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Abstract: Bio-curtain (i.e., curtain) is a permeable cover equipped with a spraying system for ammonia
(NH3) control in a swine facility. Previous studies investigated the NH3 reduction effects primarily
based on concentration units. It is challenging to determine the actual efficiency because of the large
amount of air discharged through the large surface of the curtain, and external wind rapidly dilutes
and disperses the exhausted air. Therefore, this study investigates a technique to evaluate the NH3

reduction effect of the curtain in terms of emission rate. We constructed a metallic cover with a
single hole around the curtain to gather the air discharged through it. The NH3 reduction effect was
calculated by comparing the NH3 emission rate that was monitored in the barn exhaust fan and at
the single hole of metallic cover during the non-spray and spray treatments inside the curtain at the
maximum and minimum operating rate of the barn’s exhaust fan. NH3 emission rates declined both
non-spray and spray at the minimum operation rate of the barn exhaust fan, but the reduction effect
was higher in spray conditions than non-spray. Accumulating NH3-absorbed water inside the curtain
under the low ventilation of the exhaust fan caused these circumstances.

Keywords: ammonia; bio-curtain; metallic cover; swine facility; ventilation rate

1. Introduction

The odor emission from the swine facilities has become a major source of environmen-
tal pollution and social nuisance. Volatile fatty acids (VFAs), phenol compounds, indole
compounds, ammonia (NH3), and volatile sulfur compounds are the primary odorous
substances. Among these, ammonia is the odorous compound remaining in high concentra-
tions [1–3] and has the characteristics of high solubility in water [4,5]. In swine farms, water,
microbial additive, deodorant, etc. spraying on the inside and outside air of the facilities is a
method to control emissions by adsorption and dissolution of NH3 [6,7]. The mist spraying
device is also installed inside Bio-curtain (i.e., curtain) of a light shielding cover. The curtain
is a known technique for reducing odor emission from swine facilities’ surroundings [8].
Compared to other odor-reduction techniques, many swine farmers preferred because of
inexpensive and simple to install [9]. Most of the previous studies on the curtain’s odor
reduction effect evaluated the reduction rate of the NH3 concentration at a specific point
outside the curtain multiple times [8–10]. However, it is challenging to determine the
accurate odor concentration in the released air outside the curtain on the dilution and rapid
dispersion by external winds around the curtain. As the growing awareness emphasizes
the significance of accurate emission measurement, therefore, it is essential to determine,
how to evaluate the effectiveness of any NH3 reduction processes [11–13].

Therefore, to avoid the free release of the air and investigate the emission precisely,
we installed a leak proof metallic cover covering the curtain to reduce the impact of
external wind. Furthermore, a single air outlet hole on the front side of the metallic cover
installed to measure the ventilation rate and odor concentrations discharged from the
curtain in real time. Using this process, we have tried to evaluate the NH3 reduction effect
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of the curtain in the viewpoint of emission rate reflecting ventilation rate rather than the
conventional concentration.

2. Materials and Methods
2.1. Swine Facility and the Curtain

This study was conducted at an experimental confined swine facility with a mechanical
ventilation system in the National Institute of Animal Science of Rural Development
Administration, Wanju-gun, Jeollabuk-do, Republic of Korea. The ventilation system of
the facility consists of a side air inlet through the building corridor and air ventilated
through a 630 mm exhaust fan (model COCO-630A, Dongsung CoCofan. Ltd., Hwaseong-
si, Gyeonggi-do, Republic of Korea) on the side wall (Figure 1). The curtain was constructed
outside of an 8 m × 7 m dimensional animal barn with a concrete slated floor, where a
total of 48 finisher pigs (average body weight 93 kg) were reared during this study period.
The curtain cover was made of two layers of permeable geotextile fabric stretched over a
rectangular-shaped aluminum pipe frame (H: 2.6 m × W: 4.7 m × L: 3.1 m) (Figure 2a). The
distance from the barn’s exhaust fan to the curtain was 1.8 m on the front sides, and the gap
between the curtain and the metallic cover was 0.8 m (Figure 1b). Four spraying nozzles
were installed in the upper front of the inside curtain (Figure 1b). The metallic cover with
a single hole was enclosed around the curtain, and we used silicon glue to seal all gaps.
This single hole was an apparatus made from an exhaust fan frame without a propeller for
leading discharge air in one direction (Figure 2c).
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Figure 1. Schematic diagram of the experimental setup, (a) swine facility: a. curtain set up, b. metallic
cover setup, (b) curtain and metallic cover setup: a. barn wall, b. exhaust fan, c. curtain, d. spraying
nozzles, e. single hole, f. metallic cover, g. floor, “x” markings represent the NH3 sampling point.

