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Abstract: A forecast from a numerical weather prediction (NWP) model can be decomposed into 

model climate and anomaly. Each part contributes to forecast error. To avoid errors from model 

climate, an anomaly, rather than a full field, should be used in a model. Model climate is replaced 

by the observed climate to reconstruct a new forecast for application. Using a Lorenz model, which 

has similar error characteristics to an NWP model, the following results were obtained. (a) The new 

anomaly-based method can significantly and steadily increase forecast accuracy throughout the en-

tire forecast period (28 model days). On average, the total forecast error was reduced ~25%, and the 

correlation was increased by ~100–200%. The correlation improvement increases with the increasing 

of forecast length. (b) The method has different impacts on different types of error. Bias error was 

almost eliminated (over 90% in reduction). However, the change in flow-dependent error was 

mixed: a slight reduction (~5%) for model day 1–14 forecasts and increase (~15%) for model day 15–

28 forecasts on average. The larger anomaly forecast error leads to the worsening of flow-dependent 

error. (c) Bias error stems mainly from model climate prediction, while flow-dependent error is 

largely associated with anomaly forecast. The method works more effectively for a forecast that has 

larger bias and smaller flow-dependent error. (d) A more accurate anomaly forecast needs to be 

constructed relative to model climate rather than observed climate by taking advantage of cancel-

ling model systematic error (i.e., perfect-model assumption). In principle, this approach can be ap-

plicable to any model-based prediction. 

Keywords: model climate; observed climate; anomaly forecast; bias; flow-dependent error; Lorenz 

model 

 

1. Introduction 

A numerical weather prediction (NWP) model approximates a real atmospheric or 

earth system. However, due to model’s deficiency in both physics and initial conditions 

(also lateral boundary conditions for limited-area models), the NWP model (or climate 

model) forecasts always contain errors, and often big errors, such as model drift (Sen 

Gupta et al., 2013 [1]). These forecast errors can be categorized into two types: systematic 

(bias) and flow-dependent errors. A systematic error is obvious in both weather (Wang et 

al., 2018 [2]) and climate (Yin et al., 2013 [3]) models. If this model drift (i.e., model climate) 

is away from true climate, it can be eliminated from a model forecast, and NWP products 

might be dramatically improved in quality. Because observed climate can be approxi-

mately derived from reanalysis data (e.g., Kalnay et al., 1996 [4]) and is known, it does not 

need to be predicted by a model (Qian et al., 2021 [5]). Therefore, it is technically possible 

to achieve this goal by predicting or providing the anomaly only, instead of a full field. 
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There might be two different approaches to tackle this issue. One is to directly deal 

with it within NWP model integration by eliminating climatic background terms and nu-

merically solving anomaly-based governing equations (Huang et al., 2015 [6]; Qian and 

Du 2022 [7]). Although this direct model approach showed some promising results with 

simple dynamical models (e.g., tropical cyclone track forecasts by Huang et al., 2015 [6]), 

no anomaly-based, state-of-the-art NWP model has been developed yet. Anomaly forms 

of atmospheric governing equations have recently been derived by Qian and Du (2022) 

[7] and provide a basis for developing such a new type of NWP model. However, it will 

take time and effort to build a mature NWP model based on those anomaly equations. 

Especially, it will be a challenge to deal with climate–anomaly interaction terms in a de-

composed model. As a work-around to solve this problem, the second approach is to deal 

with it in the model’s post-processing (Figure 1), as proposed by this study. To our 

knowledge, there was no explicit anomaly-based post-processing method yet. The statis-

tical post-processing using reforecasts might be an effort in this direction (Hamill et al., 

2006 [8]). 

 

Figure 1. A schematic diagram of the two methods: (a) model directly provides full-field forecasts, 

and (b) model provides anomaly only and full-field forecasts that are constructed post-processing. 

Our approach is to decompose a raw, full field NWP forecast ������� into “model 

climate” ������������ and “anomaly forecast” ����������� components, as in Equation 

(1a). Then, the model climate is replaced by known observed climate ��������������� to 

reconstruct a new full field forecast ������� before it is applied to a real-world applica-

tion as in Equation (1b). This method is denoted as the anomaly approach, or anomaly-

based method, in this paper and described in Figure 1b, as well as Equation (1b). 

����������� = ������� − ������������ (1a)

������� = (������� − ������������) + ��������������� (1b)

In other words, a model does not directly provide full field forecasts, but anomaly 

forecasts, instead for an application. Final full field forecasts to be used by forecasters and 

users can be obtained by adding observed climatic states back to model-predicted anom-

alies in a post processing step. In this study, we will investigate the second approach (i.e., 

post-processing approach) from a proof-of-concept point of view to demonstrate the po-

tential of this new method and investigate how and why it works and its possible caveats 

as well. Since it is not easy to have both observed climate and model climate in a real-

world NWP environment, a three-variable nonlinear chaotic Lorenz model (Lorenz 1984 

[9] and 1990 [10]; and Pielke and Zeng 1994 [11]) will be employed for testing the concept. 

The flexibility of a simple model will enable us to thoroughly demonstrate the advantages 

of this new anomaly approach (Figure 1b and Equation (1b)), compared to the current raw 

full-field approach (Figure 1a). By the way, the purpose of this study is not to introduce 
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another bias correction method, but a new idea to extract useful information from model 

outputs. So, comparing this method with existing bias correction methods is out of the 

scope of the study, although a subjective discussion of the advantages of this method com-

paring to the existing bias correction approaches will be provided at the end of this article 

for reader’s reference. Rather, this study serves as a guidance for future more practical 

works in real world operation and stimulates more explorations of this new direction in 

meteorological community. 

This article will be organized as follows. The Lorenz model and experiment design 

are introduced in Section 2. Results, including the model assessment (predictability and 

error characteristics), forecast improvement, and underlying mechanism, are presented in 

Section 3, followed by a summary and discussion in Section 4. 

