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Abstract: The urban thermal environment is affected by multiple urban form and natural environment
factors; research on the accurate prediction of the urban thermal environment, considering the
interaction among different urban environmental factors, is still lacking. The development of a
machine learning model provides a good means of solving complex problems. This study aims to
clarify the relationship between urban environmental variables and the urban thermal environment
through high-precision machine learning models as well as provide scenarios of future urban thermal
environment developments. We defined an urban thermal environment index (UTEI), considering
twelve urban form and natural indicators sourced from the remote sensing data of 150 cities in the
Jing-Jin-Ji region from 2000 to 2015. We achieved accurate predictions of UTEI through training a
gradient-boosted regression trees model. By unpacking the model, we found that the contribution
rate of elevation (ELEV) was the highest. Among all the urban form indicators, the elongation index
(ELONG), urban population (POP), nighttime light intensity (NLI), urban area size (AREA), and
urban shape index (SHAPE) also had high contributions. We set up five scenarios to simulate the
possible impact of different urban form factors on the overall urban thermal environment quality in
the region. Under extremely deteriorated patterns that do not control urban expansion and vegetation
reduction, the average UTEI could be as high as 0.55–0.76 ◦C in summer and 0.24–0.29 ◦C in winter,
yet in the extremely optimized situation, UTEI decreased by 0.69 ◦C in summer and 0.56 ◦C in winter.
Results showed that better urban form improves the quality of urban environments and can provide
important insights for urban planners to mitigate urban heat island problems.

Keywords: urban thermal environment; machine learning; urban form; feature importance; scenario
prediction

1. Introduction

Cities are growing at an alarming rate. As the United Nations predicts, nearly 66% of
the world’s population will live in cities by 2050 [1]. Therefore, the improvement of urban
thermal environment quality, which has an important impact on human health and energy
consumption, is more and more significant in order to promote sustainable development
and improve human health and well-being [2,3]. The changes in surface heat flux, moisture
flux, and air circulation caused by thermal environment change have a negative impact
on water resources, air quality, and human health [2,4,5]. How to effectively evaluate the
negative impact of urban development on the thermal environment in the current century
has become a key issue on the recent global agenda, according to The 2030 Agenda for
Sustainable Development [6] and The New Urban Agenda [7].

The deterioration of the urban thermal environment, which is often measured by
the magnitude of the urban heat island effect and the rise of land surface temperature, is
affected by complicated urbanization processes and natural environment factors [8–13]. In
recent years, more and more studies have shown that urban form and natural factors have
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multi-path effects on urban thermal environment quality, and their relationship has been
proved to be nonlinear in previous studies [14]. For example, some studies have shown
that the effect of city size on the intensity of the urban heat island effect shows a marginal
decreasing effect [15,16]. Urban layout and population density have a strong interaction
with urban air pollution or other environmental problems [17], and their contributions
to the urban thermal environment might demonstrate unique change patterns along the
urban development gradient [14].

Although some scholars have done research in the related field, some have only
focused on a few indicators that influence the urban thermal environment, and they lack
consideration of other dimensions of urban environmental factors [18,19]. Otherwise,
many studies have adopted the ordinary least squares (OLS) model and other traditional
regression models that cannot accurately detect the nonlinear influence of urban form on
the thermal environment and the complex relationship between urban form and natural
factors [20–22].

Recently, machine learning models have been successfully applied for scenario predic-
tion and pattern recognition in various real-world situations [23–26] since they are useful in
identifying the underlying relationship between different sources of data [27,28]. Antonio
et al. [29] found that the modeling of environmental noise in urban environments was a
nonlinear problem and proved that machine learning regression methods widely outper-
formed multiple linear regression models. There are also other cases of using machine
learning models to solve urban environmental problems. Alavipanah et al. [30] used a
boosted regression tree (BRT) to explore the influence of 2D and 3D building indicators and
vegetation coverage on the thermal environment. Zhang et al. [31] predicted future changes
in land use/land cover and land surface temperature based on an artificial neural network
(ANN) model. Sun et al. [32] found that urban density exhibited significant positive effects
on LST in Ningbo city based on random forest regression (RF). Machine learning models
can better deal with identifying the complex relationship between urban natural and social
environmental elements and can help to accurately predict the changes in the urban thermal
environment under different urban development scenarios. Nonetheless, using a machine
learning model to explore the influencing factors of the urban thermal environment is still
in the early stages and comparatively lacking.