2.2. Enclosing Ability of Metallic Cover

To ensure the enclosing metallic cover, we measured the air ventilation rates discharged
through the swine barn exhaust fan and the single hole of the metallic cover, according
to the increased operation rate of the exhaust fan (Figure 2). The airflow measurement
system was designed to meet the standards of the ASHRAE (American Society of Heating,
Refrigerating and Air Conditioning Engineers) and the flow rates were measured with
a micro-manometer (model: DPClaic 5825; TSI Incorporated, MN, USA). The enclosing
ability of the metallic cover was evaluated as the difference in ventilation rate between the
exhaust fan and the single hole.
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discharged through the single hole of metallic cover.

2.3. Ammonia-Reducing Effect of Curtain

A photoacoustic infrared multi-gas monitor (INNOVA 1512) integrated with an IN-
NOVA 1409 (12 ports, LumaSense Technologies, Ballerup, Denmark) multipoint sampler
has been used for instant analysis and measurement for the NH3 concentration. The air
sampling points were at the barn exhaust fan and the single hole of the metallic cover,
respectively. The analyzing conditions are as follows: sample integration 5 s, measurement
50 s, and flushing time 11 s with continuous sampling runs the whole time. Before starting
the experiment, these instruments were calibrated in the lab with the 99.999% N2 and
NH3 standard gas. The NH3-reducing effect of the curtain was evaluated for the two
experimental conditions of non-spray and spray, respectively. Ventilation conditions of
both experiments were set at 100% (maximum, 3727 m3/h) and 30% (minimum, 891 m3/h)
for the operating rate of the barn exhaust fan. The spray conditions were divided into
three treatments based on the pause times (30 min, 10 min, and 5 min), while the spray
time was 10 min. The time scale for each experiment was 24 h. The NH3 reduction was
calculated as the difference in concentrations between the exhaust fan and the single hole.
In addition, HOBO data loggers (UX100-011A, Onset Computer Corporation, Bourne, MA,
USA) automatically log the humidity during the experimental period.
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2.4. Chemical Properties of Sprayed Water

The pH, electrical conductivity (EC), total Kjeldahl nitrogen (TKN), and ammoniacal
nitrogen (NH4

+) were analyzed in tank water (before spraying) and sprayed water (during
spraying). The sprayed water was collected from the floor inside of the curtain using
a plastic tray and the inner surface of the curtain by attaching a wiping medium at the
30% operating rate of the exhaust fan. Because we could not collect the sprayed water at
the higher operating rate of the exhaust fan by the reason as fallow: the water droplets
were quickly removed out of the curtain by the high speed of exhaust fan. The chemical
properties were measured by methods as follows: (1) electrode pH meter (Model 850C,
Schott, Mainz, Germany), (2) EC (ES 04310.1c), (3) TKN (ES 04363.1a, ES 04363.3b), (4) NH4

+

(ES 04355.1c, ES 04363.1a). Detailed information was reported by Hwang et al. [14].

2.5. Data Analysis

Ammonia emission rate or mass flow rate (g/h) was measured in the exhaust fan and
at the single hole during the maximum (100%) and minimum (30%) ventilation, on the
basis of mass balance by using the ammonia concentrations and the air flow rate (m3/h) by
using Equations (1) and (2).