2. Lorenz Model (Lorenz-84) and Experiment Design 

2.1. Basic Model 

The three-variable (X, Y, and Z) nonlinear Lorenz model (Lorenz 1984 [9] and 1990 

[10]) was used to perform this experiment: 

��

��
= −�� − �� − �� + �� (2)

��

��
= �� − ��� − � + � (3)

��

��
= ��� + �� − � (4)

This is a simple version of general circulation model in effective of synoptic scale. In 

the model, X represents the strength of large-scale zonal wind, poleward temperature, or 

thickness gradient (thermal wind relationship). Y and Z are the strengths of cosine and 

sine phases of superposed waves (disturbances) and represent the strength of meridional 

wind (northerly and southerly). The square of Y and Z represents the rate of poleward 

heat transportation by eddies or the energy cascade from eddy to zonal flow. The cross-

product of XY and XZ is the growth of waves through energy transfer from zonal flow to 

waves (flow-wave interaction). The terms bXY and bXZ are the displacement of eddies by 

mean zonal flow. The parameters a, b, F, and G can be viewed as model physics, where a 

and b are drag damping, and F and G are symmetric and asymmetric thermal forcing. 

Therefore, Equation (2) tells us that the zonal wind X changes (accelerates or decelerates) 

by energy transfers from eddies to zonal flow, drag or friction (aX), and thermal forcing 

(aF). Equation (3) tells us that the cosine wave changes by energy transfer from zonal flow 

to eddies, as well as the displacement of sine waves by mean zonal flow, drag, and thermal 

forcing. Equation (4) tells us that sine wave changes by energy transfer from zonal flow to 

eddies, as well as the displacement of cosine waves by mean zonal flow and drag. 

Lorenz compared the property of his model with the atmospheric models. For exam-

ple, he (Lorenz 1990 [10]) pointed out that, although the time derivative of the volume 
(�� + �� + ��) is not always negative (i.e., the volume will not shrink to zero), which con-

trasts with many fully dissipative atmospheric models, it assures that the volume will not 

go to infinity. As a matter of fact, Lorenz (1984) [9] showed that the model is a bounded, 

energy-conserving dynamical system, in which the total energy �
��������

�
� will decrease 

if it exceeds a certain value. This is also seen in our experiment. For example, in our 30 

years (30 × 365 = 10,950 days) of the model run (Section 2.2), X varies from −2.5 to 5, with 

an average around 1.0, Y varies from −4.5 to 4, with an average around 0, and Z varies 

from −4.5 to 3.5, with an average around 0 (Section 2.4). However, for a fully dissipative 

atmospheric model with a negative time derivative, Lorenz stated that “there is no assur-

ance that, if the direction of time reversed, a small volume will expand toward infinity” 

(Lorenz 1990 [10]). 
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To mimic the real-world synoptic weather systems, which have an average life cycle 

of about 5 days, the damping time of 5 days for eddies is also chosen as the time unit in 

this model (i.e., 1 time unit = 120 h in model time). By doing this, it is hoping that the 

forecast length of this model proportionally corresponds to real world time. Since this 

forecast time between the model and real world is only in a proportional sense (being 

counterpart to each other), model time is not quantitatively equal to real time. Throughout 

this paper, all forecast times are either implicitly or explicitly referring to model time, ra-

ther than real world time. Therefore, one should keep this in mind when interpreting the 

results related to forecast time ranges in this study. In the model integration with time t, 

the timestep is set to a 0.025 time unit (∆� = 0.025 time unit is equivalent to 3 h in model 

time). 

In the model’s standard setting, �� = 2.0, �� = 1.0, and �� = 0.0 for initial conditions, 

and �� = 0.25, �� = 4, G = 1.0, and  

� = 7 + 2 cos �
2��

�
� (5)

for physical parameters. F represents an annual cycle of cross-latitude temperature or 

thickness gradients, with τ = 12 months or 365 days. This model has been used to study 

long-term climate variability (Pielke and Zeng 1994 [11]), measures of predictability 

(Gonz’alez-Miranda, 1997 [12]), and time scale interaction in the climate system (Roebber, 

1995 [13]; van Veen et al., 2001 [14]). 

Those who are interested in the derivation of this Lorenz-84 model can further read 

van Veen (2003 [15]), who derived the Lorenz-84 model by simplifying a two-layer, six-

variable baroclinic quasi-geostrophic (QG) model. He first applied the “spectral” method” 

(i.e., the Galerkin approximation) to obtain a system of six variables, and then made 

assumptions and re-scaled state variables into a three-variable system. In his study, van 

Veen concluded that “The link between a Galerkin truncation of a QG baroclinic model 

and the Lorenz-84 model justifies the use of the latter in conceptual studies of atmosphere 

and climate dynamics”. Lorenz himself also referred to the Lorenz-84 model as “a very-

low-order geostrophic baroclinic general circulation model” (Lorenz 1990 [10]). However, 

as admitted by Lorenz himself, the Lorenz-84 model should not reproduce atmospheric 

behavior in any quantitative sense (Lorenz 1991 [16]). Unlike the other versions of the 

Lorenz model (such as Lorenz 1963 model), their solutions in the physical space have been 

well-documented (e.g., the Figure 1 of Shen 2019 [17]), and the solutions of Lorenz-84 

model need to be further studied. In the van Veen (2003 [15]) derivation, the physical 

meaning of the three state variables is unclear, e.g., what are the variable’s spatial and 

temporal resolutions represented in the physical space? For reader’s further reference, 

Wang et al. (2014 [18]) also illustrated how to obtain the important critical-point solutions 

(which could be related to model climate) for the Lorenz-84 model (Shen 2017 [19]). 

2.2. Observed Climate with a Perfect Model 

The fourth order Runge-Kutta algorithm is used to solve Equations (2)–(5). To obtain 

the observed climate, we ran the perfect model, with its standard setting (� = ��, � = ��, 

G = 1.0, and F = Equation (5)), every day for 30 years (365 days a year), as a truth or obser-

vation. Given the available quality observation (such as satellite observation), a period of 

about 30 or so years is often used in constructing climatology in meteorology community. 