To fill the gaps, the objective of this study is to analyze the multivariate correlation
between urban indicators and the urban thermal environment through a high-precision
prediction model and simulate the possible development changes under typical urbaniza-
tion scenarios. We used urban form indicators (UFIs), including urban area size (AREA),
nighttime light intensity (NLI), urban population (POP), the urban shape index (SHAPE),
the elongation index (ELONG), the urban aggregation index (AI), and urban vegetation
cover (UVC), combining natural factors such as urban altitude (ELEV), wind speed (WIN),
air relative humidity (RHU), precipitation (PREC), and solar radiation intensity (RADI)
in the Jing-Jin-Ji region from 2000 to 2015. Six linear regression and nonlinear machine
learning models were constructed for model comparison. We finally verified the optimal
prediction performance of a gradient-boosted regression trees model and calculated the
relative importance of each factor. According to historical trends, we built five scenarios
and simulated the possible impact of different urban form indicators on the overall urban
thermal environment in the region by calculating the PDF value. The innovation of this
study is to provide deeper insights on how to alleviate the UHI effect and improve the
urban thermal environment by optimizing the local urban form.

2. Materials
2.1. Study Area

The study area is located in north China and is commonly known as the Jing-Jin-Ji
region (Figure 1). It covers an area of 218,000 km2 and is one of the fastest developing
urban agglomerations in China. During the study period of 2000 to 2015, the Jing-Jin-Ji
region experienced rapid population growth and urbanization processes, causing severe
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environmental deterioration and urban thermal environment problems [33]. The region
mainly belongs to the temperate monsoon climate zone [34]; most areas have four distinct
seasons, which are characterized by hot and rainy summers, dry and rainy springs, sunny
autumns with sand storms, and cold winters. The region is comprised of a large number of
cities, and we extracted 150 urban patches based on land use products in 2015.
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perature (LST). LST has the advantage of being spatially explicit, while the commonly 
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tween each city region [35]. Therefore, we used remotely sensed land surface temperature 
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product provides an average 8-day per-pixel LST, so we calculated monthly and yearly 
UTEI using Equation 1 for the years 2000, 2005, 2010, and 2015: 𝑈𝑇𝐸𝐼 = (∑ ∑ (𝑥௠,௡)௡௝ୀଵ௠௜ୀଵ 𝑚 ൈ 𝑛 ) (1)

where xm,n stands for a single pixel value in the LST grid, and m×n calculates the number 
of pixels in the region. The mean LSTs for both summer and winter were summarized by 
overlaying the regulatory observation grid unit layers and are specified as the dependent 
variables for further analysis. 

2.2.2. Natural Indicators 

Figure 1. Geographical location of the research area and the scale of the cities.

2.2. Data Source
2.2.1. Urban Thermal Environment Index

We defined the urban thermal environment index (UTEI) to characterize the thermal
environment of the study area. It was calculated by the average of the land surface temper-
ature (LST). LST has the advantage of being spatially explicit, while the commonly used
meteorological station data cannot accurately reflect the temperature difference between
each city region [35]. Therefore, we used remotely sensed land surface temperature data
from the MOD11A2 dataset (http://www.gscloud.cn, accessed on 15 March 2019) with
1 km resolution as the source of land surface temperature. The MOD11A2 Version 6 product
provides an average 8-day per-pixel LST, so we calculated monthly and yearly UTEI using
Equation (1) for the years 2000, 2005, 2010, and 2015:

UTEI = (
∑m

i=1 ∑n
j=1(xm,n)

m× n
) (1)

where xm,n stands for a single pixel value in the LST grid, and m × n calculates the number
of pixels in the region. The mean LSTs for both summer and winter were summarized by
overlaying the regulatory observation grid unit layers and are specified as the dependent
variables for further analysis.