CNH3 (g/h) =
[[

M × (17.03 ÷ 22.4)× [273K ÷ (273K + T)]mg/m3

m3/h

]
Q(m3/h)

]
× 100 (1)

R(%) =
[(

CNH3

IN − CNH3

OUT

)
÷ CNH3

IN

]
× 100 (2)

where, CNH3(g/h) = mass flow rate; M = NH3 concentrations (ppm); 17.03 = the atomic
mass of ammonia; T = temperature (◦C); 22.4 = The volume of 1 mol at 1 atmospheric
pressure at 0 ◦C; Q (m3/h) = mean flow rate; R (%) = Reduction efficiency.

3. Results and Discussion
3.1. Enclosing Ability of Metallic Cover

The NH3 emission calculates on ventilation rate and concentration, and thus the
accurate measurement of the ventilation rate is the essential factor for emission estima-
tion [15,16]. The enclosing ability of the metallic cover is important to evaluate the amount
of air exhausted from the curtain. The ventilation rate from the single hole of the metallic
cover was an average of 3–5% lower than that of the barn exhaust fan according to the
increase in the operating rate of the barn exhaust fan (Figure 3). In the test code for leakage
by the HVAC (Heating, Ventilating, and Air Conditioning) air duct, the allowable leakage
rate is 3–10% ranges for the general ventilation system [17]. Accordingly, the metallic
cover had the enclosing ability to measure an accurate ventilation rate from the curtain
by gathering most of the air. In addition, the ventilation rates gradually increased with a
curve of a straight line (R2 = 0.97) according to the operating rate of the barn exhaust fan
as follows: 3727 m3/h at 100%, 1383 m3/h at 50%, and 891 m3/h at 30% (Figure 3). It is a
result of confirming that the exhaust fan is operating regularly [18,19]. However, during
low ventilation operation the air velocity at the single hole got influenced by the relatively
stronger external wind velocity.

3.2. Ammonia Reduction Effects in Non-Spraying Condition

The NH3 emission rate declined at the single hole of the metal cover compared to the
barn exhaust fan for both minimum (30%) and maximum (100%) ventilation rates, and the
ranges were 6.6 ± 1.1 to 14.6 ± 1.1 g/h and 2.5 ± 0.5 to 4.7 ± 0.5 g/h, respectively. The
reduction effect showed higher in 30% than 100% on average during non-spray treatment
(Figure 4; Figure S1 in the Supplementary Materials). The major causes behind the reduction
effects are two. Firstly, the meshes of curtains could capture dust/gas [10] and reduce
odor in the air discharged from the barn [8,20]. In other hand, the effectiveness of odor
reduction highly relates to the air retention time inside the curtain, which depends on the
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exhaust fan’s speed or ventilation rate [10,21]. In this case, while fan speed noticeably
lowered the discharged air at the minimum operation of the exhaust fan, the NH3 emission
rate also decreased than the maximum operating condition [10,22,23]. The lower airflow
rate allowed the NH3 to stay inside the curtain for a long time and thus reduced the
NH3 emission at the single hole. Also, the amount of discharged air closely relates to
the NH3 emission [24,25] and has a contradictory relationship [26,27]. Although the NH3
concentration inside the barn decreases with the higher operating rate of the barn’s exhaust
fan because of the immediate removal of NH3 by the faster fan speed [28,29], the mass
flow rate (emission rate) increases in the exhaust fan [25]. Therefore, the sensors detected a
higher NH3 emission in the maximum fan operation with a higher air flow rate, but we
found a considerable reduction effect during minimum fan operation because of longer air
retention time and less flow rate.
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Figure 4. The ammonia (NH3) reduction effect in non-spray conditions inside the curtain: (a) the
maximum operating rate of the barn exhaust fan (100%), (b) minimum operating rate of barn exhaust
fan (30%).
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3.3. Ammonia Reduction Effect of Spraying Treatment Inside the Curtain

