as K+.

3.4. Source Identification

Figure 7 showed the source profiles derived from the PMF model between December
2016 and 2020. The first source (Factor 1) was characterized by the high loading of NO3

−

and NH4
+, which could be identified as a secondary nitrate source. Particulate-related

NO3
− was formed primarily by the oxidation of nitrogen oxides derived from vehicle

exhaust [64]. The second source (Factor 2) presented the industry based on the high
contribution of Cl−. Coal combustion is a typical industrial source which plays a key
role in the formation of Cl− [3]. The third source (Factor 3) was dust with typical crustal
components (Mg2+ and Ca2+). Those ions were considered as makers of soil dust and desert
dust, and thus this factor was identified as a dust source [65]. The fourth source (Factor 4)
was weighted by SO4

2−, and could be interpreted as a secondary sulfate source. The major
source of SO4

2− in the atmosphere was the oxidation of SO2, which came from industrial
combustion [66,67]. The last source (Factor 5) could be treated as a marine aerosol. This
factor was closely associated with the sea salt component (Na+).
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The contributions of the above sources to PM2.5 are presented in Figure 8. In December
2016, the main pollution sources were secondary nitrate (36.94%), industry (12.04%), dust
(17.76%), secondary sulfate (30.17%) and marine aerosol (3.09%). In December 2020, the
contribution of secondary nitrate (54.52%) and marine aerosol (9.23%) increased. Its dense
population and comparatively developed tertiary industry combined to make the air
quality of Nanjing predominantly affected by traffic [47]. Therefore, the secondary nitrate
accounted for the highest proportion and increased. The proportion of other sources
decreased, which may be ascribed to the effectiveness of the APPCAP policy for reducing
industrial emissions, particularly in removing sulfur from flue gas.
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In order to determine the potential pollution source areas of secondary transformation
sources in Nanjing, the PSCF analysis was used for the three main components of NH4

+,
NO3

− and SO4
2− (Figure 9). In December 2016, the source contribution of the three ionic

components were similar. High WPSCF values of NH4
+ (Figure 9a), NO3

− (Figure 9b)
and SO4

2− (Figure 9c) were located to the South of Jiangsu, indicating that local emissions
had an impact on the formation and maintenance of particle pollution. A small part
was transported from North Anhui and South Shanxi, with WPSCF values above 0.6. In
December 2020, the WPSCF values of NH4

+ (Figure 9d), NO3
− (Figure 9e) and SO4

2−

(Figure 9f) increased the most for the air masses transported from the East of Henan,
suggesting the influence of the regional transportation of secondary aerosols on air quality
in Nanjing. The NH4

+ in Nanjing mainly came from the agricultural activities in the
developed agricultural provinces of Henan. For SO4

2−, the high WPSCF values were
located in Henan. There is heating in this area, so increased coal burning for indoor heat
could produce higher SO4

2− levels [68]. In addition, the increased WPSCF values in Henan
were verified by recent studies indicating that the Fenwei Plain (FWP) suffered severe
PM2.5 pollution with prominent spatial clustering characteristics due to the developed iron
and steel industry in recent years [69,70]. For NO3

−, the potential pollution source areas
of NO3

− mainly concentrated in the north of Anhui and the northwest Jiangsu province.
This indicated that the traffic and human activities in these areas had a certain impact on
the pollution accumulation in Nanjing. NH4

+ and SO4
2− had higher WPSCF peak values

than NO3
−, and with wider potential areas. This indicated that higher emissions and the

secondary formation of ammonia and sulphate through air mass transportation from these
regions were the main potential source contributions.
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Figure 9. Source areas for ammonium, nitrate and sulfate between December 2016 and 2020 in
Nanjing. (a) ammonium, (b) nitrate, (c) sulfate in December 2016; (d) ammonium, (e) nitrate,
(f) sulfate in December 2020.

4. Conclusions

In this study, the variations of water-soluble ions and sources of PM2.5 in Nanjing were
investigated in detail. The major findings of the paper are as follows:

The average concentration of total WSIIs was 28.7 µg·m−3, dominated by NO3
−, and

followed by SO4
2− and NH4

+. The mean mass ratio of NO3
−/SO4

2− was 1.59, demonstrat-
ing that mobile emission was a dominant contributor to PM2.5. The total WSIIs showed
the highest concentrations in winter (43.2 µg·m−3) and the lowest values in summer
(21.7 µg·m−3) due to higher emission and unfavorable diffusion conditions in winter. High
temperatures in the summer promoted the dissociation of NH4NO3 and consequently
reduced NH4

+ and NO3
−. An ion balance analysis showed that aerosol particles were

neutral or slightly acidic (AE/CE: 1.04). Among all cations, NH4
+ was the predominant

neutralizing species, with highest NF value. (NH4)2SO4, NH4NO3 and NH4Cl were the
dominant ion forms.

The comparison of concentrations, source contributions and potential source areas
have been studied further between December 2016 and 2020. The NO3

− concentration
changes in December were the most significant, increasing from 16.4 µg·m−3 in December
2016 to 24.2 µg·m−3 in December2020, but SO4

2− and NH4
+ concentrations decreased from

12.5, 10.0 µg·m−3 in December 2016 to 6.8, 9.9 in December 2020, respectively. Compared to
the same period in 2016, the percentages of secondary nitrate increased 17.9% in December
2020 with the vehicle exhaust emission increases. The proportion of secondary sulfate,
dust and industry decreased from 30.2%, 17.8%, and 12.0% to 17.4%, 9.2%, and 9.7%,
respectively. Further studies should investigate the influencing factors and secondary
aerosol formation processes.
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