2.2.2. Natural Indicators

We selected five commonly used natural indicators [14], including elevation (ELEV),
the precipitation rate (PRE), solar radiation (RADI), air relative humidity (RHU), and wind
speed (WIN). Illustration of the indicators’ major impact pathways on UTEI is represented
in Figure 2, and the physical definitions of these natural indicators are listed in Table 1.
In order to achieve better spatiotemporal resolution and accuracy to reflect the urban
natural environment, we also used remotely sensed land surface data as data sources. The

http://www.gscloud.cn
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elevation (ELEV) data were retrieved from the Shuttle Radar Topography Mission (SRTM;
30 m resolution) (https://earthdata.nasa.gov/, accessed on 30 March 2019). Wind speed
(WIN), the precipitation rate (PRE), air relative humidity (RHU), and solar radiation (RADI)
were sourced from the China Meteorological Forcing Dataset (CMFD) [36]. The CMFD is a
high spatial–temporal resolution gridded near-surface meteorological dataset developed
specifically for studies of land surface processes in China, with a temporal resolution of
three hours and a spatial resolution of 0.1◦.
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island effect.

Table 1. Natural indicators used.

Variables Variable Name Unit Physical Meaning

Altitude ELEV Average height above the sea area.
Wind speed WIN m*s−1 Instantaneous near-surface (10 m) wind speed.
Precipitation

rate PRE mm*hr−1 3-hourly mean (from −3.0 hr to 0.0 hr)
precipitation rate.

Air relative
humidity RHU kg*kg−1 Instantaneous near-surface (2 m) air specific

humidity.

Solar radiation RADI W*m−2 3-hourly mean (from −1.5 hr to +1.5 hr) surface
downward shortwave radiation.

2.2.3. Urban Form Indicators

Urban form is a multi-dimensional concept containing urban structures and geometric
forms as well as urban development factors. We used three widely applied landscape
indexes to represent the urban geometric form, including the urban shape index (SHAPE),
the urban aggregation index (AI), and the elongation index (ELONG). These indicators
were calculated in fragstats 4.2, and the calculation methods are shown in Table 2.

We used night light data to represent the level of urban development. The nighttime
light intensity (NLI) was from the Defense Meteorological Satellite Program Operational
Linescan System (DMSP-OLS), with an approximately 1 km resolution. We used the ridge
line method to correct the nighttime light data time series to obtain consistent time series

https://earthdata.nasa.gov/
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data and then obtained the final urban nighttime night index (NLI) [37]. Due to the lack of
night light data in 2015, we used the data from 2013 instead. Urban area (AREA) indicates
urban size and was obtained from the remote sensing monitoring data of land use status
in China. It was downloaded from the Resource and Environment Data Cloud Platform
(http://www.resdc.cn/DataList.aspx, accessed on 1 May 2020), with 30 m resolution.
Urban population density was used to measure urban density, which was obtained from
the Center for International Earth Science Information Network at Columbia University
(http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev10, accessed
on 12 March 2020), with a resolution of 1 km. The population density data and area
data were log-transformed to make their distributions more normal and to increase the
predictive ability of some linear models for comparison [38]. We also achieved the monthly
normalized differential vegetation index (NDVI) from MODIS datasets (MOD13Q1) of July
and December, with 250 m spatial resolution to represent urban vegetation cover (UVC).

Table 2. Computational method and description of geometric urban form indicators.

Name Parameter Description

Shape Index
(SHAPE) SHAPE =

(
0.25Pij√aij

) p
ij = perimeter (m) of patch ij.

a = area (m) of patch ij.

SHAPE = 1 when the patch is
square and increases without

limit as the patch shape
becomes more irregular.

Aggregation Index
(AI) AI =

[
gii

max→gii

]
(100)

gii = number of like adjacencies (joins)
between pixels of patch type (class) i based

on the single-count method.
max-> gii = maximum number of like

adjacencies (joins) between pixels of patch
type (class) i (see below) based on the

single-count method.

AI increases as the focal patch
type is increasingly

aggregated and equals 100
when the patch type is

maximally aggregated into a
single, compact patch.

Elongation
(ELONG) ELONG = 1−

[
aij
as

ij

] aij = area (m2) of grid ij.
as

ij = area (m2) of smallest circumscribing
ELONG around grid ij.

ELONG = 0 for circular
patches and approaches 1 for
elongated, linear patches one

cell wide.