That is why a 30-year length is also chosen for constructing climatology in this study. To 

make initial conditions vary every day within a year, as well as every year, an annual cycle 

term (2 cos �
��×���

���
�) and random inter-annual (“year” is used as the random number gen-

erator’s seed) variability term (����(����) etc.) have been added to the standard initial 

conditions of X, Y, and Z:  

�� = 2.0 + 2 cos �
2� × ���

365
� + ����(����) (6)
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�� = 1.0 + 2 cos �
2� × ���

365
� + ����(����) (7)

�� = 0.0 + 2 cos �
2� × ���

365
� + ����(����) (8)

The random terms RAN_x, RAN_y, and RAN_z follow a flat distribution between 

−1.0× maximum magnitude and +1.0× maximum magnitude, where the maximum mag-

nitude is set to a model variance of X (Y and Z) over the 28-day model integration period 

(averaged over a year). On each day, this perfect model was integrated for 28 days to 

provide “observations”. The integration length of 28 days is used to match the 28-day 

forecast length of the imperfect model prediction (see Section 2.3). The observed climate 

is obtained by averaging the 30 years of these truth runs. 

2.3. Model Climate with an Imperfect Model 

In the real world, a model has deficiencies in both physics and initial conditions (also 

lateral boundaries for limited-area models). To mimic this, some errors have been pur-

posely introduced into the perfect model setting in both physics and initial conditions, in 

order to have an imperfect modelling system for prediction. Although the model physics 

errors (0.25 in Equation (9) and 1.0 in Equation (10)) are kind of randomly introduced, 

they have been adjusted to have the imperfect model behave similarly to the performance 

of today’s NWP models, in terms of predictability and error characteristics (see Section 

3.1 for details). The imperfect model setting is as follows:  

��
� = �� + 0.25 = 0.25 + 0.25 =  0.5 (9)

��
� = �� + 1.0 = 4 + 1.0 =  5 (10)

��
� = �� + ����(���) (11)

��
� = �� + ����(���) (12)

��
� = �� + ����(���) (13)

where ��, ��,  and �� follow Equations (6)–(8). The design of the random terms RAN_x 

(day), RAN_y (day), and RAN_z (day) in Equations (11)–(13) is the same as those in Equa-

tions (6)–(8), except that the “day” is used here as random number generator’s seed to 

allow initial conditions to be slightly departed from the corresponding truth run 

(��, ��, and ��) every day. F and G remain the same as the truth run. To obtain the model 

climate, this imperfect model was run every day for 30 years (365 days a year) as historical 

model forecasts. On each day, it was integrated for 28 days in forecast length. The forecast 

length of 28 days is decided because current global NWP models are often run to span 

sub-seasonal range (around 2–4 weeks) in production. The model climate is obtained by 

averaging the 30 years of these forecast runs. 

2.4. Evaluation Forecasts 

The imperfect model, as described in Section 2.3, was extended to run for an extra 

year (the 31st year or year 31) as real time forecasts to be evaluated. Since “31” is used as 

the random number generator’s seed for this 31st year, an independent set of ICs will be 

generated and different from those used in the other 30 years (1–30). Similarly, the perfect 

model (Section 2.2) was also extended to run for the 31st year, as an observation or truth 

to be used for verification (the verification data). A 28-day integration was made each day 

for all 365 days within the year. All evaluation results to be discussed in the next section 

(Section 3) are based on these 365 model integrations (the 365 forecasts verify against the 

365 observations). 

We have analysed the 365 days of the verification data and found that all the three 

variables have large variations. Statistically, X varies from −2 to 4.5, with an average 

around 1.0, Y varies from −4 to 3, with an average around 0, and Z varies from −4 to 3, 
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with an average around 0. A similar result, but with a larger range of variations, is for 30 

years (30 × 365 = 10,950 days) of the observation data (Section 2.2): X varies from −2.5 to 5, 

with an average around 1.0, Y varies from −4.5 to 4, with an average around 0, and Z varies 

from −4.5 to 3.5, with an average around 0. Given these large variations, accurately pre-

dicting X, Y, and Z will be a challenging task (see Section 3). 

3. Results 

3.1. Model Assessment 

In this subsection, the behaviour of the imperfect model will be assessed, in terms of 

predictability and error characteristics. Figure 2 is an example of the 28-day forecasts of 

X, Y, and Z from the first day of the 31st year. The model can predict X very well for the 

first 5 days. However, it departed largely from the truth beyond day 5, where the predic-

tion and observation were out of phase during the day 12–22 period (Figure 2a). For the 

prediction of Y, it performed reasonably well prior to the day 13 and became out of phase 

with the observations afterward (Figure 2b). For the prediction of Z, it generally agreed 

well with the observations for the first 11 days and did not agree with the observations at 

all afterward (Figure 2c). Therefore, the imperfect version of this model has about one 

week to 10 days of good predictability for this case (the first day of the 31st year). 
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Figure 2. Forecasts of (a) X, (b) Y, and (c) Z on the first day of the 31st year. The vertical axis is the 

magnitude of X, Y, and Z, and the horizontal axis is forecast length in model days (0–28). Observed 

(the perfect model run) is in black and forecast (the imperfect model run) is in blue. 