Swine farms spray water inside the curtains to increase the NH3 reduction effect. The
highly soluble characteristics of NH3 let it get adsorbed by the sprayed water [30,31]. At
the max exhaust fan operation, the NH3 emission rate was slightly lower in the single
hole than in the exhaust fan (Figure 5; Figure S2 in the Supplementary Materials). The
spray treatments displayed a gradual increase in emission reduction efficiencies of 8%, 9%,
and 10% (Figure 6) for S/P (spray time, min./pause time, min.) 10/30, 10/10, and 10/5,
respectively. At this stage, we observed that a large amount of mist got discharged through
the single hole of the metallic cover, and there was no accumulated water inside the curtain
and metal cover. Because of that, the discharged air through the single hole was more
humid in the spray treatments than in the non-spray [32]. The assumption was that, because
of the accelerated operation of the barn exhaust fan, the absorbed NH3 by the sprayed
water quickly evaporated [33] to the outside of the single hole of the metallic cover [28,29].
In addition, the moist air would have affected some similar peak formations in the NH3
emission rate (Figure 5). Our best guess is that the backflow and back pressure caused
by maximum ventilation of the exhaust fan yielded the NH3-enriched moist air [34,35].
Therefore, there was no notable reduction effect of NH3 at the exhaust fan’s maximum
operation [36] while spraying inside the curtain (Figure 5).
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Figure 5. The ammonia (NH3) reduction effect by spraying water inside of the curtain at the maximum
operating rate of the barn exhaust fan (100%), (a) S/P (spray time, min./pause time, min.) 10/30,
(b) 10/10, (c) 10/5.



Atmosphere 2023, 14, 127 7 of 11

Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 11 
 

 

Figure 5. The ammonia (NH3) reduction effect by spraying water inside of the curtain at the 

maximum operating rate of the barn exhaust fan (100%), (a) S/P (spray time, min./pause time, min.) 

10/30, (b) 10/10, (c) 10/5. 

 

Figure 6. The ammonia (NH3) reduction effects (%) of non-spraying and spraying water treatment. 

S/P (spray time, min./pause time, min.) 10/30, S/P 10/10, and S/P 10/5 at the 100% or 30% in operating 

rate of the barn exhaust fan. 

In contrast to the above, during the minimum operation (30%) of the barn exhaust 

fan, the NH3 emission rate at the metallic cover’s single hole was lower in the range of 2.9 

± 0.7 to 6.9 ± 0.5 g/h, 1.7 ± 1.6 to 7.0 ± 1.6 g/h, and 2.5 ± 1.4 to 6.0 ± 1.1 g/h, correspondingly, 

than the exhaust fan for all three spraying treatments (Figure 7; Figure S3 in the 

Supplementary Materials). And the reduction rates of NH3 emission were noticeable and 

higher than the non-spray as follows: non-spray (15%), S/P 10/30 (20%), S/P 10/10 (22%), 

and S/P 10/5 (18%) (Figure 6). Unlike the optimum operation (100%), there was no mist in 

the air discharged from the single hole of the metallic cover, and instead, sprayed water 

accumulated inside the curtain and metal cover. 

  

(a) (b) 

0

5

10

15

20

25

100% 30%

N
H

3
re

d
u

ct
io

n
 e

ff
ec

t 
(%

)

Operating rate of exhaust fan

Non-spray S/P 10/30

S/P 10/10 S/P 10/5

0

4

8

12

16

20

N
H

3
(g

/h
)

Time (h:m)

Single hole

Exhaust fan

0

4

8

12

16

20

N
H

3
(g

/h
)

Time (h:m)

Single hole

Exhaust fan

Figure 6. The ammonia (NH3) reduction effects (%) of non-spraying and spraying water treatment.
S/P (spray time, min./pause time, min.) 10/30, S/P 10/10, and S/P 10/5 at the 100% or 30% in
operating rate of the barn exhaust fan.

In contrast to the above, during the minimum operation (30%) of the barn exhaust
fan, the NH3 emission rate at the metallic cover’s single hole was lower in the range of
2.9 ± 0.7 to 6.9 ± 0.5 g/h, 1.7 ± 1.6 to 7.0 ± 1.6 g/h, and 2.5 ± 1.4 to 6.0 ± 1.1 g/h,
correspondingly, than the exhaust fan for all three spraying treatments (Figure 7; Figure S3
in the Supplementary Materials). And the reduction rates of NH3 emission were noticeable
and higher than the non-spray as follows: non-spray (15%), S/P 10/30 (20%), S/P 10/10
(22%), and S/P 10/5 (18%) (Figure 6). Unlike the optimum operation (100%), there was no
mist in the air discharged from the single hole of the metallic cover, and instead, sprayed
water accumulated inside the curtain and metal cover.