3. Methods

Based on the natural and urban form indicators obtained in Part 2.2, our research
methods are mainly divided into three steps. The first step is to screen and establish the
optimal prediction model. In this process, we divided the sample dataset set into a training
set, a validation set, and a test set for supervised training and improved the generalization
performance of the model by regularization methods. Then, we obtained the best model
by comparing the results of cross-validation. The second step is to analyze the relative
importance of urban form and natural indicators based on our interpretable machine
learning model. The third step is to simulate the possible impacts of urban form changes
in the next fifteen years by setting up different scenarios through the statistical data of
historical changes. An overview of all processes is shown in Figure 3.

http://www.resdc.cn/DataList.aspx
http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev10
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3.1. Linear Regression Models

Linear regression is the simplest and most widely used statistical technique for pre-
dictive modeling. We implemented three widely used linear regression models: the lasso
regression model, the Bayesian ridge regression model, and the elastic net regression model.
The lasso regression model is a regression analysis method that performs both variable
selection and regularization in order to enhance the prediction accuracy and interpretability
of the statistical model it produces [39]. The Bayesian regression model is an approach to
linear regression in which statistical analysis is undertaken within the context of Bayesian
inference [40]. When the regression model has errors that have a normal distribution, and
if a particular form of the prior distribution is assumed, explicit results are available for the
posterior probability distributions of the model’s parameters. The elastic net regression
model is a regularized regression method that linearly combines both penalties L1 and
L2 of the lasso and ridge regression methods [41]. It is useful when there are multiple
correlated features.

3.2. Nonlinear Regression Models

We also used three nonlinear models for supervised training: the random forests (RF)
model, the Adaboost model, and gradient-boosted regression trees (GBRT) model.

The random forest regression model is an ensemble learning method for classification,
regression, and other tasks that operate by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the classes (classification) or
the mean prediction (regression) of the individual trees [42–44]. In prediction tasks, each
decision tree is constructed using the best split for each node among a subset of predictors
randomly chosen at that node. In the end, a simple majority vote is taken for the prediction.

Adaboost (short for adaptive boosting) is a popular boosting algorithm introduced
to fit a sequence of weak learners on repeatedly modified versions of the data [45]. It is
sensitive to noisy data and outliers. In some problems, it can be less susceptible to the
overfitting problem than other learning algorithms.

The gradient-boosted regression trees (GBRT) model is a generalization of boosting to
arbitrary differentiable loss functions and is an accurate and effective off-the-shelf procedure
that can be used for regression problems. This model has been used in a variety of areas,
with advantages that include the ability to find nonlinear transformations, the ability to
handle skewed variables without requiring transformations, computational robustness,
and high scalability [23,46,47]. This method progressively fits the base learner to the current
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pseudo-residual by the least squares method in every iteration. Initially, the average Y
value is used as an assumption for predicting all of the observations, which is similar to
fitting a linear regression model.

We first adopted a grid search for two parameters (number of estimators and max-
leaf nodes) to make the GBRT model have the least mean square error. Then, in order
to effectively overcome the overfitting problem of the model, we adopted two regular-
ization methods, shrinkage and subsampling. The shrinkage strategy was proposed by
Friedman to introduce the learning rate to scale the step length of the gradient descent
procedure [48]. Empirical evidence suggests that small values of the learning rate favor
better test errors [49]. The subsampling strategy allowed us to combine gradient boosting
with bootstrap averaging (bagging). For each iteration, the base classifier was trained
on the basis of a fraction subsample of the available training data. Root mean squared
error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and explained
variance (EV) were used to evaluate and compare the nonlinear regression models.

3.3. Calculation Method of Feature Importance

We further calculated the contribution of each feature to the prediction results based
on the trained GBTR model. In the model, since the decrease in impurity from splitting
them to create a normalized estimate of the predictive power of that feature was combined
with the fraction of samples a feature contributes to, we calculated the contribution of each
variable to the reduction of impurity, and the common contribution of several variables
could be obtained in the scikit-learn framework. The equation is given as:

Imp
(
Xj
)
=

1
M ∑M

m=1 ∑t∈ϕm
1(jt = j)[p(t)∆i(st, t)] (2)

where p(t) is the proportion of samples reaching t and where jt denotes the identifier of the
variable used for splitting node t. Here, we used the Gini index as the impurity function,
which is known as the Gini importance [50].