Figure 3 shows the magnitude of total forecast error (���������� ) and its decomposi-

tion into systematic error or bias ( ��������� ) and flow-dependent error 

(��������� ��������� ) of X, Y, and Z, averaged over the 365 days of the 31st year. The errors 

are defined as follows:  

���������� (�) =
1

365
� |����(���, �) − ���(���, �)|

���

�����

 (14)

��������� (�) =
1

365
������(���, �) − ���(���, �)�

���

���

 (15)

��������� ��������� (�) = ����������(�) − |���������(�)| (16)

where t is forecast time (0–672 h or 0–28 days). We can see that the bias error was mostly 

bigger than flow-dependent error for X, where the bias was about 60% out of the total 

error on average over the 28-day forecast period (Figure 3a, more quantitative in the later 

Figure 11a). On the other hand, the flow-dependent error dominates for Y and Z. The bias 

is about 30% out of the total error for Y (Figures 3b and 11b) and 20% for Z (Figures 3c 

and 11c). Overall, about one-third of the total error is bias and two-thirds is flow-depend-

ent error for the sum of X, Y, and Z (Figures 3d and 11d). All errors shown in Figures 2 

and 3 are about the full field forecast of X, Y, and Z. How about the model’s capability of 

predicting climate and anomaly components? Figure 4 shows the total errors of full field, 

climate, and anomaly (Equation (1a)) forecasts, averaged over the 365 days of the 31st 

year. When fcst (day, t) and obs (day, t) of Equation (14) are, respectively, substituted by the 

predicted and observed climate (anomaly), Equation (14) gives the total error of climate 

(anomaly) forecast. For X (Figure 4a), the climate forecast error (red) is generally larger 

than the anomaly forecast error (blue) and has a similar time-evolving pattern to the full 

field error (black). For Y (Figure 4b) and Z (Figure 4c), the anomaly forecast error well 

exceeded the climate forecast error after 2–3 days and had a similar time-evolving pattern 

to the full field error. Therefore, the climate forecast error dominates in the X forecast 

error, while anomaly forecast error dominates in the Y and Z forecasts. Figure 4d is the 

sum of Figure 4a–c. By comparing Figure 4 with Figure 3, we see that the climate forecast 

error resembled the bias error, while the anomaly forecast error resembled the flow-de-

pendent error. In other words, the systematic error of the raw full-field forecast is mainly 

due to model deficiency in predicting climate state (������������), while the flow-depend-

ent error is mainly due to the model’s inability of correctly predicting anomaly variation 

(�����������). 
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Figure 3. Magnitude of total forecast errors (black solid line) and its decomposition into bias error 

(red dash line) and flow-dependent error (blue dash line) of (a) X, (b) Y, (c) Z, and (d) X + Y + Z. The 

vertical axis is error magnitude, and the horizontal axis is forecast length in model days (0–28). The 

results are averaged over the 365 days of the 31st year. 
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Figure 4. Absolute errors of full field (black solid line), climate (red dash line), and anomaly forecasts 

of (a) X, (b) Y, (c) Z, and (d) X + Y + Z. The vertical axis is error magnitude, and the horizontal axis 

is forecast length in model days (0–28). The results are averaged over the 365 days of the 31st year. 

Besides magnitude error, there is also structure or phase error, as seen in Figure 2, 

where the forecasts and observations do not agree with each other in their variations with 

forecast lead time. An accurate prediction of forecast’s time evolution or trend is im-

portant because it is equivalent to the weather regime change in a real NWP model. The 

correlation coefficient was calculated to measure this structure difference between the 

forecast and observation. These correlation coefficients are shown in Figure 5 for the three 

formats of forecast: full field (black), climate (red), and anomaly (blue), averaged over the 

365 days of the 31st year. For X (Figure 5a), the correlation of all the three formats of the 

forecast was high for the first 7 days and then dropped quickly to zero, where it fluctuated 

around zero for the anomaly forecast and largely remained negative for the climate and 

full field forecasts afterward. For Y (Figure 5b) and Z (Figure 5c), the correlation of all the 

three formats of the forecast dropped rapidly to zero in the first 3 days and then fluctuated 

around zero afterward, where the fluctuation was much larger for the climate forecast 

than for the other two. Overall, for X, Y, and Z (Figure 5d), this model can predict the time 

evolution of a forecast in the first week and then has no practical predictability of regime 

change beyond a week. For individual cases, this predictability could be longer or shorter, 

depending on situations. 

  

  

  

Figure 5. Correlation coefficients between forecast and truth for full field (black), climate (red), and 

anomaly (blue) forecasts of (a) X, (b) Y, and (c) Z. The average of (a–c) is shown in (d). The vertical 

axis is correlation coefficient, and the horizontal axis is forecast length in model days (0–28). The 

results are averaged over the 365 days of the 31st year. 

Based on the above assessment, in terms of predictability and forecast error charac-

teristics, we can see that this Lorenz model behaves similarly to the performance of cur-

rent NWP models for wind fields, in general (e.g., Koh et al., 201 [20] 2; Wang et al., 2018 
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[2]; and Xia et al., 2019 [21]). For example, they predict well for one week or so and not so 

well afterward; the prediction of zonal wind (X) is more accurate than that of meridional 

wind (Y and Z), and bias error is larger than random error for some variables (such as X), 

while the opposite is true for other variables (such as Y and Z). Therefore, this study 

should be representative of the current NWP model’s forecasts. The result from this study 

will provide a rough idea of how much error reduction might be achieved by this method 

and how the method works if it is applied to a real NWP model. 

3.2. Forecast Improvement 

Full-field forecasts are examined to assess the forecast quality improvement via the 

new anomaly-based method. Figure 6 compares the various forecast errors (total, bias, 

and flow-dependent errors) of the new forecast (in red) with those of the raw forecast (in 

blue). The result is for the error sum of X, Y, and Z, averaged over the 365 days of the 31st 

year. The corresponding error reductions (in terms of percentage %) by the new method 

is quantified in Figure 6d. Both total error (Figure 6a) and bias (Figure 6b) were signifi-

cantly reduced by the new method (at 99.9% statistical significance level, based on Student 

t-test). The bias reduction was especially dramatic and almost diminished. The improve-

ment remained steadily throughout the entire forecast period (days 1–28). On average, the 

total error reduced by about 25%, and the bias reduced by about 90% (Figure 6d). How-

ever, the change in flow-dependent error was mixed (Figure 6c). The flow-dependent er-

rors for the anomaly-based method were smaller for days 4–13, but they were larger for 

the first three days and final 15 days of the forecast period. On average, the reduction was 

about 5% over the first two weeks, and the worsening was about 15% over the last two 

weeks (Figure 6d). The reason why some flow-dependent errors become worse will be 

explained in Section 3.3. 