We analyzed sprayed water collected from the surface and inner floor of the curtain.
Ammoniacal nitrogen was only found in the water collected from the curtain-covered area
but not detected in the tank water (Table 1). The water can capture NH3 of 31% to 74% in
the air [37–40], and captured NH3 is transformed into NH4

+ [37,38]. Ammoniacal nitrogen
strongly depends on EC and TKN [41,42], and in this study, they were higher at 91% and
87% on average in collected water from curtains compared to tank water, respectively
(Table 1). A high EC represents the existence and quantity of hydrogen ions, for instance
NH4

+ [40,43], and an increase in nitrogen sources escalates to TKN [44]. Because the
accumulated water absorbed the emitted NH3 inside the curtain, the NH3 emission rates
declined in all spray treatments. And also, the NH3 emission rates showed almost stable
formation between 3.7 ± 0.5 g/h to 4.2 ± 0.8 g/h. However, the S/P 10/5 treatment had the
minimum reduction rate among the spray treatments of minimum fan operation, and we
assumed that the frequent spraying accumulated more water and caused some secondary
emissions [24,45,46]. The NH3 reduction mechanism of the curtain-spray system follows
a similar principle of a wet scrubber where NH3 emission reduction got affected by the
quality of washing water [47–49] in this case, the accumulated water. Installing a water
de-accumulation hole in the metallic cover could solve this situation by discharging the
hoarded water, but the ventilation rate, NH3 concentration, and emission rate would not
be measured precisely because of air leakage [50]. Put together, spraying inside the curtain
reduces NH3 emission by trapping accumulated water inside the curtain.
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minimum operating rate of the barn exhaust fan (30%). (a) S/P (spray time, min./pause time, min.)
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Table 1. Characteristics of sprayed water.

Source pH EC (mS/cm) TKN (mg/L) NH4
+ (mg/L)

Tank 7.3 ± 0.02 99.7 ± 0.6 0.005 ± 0.02 0.0 ± 2.1
Surface of curtain 7.4 ± 0.04 1252.7 ± 0.6 0.026 ± 0.10 47.0 ± 0.7

Floor of the curtain 7.6 ± 0.03 994.7 ± 0.6 0.051 ± 0.02 60.5 ± 2.1
EC, electrical conductivity; TKN, total Kjedahl nitrogen; NH4

+, ammoniacal nitrogen.

4. Conclusions

The metallic cover installed around the curtain made it possible to measure the venti-
lation rates, NH3 concentration, and emission rate in the air discharged through the curtain.
This study shows that the hard metallic exterior could help to evaluate the NH3-reducing
effect of the curtain in terms of emission rate. Ammonia emission rate gets reduced highly
at the minimum operating speed of the barn exhaust fan in both non-spray and spray amid
low air ventilation (with NH3 flow rate) discharged through the curtain. However, the NH3
reduction effect had little difference among treatments and relatively had a higher NH3
emission reduction in spraying conditions as time passed. The reason is that sprayed water
inside the curtain absorbed the emitted NH3 and accumulated inside at the lower ventila-
tion rate, and thus the emission rate got reduced. The evaluation of the NH3 emission rate
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using a metallic cover is countable for dry conditions, but for the spray treatment curtain, it
became challenging to estimate the reduction effect based on NH3 emission or mass flow
rate as time passed. Therefore, this study suggests further investigation of strategies to
evaluate the NH3 reduction effect in terms of odor reduction techniques by using the spray
system. In addition, to assess the NH3 reduction effect of the spraying system inside the
curtain without a metallic cover, additional research is required.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14010127/s1, Figure S1: The changes of NH3 concentration
for (a) 100% and (b) 30% ventilation in non-sprayed treatments. Figure S2: The changes of NH3
concentration by spraying water inside of the curtain at the maximum operating rate of the barn
exhaust fan (100%). Figure S3: The changes of NH3 concentration by spraying water inside of the
curtain at the maximum operating rate of the barn exhaust fan (30%).
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