3.4. Set-Up of Simulation Scenarios

We adopted a method to determine scenario settings by statistical analysis of historical
changes, which is widely used in spatial–temporal predictive simulation [51]. We built
five scenarios of UFI projection to 2030 based on the UFI in 2015 and the historical urban
UFI change from 2000 to 2015. We first calculated the UTEI change every five years using
the dataset of the 150 cities and fit the probability density function (PDF) of the five-
year changes. Then, we counted the data distribution of five-year changes in all urban
morphological indicators, including AREA, NLI, POP, NDVI, SHAPE, AI, and ELONG.
These UFIs can reflect the changes in urban characteristics brought about by urbanization,
and they are also aspects of urban planning that need to be focused on. We defined the
indicators that increase the intensity of the heat island effect as positive indicators and
defined other indicators as negative indicators.

From the PDF of each UFI change, we drew the extremely low (10%), low (25%),
medium (50%), high (75%), and extremely high (90%) annual UFI change. We defined
90% of the change in positive indicators and 10% of the change in negative indicators
as extreme deterioration scenarios (EDs). In this changing situation, this means that the
urban form in the next five years will advance in a direction that is not conducive to
the improvement of thermal environment quality. Similarly, we took the first 75% of the
change of positive indicators and the first 25% of the change of negative indicators as sub-
deterioration scenarios (SDs), 50% of the change of positive indicators and 50% of the change
of negative indicators as keeping the existing trend scenarios (KTs), 25% of the change of
positive indicators and 75% of the change of negative indicators as slight optimization
scenarios (SOs), and 10% of the change of positive indicators and 90% of the change of
negative indicators as an extreme optimization scenario (EO). Note that the optimization
and deterioration we mentioned here are only for the urban thermal environment.
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4. Results and Discussions
4.1. Model Comparison and Evaluation Results

Optimization of the GBRT model parameters was obtained by grid searching; the
number of estimators was best set to 944, while max depth was best set to 40 (the result
is shown in Figure 4a). The effect of regularization strategies to prevent overfitting in the
test dataset is shown in Figure 4b. As depicted, when shrinkage was not used, the yellow
curve decreased the fastest, which indicated that better deviation can be achieved in fewer
iterations, but with the increase of iterations, the deviation will increase to an extent. By
contrast, the best result was that only shrinkage was used, of which the deviation of the test
set was significantly lower than that of other methods. Therefore, in the final prediction
model, we set the learning rate of the model to 0.1.
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All six models were firstly trained with default parameter data, and the results of the
five-fold cross-validation are shown in Table 3, including the resultant R2, EV, MAE, and
RMSE for the validating and testing processes. All the urban form indicators and natural
indicators were considered in the model estimation process.

All the nonlinear regression models had higher R2 and lower RMSE values than the
three linear regression models in both summer and winter. Regarding the values of RMSE,
all the models had slightly higher performances in winter than in summer, which seemed
to relate to the much larger dynamic range of summer UTEI than winter UTEI [32].

The GBRT model explained 89% (RMSE = 0.77 ◦C, MAE = 0.61) of the UTEI in summer
and captured 89% (RMSE = 1.11 ◦C, MAE = 0.83) of the UTEI in winter. Among all the
six models, the prediction performance of GBRT was the most stable in both summer and
winter. However, the results of other methods in cross-validation results were not so good,
with the R2 being low or fluctuating sharply.

Table 3. Predictive performance of the models on summer and winter datasets.

Summer Winter

Model EV MAE RMSE R2 EV MAE RMSE R2

Lasso 0.74 0.92 1.18 0.73 0.77 1.23 1.61 0.77
Bayesian Ridge 0.81 0.83 1.02 0.8 0.77 1.25 1.61 0.77

Elastic Net 0.76 0.89 1.14 0.75 0.74 1.3 1.71 0.74
AdaBoost 0.82 0.78 0.98 0.82 0.87 0.95 1.24 0.87

Random Forest 0.82 0.71 0.97 0.82 0.85 0.92 1.33 0.85
Gradient Boosting 0.89 0.61 0.77 0.89 0.89 0.83 1.11 0.89