  

  
  



Atmosphere 2022, 13, 1487 11 of 23 
 

 

Figure 6. Error change (the vertical axis) in magnitude from the original forecast (blue, full-field 

based method) to the new forecast (red, anomaly-based method) for (a) total error, (b) bias error, 

and (c) flow-dependent error, averaged over X, Y, and Z. The error reduction (the vertical axis) of 

these three types of errors is quantified as percentage in (d). The horizontal axis is forecast length in 

model days (0–28). The results are averaged over the 365 days of the 31st year. 

Not only was the forecast magnitude improved, but the forecast structure (time-evo-

lution pattern) was also improved by the new anomaly-based method. Figure 7a com-

pares the correlation coefficients (averaged over X, Y, and Z) between the forecast and 

truth over forecast time, as averaged over the 365 days of the 31st year. The correlation 

increase, in terms of percentage by the new method, is quantified in Figure 7b. The im-

provement was drastic and significant (at 99.9% statistical significance level of t-test). Fig-

ure 7a shows that the raw forecast (blue) had no correlation or negative correlation since 

day 10, while the correlation was greatly boosted and remains positive all the way to day 

28 for the new forecast (red). The improvement increased with the increasing of the fore-

cast length, which suggests that the new method might be even more useful for longer-

range forecasts. This is more evident in Figure 7b: the improvement increased from about 

20% at day 1 to 150% at day 28. Although the new correlation was not high after day 10 

(about 0.2–0.3), the improvement was drastic (100–200%), given the fact that the original 

correlation was negative. 

  
  

Figure 7. (a) Correlation coefficients (the vertical axis) of the original forecast (blue, full-field based 

method) and the new forecast (red, anomaly-based method), averaged over X, Y, and Z. The corre-

lation improvement (the vertical axis) is quantified as percentage in (b). The horizontal axis is fore-

cast length in model days (0–28). The results are averaged over the 365 days of the 31st year. 

3.3. Mechanism 

This subsection discusses how the new method improves or degrades a forecast. Fig-

ure 8 provides an example of the 28-day forecasts of X from the first day of the 31st year. 

As already discussed in Figure 2a, the raw forecast (blue) deviated largely from the obser-

vation (black) in the full field after day 5 (Figure 8a). Figure 8b,c show the climate and 

anomaly forecasts, respectively. The climate forecast error resembles the full-field fore-

cast’s error very well, except for the last few days (days 24–26), while the anomaly forecast 

error was much smaller than the climate forecast error, except days 24–26. Therefore, it is 

not surprising to see that the total forecast error of the full-field forecast was dramatically 

reduced when the model climate was replaced by the observed climate. Figure 8d shows 

that the new full-field forecast (red) was much closer to the observation (black) than the 

raw forecast (blue), except for days 24–26. Especially during the period of days 12–22, the 

raw forecast was completely out of phase with the observation but corrected by the new 

forecast. This result suggests that the anomaly-based method could potentially reduce, or 

even eliminate, the so-called “drop-off events” that are often seen in current operational 

NWP forecasts (Figure 9). Drop-off events are those that a model performance suddenly 
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drops to a level way below its average performance. For example, Figure 9 shows the day 

5 correlation coefficients (with analysis) of seven global models 500-hPa geopotential 

height forecasts over the northern hemisphere during 13 February–15 March 2021. We can 

see that 4 March and 9 March were drop-off events for the NCEP GFS model (thick black 

line), 28 February and 14 March for the UK-Met Office model (golden line), 1 March and 

10 March for the ECMWF model (red line), and 14 February and 14 March for the Cana-

dian model (green line). Currently, a drop-off event is a particularly challenging problem 

for NWP models to overcome. Since the anomaly-based method can eliminate model drift 

issue by correcting wrong model climate, this might partially solve the drop-off problem, 

if the problem is mainly caused by model’s poor handing of atmospheric basic state (cli-

matic state). 

  

  
  

Figure 8. The raw forecasts (in blue, the vertical axis) of X on the first day of the 31st year in three 

formats: (a) full field, (b) climate, and (c) anomaly. (d) Same as (a), but compared to the new (anom-

aly-method based), full field forecast of X (red). Observed (the truth run) is in black. The horizontal 

axis is forecast length in model days (0–28). 
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Figure 9. A snapshot taken from the model evaluation web page at Environmental Modeling Center 

of National Centers for Environmental Prediction (NCEP), NOAA: 

https://www.emc.ncep.noaa.gov/users/verification/global/gfs/ops/grid2grid_all_models/acc/ (ac-

cessed on 11 September 2022). This is the anomaly correlation coefficient of 500 hPa geopotential 

height over Northern Hemisphere (20 N–80 N), valid 13 February 2021–15 March 2021 00Z. The 

forecast’s lead time is 5 days. Seven global models are shown. 

The case demonstrated in Figure 8 is one that model climate forecast error is larger 

than anomaly forecast error. Will the new method still improve a forecast when the oppo-

site is true? Figure 10 provides an example of the 28-day forecasts of Y from the first day 

of the 31st year, where the climate forecast error (Figure 10b) is generally smaller than or 

comparable to the anomaly forecast error (Figure 10c). As discussed in Figure 2b, the raw 

forecast (blue) has deviated largely from, and is out of phase with, the observation (black) 

in full field after day 14 (Figure 10a, d). This out of phase problem has been largely cor-

rected by the new forecast (red in Figure 10d). Besides the phase improvement, the mag-

nitude has also improved. The new forecast is generally closer to the observed magnitude 

except for the days 14, 15, and 23, where very large anomaly errors exist. Therefore, this 

new method is generally valuable in improving raw NWP model forecasts, as long as 

there is an error in predicting climatic state. Only when a model can perfectly predict cli-

mate (having negligibly small climate forecast error), will this anomaly-based method and 

the current raw full-field based method be equivalent to each other. 
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Figure 10. Same as Figure 8 but for variable Y. 

Given the following two facts: (1) almost all of the bias errors (over 90%) can be elim-

inated by the new method (as seen in Figure 6b,d), and (2) bias error is contributed mainly 

by climate forecast error (cf. Figures 3 and 4), we can infer that the new method should 

work more effectively when bias error is large. To quantify this, Figure 11 shows the rela-

tion between the ratio of bias to the total error (red bar) and total error reduction percent-

age (blue bar) by the new method for X, Y, and Z, as averaged over the 365 days of the 

31st year. It is apparent that larger (smaller) bias leads to more (less) forecast error reduc-

tion. For example, bias is large for X (about 60% out of the total error, averaged over the 

entire forecast length), thus more error reduction (about 40%) has been achieved (Figure 

11a). At the same time, biases are smaller (30% and 20%, respectively) for Y (Figure 11b) 

and Z (Figure 11c), thus less error reductions (20% and 15%) have been achieved for them. 

Figure 11d depicts the average error reductions for X, Y, and Z, where the positive corre-

lation between the error reduction percentage and bias ratio over forecast time is clearly 

visible. 
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Figure 11. The ratio of bias error to total error (red, in percentage) and total error reduction (blue, in 

percentage) for (a) X, (b) Y, and (c) Z forecasts. (d) is the average of (a–c). The horizontal axis is 

forecast length in model days (0–28). The results are averaged over the 365 days of the 31st year. 

Finally, why do some flow-dependent errors become worse in the new forecasts as 

shown in Figure 6c? Mathematically, if the total error is reduced relatively less and bias is 

reduced relatively more, the resulting difference between the total and bias errors will 

increase, or the flow-dependent error becomes larger, based on the definition 

��������� ��������� = ���������� − |���������|. In Figure 6, the bias reduction (Fig-

ure 6b) exceeded the total error reduction (Figure 6a) at many forecast times, which re-

sulted in the increase of flow-dependent error (Figure 6c). Physically, the worsening of 

flow-dependent error can be explained by the so-called “correct forecast for wrong rea-

sons” situation. For instance, in a warm bias model, an actually wrong (say “too-cold tem-

perature”) forecast could look warmer to match the observations, due to the warm bias. 

The true face (“too-cold temperature”) of this originally-looks-correct forecast will be re-

vealed after the warm bias is removed (through the replacement of model climate with 

observed climate in this study). A good example of this is the period of days 24–26 in 

Figure 8. During this period, the climate and anomaly predictions had opposite forecast 

errors: the climate forecast was too large (positive error, Figure 8b) and anomaly forecast 

was too small (negative error, Figure 8c). Therefore, these two errors were cancelled with 

each other in the raw forecast (Figure 8a), while the negative forecast error of the anomaly 

forecast appeared after the positive climate error was corrected in the new forecast (Figure 

8d). That is why the new forecast became even worse during the days 24–26 in Figure 8d. 

This was also true for the days 14, 15, and 23 in Figure 10d. 

3.4. Construction of an Anomaly Forecast 

In the above discussion, Equation (1a) was used to define an anomaly forecast, which 

was relative to model climate ������������ (M-climate). Alternatively, an anomaly fore-

cast can also be constructed, relative to observed climate ��������������� (O-climate), by 

Equation (17):  

�����
�������

= ������� − ��������������� (17)

In this subsection, these two forms of anomaly forecast will be compared with each 

other. Figure 12 shows the two forms of anomaly forecast side-by-side (����������� is in 

red, and �����
�������

 in green), together with the observed true anomaly (in blue) for X, 

Y, and Z in a case (the 1st day of year 31). For X (Figure 12a), the anomaly forecast, with 

respect to model climate (�����������), had comparable magnitude to the observed anom-

aly for the first two weeks and became too large afterward. However, the anomaly fore-

cast, with respect to observed climate (�����
�������

), was unrealistically too large in mag-

nitude and much larger than ����������� , too. This overly large magnitude of 
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�����
�������

 could be explained by the poorly predicted climate, which dominated the 

forecast error of X (Figure 4a). For Y and Z, where the error of anomaly forecast 

����������� was dominant and larger than climate forecast error, as seen in Figure 4b,c, 

the two forms of anomaly forecast were much closer to each other than in X, although the 

magnitude of �����
�������

 was generally larger than that of ����������� (Figure 12b,c). 

Both were still much larger than the observed anomaly. Figure 13 compares the magni-

tude of the two anomaly forecasts, as well as the observed anomaly averaged over the 365 

days of year 31, which confirms the individual case result of Figure 12. 

  

 

 

Figure 12. Observed anomaly (blue) and two types of predicted anomaly, one is relative to model 

climate fcst (M-climate) (red) and another is relative to observed climate fcst (O-climate) (green) for 

(a) X, (b) Y, and (c) Z of an individual case (the first day of the year 31). The horizontal axis is forecast 

length in model days (0–28). 
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Figure 13. Observed anomaly (blue) and two types of predicted anomaly, one is relative to model 

climate fcst(M-climate) (red) and another is relative to observed climate fcst(O-climate) (green) for 

(a) X, (b) Y, and (c) Z, averaged over the 365 days of year 31. The horizontal axis is forecast length 

in model days (0–28). 

To further quantify the comparison, their forecast accuracies were calculated. The 

absolute error of the anomaly forecast can be derived for the two forms by Equations (18) 

and (19), respectively. For the anomaly forecast relative to model climate, its error contains 

two terms: one is the original forecast error (������� − ���), and another is a correction 

term, due to the difference between the model climate and observed cli-

mate(������������ − ���������������)  or climate forecast error (Equation (18)). For the 

anomaly forecast, relative to observed climate, its error is the same as the original forecast 

error (Equation (19)). Therefore, theoretically, the first definition (Equation (1a)) should 

be more accurate than the second definition (Equation (17)) by eliminating the errors in 

the predicting climate state. 