4.2. Relative Importance of Urban Form and Natural Factors

The contribution of all factors to predictive ability was obtained by factor importance
analysis, as shown in Figure 5. The results showed that the order of contribution of all
factors was similar in summer and winter, only slightly different. The contribution rate of
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ELEV was the highest in both seasons (about 21% in both summer and winter). Relative
humidity and solar radiation also had high contribution rates (about 10%). In addition to
natural factors, urban form factors also played an important role. Among them, POP and
ELONG had the highest contribution rates; their contribution rates reached 7–10%. The
contribution ratio of other UFIs was about one order of magnitude with climate factors,
mostly within 10%. Among them, AI, SHAPE, and AREA contributed less but also reached
3–6%, which was close to that of UVC. Furthermore, by comparing the contribution rates
of each season in a year, we found that natural factors contributed more in summer while
urban form factors contributed more in winter.
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Figure 5. Contribution of all factors to the UTEI in summer and winter.

4.3. Scenario Simulation Results

Based on previous studies [15,19,52,53], we took AREA, NLI, POP, SHAPE, and AI
as positive indicators because their increases played enhanced roles in the UTEI. We used
UVC and ELONG as negative indicators. According to our scenario setting method, we
noted the change of each indicator over the course of fifteen years in the future under each
scenario (Table 4). Taking 2015 as the baseline, we further calculated the presumptive value
of each urban form index in 2030. In all scenarios, we set the value of urban form factors
beyond the reasonable range of the urban form index as the critical value. Based on the
estimation results of urban form changes under five scenarios, we forecasted the changes of
UTEI in 2030 under five scenarios, as shown in Figure 6 (specific data in Table 4 is available
in Table A1 in Appendix A).

Table 4. Setting of urban form indicators’ change from 2015 to 2030 under five scenarios.

EO SO KT SD ED

AREA 0.00 +0.07 +0.20 +0.38 +0.58
NLI −11.26 −3.78 +7.42 +7.42 +30.12
POP +0.04 +0.07 +0.07 +0.09 +0.13
UVC +0.11 +0.07 +0.03 −0.01 −0.05

SHAPE −1.08 −0.37 +0.06 +0.97 +1.94
AI −1.48 −0.67 +0.10 +0.56 +1.52

ELONG +0.19 +0.06 −0.01 −0.06 −0.14
EO, extremely optimized situation; SO, slightly optimized; KT, keeping the trend; SD, slightly deteriorated; ED,
extremely deteriorated.
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The results show that under the KT scenario, the average UTEI of Jing-Jin-Ji cities
will continue to increase. The average summer and winter UTEIs increase to 0.43 and
0.06 ◦C, respectively, by 2030. This means that if the government does not take measures
to restrain the development of the UTEI, the problem of the urban thermal environment
will become more and more serious in the future, especially in summer, when the heat
pressure is higher. Under the two scenarios of optimizing the urban form, the average
level of UTEI will decrease. In the SO scenario, the UTEI declined slightly, ranging from
0.05 to 0.13 ◦C, while in the EO scenario, the heat island effect was significantly alleviated,
with decreases in the UTEI reaching 0.69 ◦C in summer and 0.56 ◦C in winter, respectively.
In deteriorating situations, the UTEI enhancements were very significant, especially in
summer. The average UTEI enhancements were as high as 0.55–0.76 ◦C in summer. In
winter, the average level of the UTEI rose relatively little, but it also reached 0.24–0.29 ◦C.
Our findings indicate that the UTEI will not be aggravated only under the SO and EO
scenarios. Nevertheless, in order to improve the thermal environment of the city, it is better
to develop the EO scenario.

Specifically, in the context of rapid urban development, compared with natural fac-
tors, it is more operable and meaningful to optimize urban form factors to alleviate urban
thermal environment problems. At present, many studies have proved that urban form
is an effective tool to alleviate the negative impact of urbanization on the thermal envi-
ronment [54–57]. In spite of this, as the changes in urban structures are varied in cities
and regions, the effectiveness of urban forms in mitigating heat-related risks also varies.
Therefore, city managers need to combine regional characteristics, establish links between
the thermal environment and various social and natural factors, clarify the direction and
intensity of each factor’s effect on the thermal environment, and exercise targeted macro-
control on urban building expansion directions and surface vegetation coverage in the
process of urban planning. Attention should be paid to changes in urban expansion trends,
urban vegetation cover, and other natural–human factors that would influence the UTEI
in the process of urban development. Changes that are conducive to alleviating the UTEI
problem should be encouraged, and trends that promote the UTEI problem should be
adjusted and improved.