���_��� �������
= |����������� − ����������| = |(������� − ������������) − (��� − ���������������)|

= |(������� − ���) − (������������ − ���������������)| 
(18)

������
�

 �������
= ������

�������
− ����������� = |(������� − ���������������) − (��� − ���������������)|

= |(������� − ���)| 

(19)

Figure 14 shows that the anomaly forecast relative to model climate (blue) had con-

sistently less error than the anomaly forecast relative to observed climate (black) for all 

three variables X, Y, and Z, where the result was averaged over the 365 days of year 31. 

More improvement can be achieved when climate error is larger, such as for X (Figure 

14a), and less improvement can be achieved when climate error is smaller, such as for Y 

and Z (Figure 14b,c). Figure 15 shows the correlation coefficients between the predicted 

and observed anomalies of the two forms for X, Y, and Z. There was no significant differ-

ence in correlation between these two forms of anomaly forecasts, except for the first week 

of X, where ����������� was more accurate than  �����
�������

. This implies that there was 

no obvious advantage of one form over another in predicting the time evolution of an 

anomaly. 
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Figure 14. Absolute error of the two forms of anomaly forecasts, one is with respect to model climate 

(fcst(M-climate) in blue) and another is with respect to observed climate (fcst(O-climate) in black) 

for (a) X, (b) Y, (c) Z, and (d) X + Y + Z. The vertical axis is error magnitude, and the horizontal axis 

is forecast length in model days (0–28). The results were averaged over the 365 days of the 31st year. 

  

  

  

Figure 15. Correlation coefficients between forecast and truth of the two forms of anomaly forecast, 

one is with respect to model climate (fcst(M-climate) in blue) and another is with respect to observed 

climate (fcst(O-climate) in black) for (a) X, (b) Y, and (c) Z. The average of (a–c) is shown in (d). The 

vertical axis is correlation coefficient, and the horizontal axis is forecast length in model days (0–28). 

The results were averaged over the 365 days of the 31st year. 
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4. Summary and Discussion 

A model forecast can be divided into two parts: a long-term average (model climate) 

and departure from it (anomaly). In the real world, model climate can be derived from 

either a mode’s historical data (if it has been archived for a long period of time with fixed 

model configurations, which is almost impossible in reality) or model’s reforecast data. 

Both model climate and anomalies contribute to forecast error. Since the observed climate 

can be derived from historical observations, too (e.g., reanalysis), it is known and does not 

need to be predicted. Therefore, errors associated with model climate could be eliminated 

if model climate is replaced by observed climate. In this way, a forecast should be greatly 

improved. Using a three-variable nonlinear chaotic Lorenz model, this study did confirm 

the hypothesis. Before evaluating this new method, the Lorenz model behaviour was first 

assessed in terms of predictability and forecast error characteristics. The assessment 

shows that the performance of this simple model well-resembles that of the current NWP 

models, with respect to general circulation forecasts. Therefore, this study should be rep-

resentative of current NWP models. However, one needs to keep in mind that all forecast 

times are referring to model time, rather than real world time in this study. Therefore, the 

interpretation of the results, related to the forecast time range, needs to be cautious. The 

specific findings of this study are summarized as follows: 

(1) The proposed anomaly-based approach can significantly and steadily increase 

model forecast accuracy in both magnitude and structure (time-evolution pattern) 

throughout the entire forecast period (28 model days in lead time). On average of the three 

variables, the total forecast error was reduced by about 25%, and the correlation was 

boosted by about 100–200% (from negative to positive). The correlation improvement in-

creases with the increasing of forecast length: from about 20% at day 1 to 150% at day 28. 

(2) The anomaly-based method has different impacts on different types of forecast 

error. By decomposing the forecast error into systematic (bias) and flow-dependent (ran-

dom error) errors, we found that the bias error was almost eliminated (over 90% in reduc-

tion) over the entire forecast period. However, the flow-dependent error was only slightly 

reduced in the first two weeks, and then became worse. On average, the reduction was 

about 5% over the first two weeks, and the worsening was about 15% over the last two 

weeks. 

(3) The reason why there is such a dramatic reduction in bias is because bias error 

mainly stems from model climate prediction. Since this method improves a forecast 

through eliminating climate forecast error, forecast improvement will be larger when 

model climate error or bias is larger, such as in X (about 40% in total error reduction); 

otherwise, it will be smaller, such as in Y and Z (about 20% and 15%). Therefore, this 

method is more useful for more challenging days, such as drop-off events and longer-

range forecasts, when the model’s basic state (model climate) has drifted away from the 

true basic state (observed climate). 

(4) Flow-dependent error is largely associated with anomaly forecasts. As a result, 

flow-dependent error will be smaller when the forecast anomaly is similar to the observed 

anomaly, such as X (cf. Figures 3a and 13a); otherwise, it will be larger when forecast 

anomaly is very different from observed anomaly, such as Y and Z (cf. Figures 3b–c and 

13b–c). In this study the predicted anomaly was much larger than the observed anomaly 

for Y and Z (Figure 13b–c). Therefore, their anomaly forecast errors were large, which led 

to large flow-dependent error in the new forecasts (Figure 6c). A consequence of this is 

that the flow-dependent error became even worse in many forecast hours for the new 

forecasts. Physically, the worsening of flow-dependent error can be explained by the “cor-

rect forecast for wrong reasons” situation that raw forecasts were accidently corrected by 

model bias. If the predicted anomaly magnitudes were smaller and closer to the observed 

(i.e., model variation is similar to the nature variation), the worsening of flow-dependent 

error would be to a lesser degree, and the new method would work even more effectively 

by reducing a larger portion of the total error. 
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(5) Lastly, a more accurate anomaly-forecast needs to be constructed, relative to 

model climate, rather than observed climate, by taking advantage of cancelling model 

systematic error under the perfect-model assumption. 

This study suggests that the anomaly, rather than full field out of a model forecast, 

will be more useful to construct an accurate forecast for users. Specifically, the model cli-

mate should be replaced by the observed climate to produce a reconstructed, new, full 

field forecast prior to its application. As long as the model climate is different from ob-

served climate, this anomaly-based method will be beneficial. Only when a model has no 

systematic bias and can perfectly predict observed climate (i.e., model climate = observed 

climate) will the new anomaly-based and current raw full-field based methods be equiv-

alent to each other. Since the performance of this Lorenz model generally resembles NWP 

model behavior, with respect to general circulation forecasts, this work could be used as 

a guidance to more practical work in future. In principle, this approach can be applicable 

to any model-based prediction. The next step of our research will extend this work to a 

state-of-the-art NWP model, in order to stimulate more discussions on this new way of 

using model outputs. To have a spatially and temporally scale-matched field of a re-con-

structed new forecasts in the real NWP world, the observed climate needs to match the 

forecast model’s resolution in both space and time. Therefore, a good quality, high-reso-

lution (e.g., sub-kilometer in space, at least hourly, and better sub-hourly in time) reanal-

ysis is necessary to build an observed climate. Besides, a model reforecast should also 

become a standard to build model climate for any new model. Currently, a model refore-

cast dataset is not always available for many operational NWP models. 

This new method could help model development too. First, it could technically avoid 

model climate drift issue immediately in a forecast by replacing the model climate with 

the observed climate. Secondly, it can help model developers diagnose possible model 

physics deficiency in the following two ways. By decomposing forecast error into climate 

error and anomaly error, one can see where the main error source is: climate state or anom-

aly variation. By examining the worsening areas of flow-dependent error to identify un-

derlying true physics problem, since these areas are related to the “correct forecast for 

wrong reasons” situation (Section 3.3). Thirdly, the fact that the flow-dependent error 

could become worse by the new method reminds us that improving the model itself is 

always the top priority to fix the root causes of a forecast problem. In addition to model 

improvement, another way to reduce the flow-dependent error caused by unpredictable 

components is through an ensemble forecasting technique (Du et al., 2018 [22]). Flow-de-

pendent bias correction method could be another way to reduce flow-dependent forecast 

errors (Du and DiMego 2008 [23]). 

One might need to keep a few things in mind for this anomaly-based post-processing 

approach. Although the method should, in principle, work for all variables and scales, as 

long as the spatial and temporal resolutions of model and observed climates are high 

enough, it might work better for some than others, depending on the accuracy of the de-

rived climate values. For example, it might work better for temperature (following Gauss-

ian distribution with larger climatic value) than precipitation (Gamma distribution with 

smaller climatic value), better for synoptic scale than mesoscale phenomena, and better 

for longer range than shorter range forecasts. We also suggest that this method is only 

applied to model’s prognostic variables, not diagnostic variables. Once prognostic varia-

bles are corrected, diagnostic variables will be automatically corrected when they are de-

rived from prognostic variables. Lastly, this method should work better in a steady-state 

climate than a changing climate. Changing climate could be an error source if climate 

change is rapid. For example, with rapid global warming, the observed climate (based on 

a 30-year average) might have a larger bias than the raw model forecast. Therefore, origi-

nal full-field forecasts might perform better than anomaly-based forecasts when the ob-

served climate has long-term trends. To minimize this climate-changing bias, we could 

use a shorter time-period (such as 10 years instead of 30 years) to derive a climatology. 
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As mentioned in the Introduction, the purpose of this study was to explore a new 

approach to extract more accurate information out of a raw model forecast rather than 

another bias correction method. However, since our results show that this anomaly 

method can almost eliminate bias error, it might be worth comparing the pros or cons of 

this method to other existing bias correction methods for readers’ reference. To improve 

a model forecast through post-processing has been a continuous effort by many in the 

past. Many methods have been developed, such as MOS (model output statistics) for both 

single model and ensemble model (Glahn and Lowry, 1972 [24]; and Gneiting et al., 2005 

[25]), linear regression or weighted combination (Krishnamurti et al., 2016 [26]), Kalman-

filter based decaying method (Cui et al., 2012 [27]), probability matching (Ebert, 2001 [28], 

Li et al., 2015 [29]; and Zhu and Luo, 2015 [30]), Bayesian model average (Raftery et al., 

2017 [31]; Herr and Krzysztofowicz, 2015 [32] and 2019 [33]), neural network based 

method (Yuan et al., 2007 [34]), analog approach (Du and DiMego 2008 [23]; Hamill et al., 

2006 [9] and 2015 [35]; and Eckel and Delle Monache, 2016 [36]), and, more recently, ma-

chine-learning based (Chan et al., 2021 [37]; and Han et al., 2021 [38]). However, all those 

methods are statistics-based. Because a statistical method is based on the average perfor-

mance of a forecast over a past period, and probably over a region, it works only on an 

average sense, too, but does not necessarily work well for individual cases. For example, 

it might improve a forecast in one situation, spot, or time, but make it worse in another 

situation, spot, or time. However, this anomaly-based method has clear physical meaning, 

in terms of model climate and anomaly, and should improve a forecast for all individual 

situations, spots, and times after model-climate related error is eliminated. By the way, 

besides statistical approaches, a dynamical approach to correct model bias has also been 

explored in recent years. For example, Chen et al., (2020) [39] and Xia et al., (2019) [21] 

proposed a dynamical approach to debias a model forecast by correcting a model ten-

dency term during model integration. Another advantage of this anomaly-based method 

is its feasibility for the user. Currently, a statistical method is a special algorithm that 

needs to be designed and tuned by a developer. Different variables (such as temperature 

and precipitation) or situations (such as short-range and long-range forecasts) need dif-

ferent methodologies or algorithms. Therefore, different users need different algorithms, 

depending on their own unique needs. However, this anomaly-based method can be a 

“one fits all” type of approach. It is standard and uniform for all users, variables, and 

situations, as long as the model and observed climates are provided together with a model 

forecast. This simplification will enable all users to easily post-process a model forecast 

by themselves before its application, which will certainly maximize the value of NWP 

products. Finally, it is sometimes hard, or even impossible, to explain a result coming from 

a statistical approach, especially a machine-learning based method, while it is easier to 

explain the causes of an improvement or degradation for this anomaly-based method 

(e.g., Section 3.3). 
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