5. Conclusions and Limitations

This study explores the influences of urban form and natural indicators on the urban
thermal environment in the Jing-Jin-Ji urban agglomeration. Through the comparison of six
linear and nonlinear models, we selected the best prediction model and calculated relative
feature importance. We also simulated the possible urban variables and urban thermal
environment changes under typical urbanization scenarios.

Results showed that nonlinear models (Adaboost, RF, and GBRT) performed better
in predicting the UTEI than linear models (Lasso, BN, and BR models), among which the
GBRT model had the highest prediction accuracy (the value of its ten-fold cross-validation
reached 0.89). Feature relative importance results showed that natural factors and urban
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form factors had certain influence on the UTEI. Relative humidity and solar radiation have
high contribution rates (about 10%). ELONG, POP, NLI, AREA, and SHAPE have high
contributions to the generation of the UTEI among all the urban form indicators. We also
confirmed the seasonal differences in the contribution of the urban environmental factors to
the UTEI. Natural factors contribute more in summer, while urban form factors contribute
more in winter.

The five scenarios’ analyses showed that under the extremely deteriorated patterns,
the average UTEI could be as high as 0.55–0.76 ◦C in summer and 0.24–0.29 ◦C in winter. On
the other hand, in an extremely optimized situation, UTEI decreased by 0.69 ◦C in summer
and 0.56 ◦C in winter. Overall, it indicated that cities need to develop under the two
optimization scenarios in order to improve the urban thermal environment. City managers
should pay more attention to changes in urban expansion trends, urban vegetation cover,
and other natural–human factors that would influence the UTEI in the process of urban
development. Changes that are conducive to alleviating the UTEI problem should be
encouraged, and trends that promote the UTEI problem should be adjusted and improved.
The research results also have important reference significance for future macro planning
at the urban scale. Our research has successfully built high-precision machine learning
models to clarify the influencing factors of the UTEI and set scenarios for future urban
environment development. As there is a growing need for practical solutions to decreasing
the urban thermal environment in the process of urbanization, it is a good attempt to apply
machine learning models to solve the problem.

Several limitations of this paper can be summarized as follows: Firstly, this paper
mainly studied the cities of the Jing-Jin-Ji region in China, most of which are small- and
medium-sized cities. For bigger cities, the forecasting effect needs further confirmation.
Secondly, the factors of the urban form we used are still limited. It is difficult to obtain
more information on urban forms on an urban scale for a large number of cities. However,
the multi-center structure of a city, the three-dimensional characteristics of a city, and so on,
can provide more information about the city’s social and economic activities and physical
characteristics, which can be used as the direction of future research. Thirdly, this study
considered the interaction between urban form factors and selected natural factors but did
not elaborate on the mediating or moderating effects of the urban form and how much the
mediating or moderating effects account for the change of the UTEI. We will further explore
it in the future. Another limitation of this study was that some of our scenario settings
may be difficult to achieve for all cities. In the future, the scenario setting method based
on historical change statistics and expert experience could be combined with our model to
explore the potential impact of urban form change on urban thermal environments.
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Appendix A

Table A1. UTEI data distribution statistics of all cities in 2030 under five simulated scenarios.

EO_2030 SO_2030 KT_2030 SD_2030 ED_2030

Summer

mean −0.69 −0.13 0.43 0.55 0.76
25% −0.22 0.16 0.67 0.82 1.11
50% −0.56 −0.05 0.55 0.64 0.84
75% −1.22 −0.64 0.13 0.21 0.4

Winter

mean −0.56 −0.05 0.06 0.24 0.29
25% −0.37 0.2 0.28 0.46 0.56
50% −0.55 0.07 0.26 0.42 0.47
75% −0.57 −0.1 0.12 0.28 0.36

EO, extremely optimized situation; SO, slightly optimized; KT, keeping the trend; SD, slightly deteriorated; ED,
extremely deteriorated.
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