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Abstract: Australia experiences a variety of climate extremes that result in loss of life and economic 
and environmental damage. This paper provides a first evaluation of the performance of state-of-
the-art Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate models (GCMs) in 
simulating climate extremes over Australia. Here, we evaluate how well 37 individual CMIP6 GCMs 
simulate the spatiotemporal patterns of 12 climate extremes over Australia by comparing the GCMs 
against gridded observations (Australian Gridded Climate Dataset). This evaluation is crucial for 
informing, interpreting, and constructing multimodel ensemble future projections of climate ex-
tremes over Australia, climate-resilience planning, and GCM selection while conducting exercises 
like dynamical downscaling via GCMs. We find that temperature extremes (maximum-maximum 
temperature -TXx, number of summer days -SU, and number of days when maximum temperature 
is greater than 35 °C -Txge35) are reasonably well-simulated in comparison to precipitation ex-
tremes. However, GCMs tend to overestimate (underestimate) minimum (maximum) temperature 
extremes. GCMs also typically struggle to capture both extremely dry (consecutive dry days -CDD) 
and wet (99th percentile of precipitation -R99p) precipitation extremes, thus highlighting the un-
derlying uncertainty of GCMs in capturing regional drought and flood conditions. Typically for 
both precipitation and temperature extremes, UKESM1-0-LL, FGOALS-g3, and GCMs from Met 
office Hadley Centre (HadGEM3-GC31-MM and HadGEM3-GC31-LL) and NOAA (GFDL-ESM4 
and GFDL-CM4) consistently tend to show good performance. Our results also show that GCMs 
from the same modelling group and GCMs sharing key modelling components tend to have similar 
biases and thus are not highly independent. 

Keywords: climate change adaptation; climate extremes; CMIP6; ET-SCI indices; extreme weather; 
regional climate modelling 
 

1. Introduction 
Climate extremes threaten human health, economic stability, and the well-being of 

natural and built environments. As the world continues to warm, climate hazards are ex-
pected to increase in frequency and intensity [1]. Climate extremes have increased on all 
continents since 1980, most notably in Australia, and this has dramatically impacted hu-
man life, economy and environment [2–5]. Zander et al. (2015) [6] showed that heat-re-
lated extremes during 2013–2014 led to an annual economic burden of around US$6.2 bil-
lion (95% CI: 5.2–7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% 
of Australia’s GDP (Gross Domestic Product). 
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Australia is exposed to various climates due to its large size and meridional extent. 
With such a wide range of climates, Australia also experiences a great diversity of climatic 
extremes [2,5,7]. Australia regularly experiences extremes in precipitation and tempera-
ture: from severe droughts to intense precipitation [8–13] and from increases in hot ex-
tremes and decreases in cold extremes [14–16]. These extremes have a substantial impact 
on Australia’s unique flora and fauna [17], agriculture [18], urban infrastructure [19], and 
human health [20]. Thus, it is crucial to examine the simulated extremes in Australia’s 
present-day and future climate, as it is for other regions. This interpretation is an im-
portant aspect of adaptation planning, as changes to rare but high-impact climate ex-
tremes are likely to be a greater challenge to communities compared to changes in the 
mean climate state. 

Global climate models (GCMs) have been used as a primary tool for examining the 
past and future changes in climate extremes at global and continental scales [21–25]. Sev-
eral studies have conducted comprehensive reviews of projected changes in climate ex-
tremes globally and regionally based on the different phases of the Coupled Modelling 
Intercomparison Project (CMIP) [26–28]. Recently, the latest iteration of CMIP, phase 6 
(CMIP6) [29], has been released, which provides new opportunities to examine the climate 
system and make regional projections via downscaling. Compared to CMIP5 [30], the 
models in CMIP6 generally have finer model resolution and improved physical processes 
[31]. One of the focuses of CMIP6 is assessing climate extremes changes and understand-
ing associated physical processes [29]. 

Several studies have already evaluated the performance of CMIP6 GCMs in simulat-
ing extremes globally and over different regions of the world. However, most of these 
studies have evaluated how the multimodel ensemble of CMIP6 performs in comparison 
to the multimodel ensemble of CMIP5 (for example, Grose et al. 2020 [32], Di Virgilio et 
al. 2022 [33] and Deng et al. 2021 [34] over Australia; Masud et al. 2021 [35] over Canada; 
Gusain et al. 2020 [36] over India; Akinsanola et al. 2021 [37] over Eastern Africa; Ukkola 
et al. 2020 [38] and Seneviratne & Hauser 2020 [39] globally). Most of these studies have 
concluded that the CMIP6 GCM ensemble offers marginal improvements versus the 
CMIP5 ensemble in terms of capturing observed climate extremes. These studies assist in 
understanding how GCM ensembles perform in simulating climate extremes; however, 
to understand the physical processes driving modelled climate extremes, knowledge of 
the performances of individual GCMs is needed. Assessment of the performance of indi-
vidual GCMs in resolving climate extremes also assists with the selection of GCMs for 
regional dynamical downscaling [40,41] and for assessing the potential impacts of extreme 
events on biophysical and socio-economic systems [42]. 

There have been a few studies that have looked at the performance of individual 
CMIP6 GCMs in capturing observed climate extremes over different parts of the globe: 
for example, the United States [43], southeast Asia [44], China and Western North Pacific 
and East Asia [45]. Over Australia, Di Virgilio et al. 2022 [33] evaluated CMIP6 GCMs for 
climate extremes; however, their study was only limited to percentile-based temperature 
and precipitation extremes. Understanding the relative performances of CMIP6 GCMs in 
simulating climate extremes over Australia is of direct relevance to multiple stakeholders, 
such as researchers and climate impact resilience planners, as GCMs can show a wide 
variety of inter-model differences in performance. 

Therefore, the aims of this study are: 1. To evaluate how well individual CMIP6 
GCMs perform in terms of capturing precipitation and temperature extremes over Aus-
tralia. 2. To find the subset of best performing CMIP6 GCMs for capturing these climate 
extremes. 3. To assess if the GCM performance varies for continental Australia and sub-
regions across Australia with different topography and climate. 
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2. Data and Methods 
2.1. CMIP6 GCMs 

This study uses one simulation each from a group of 37 CMIP6 GCMs that are avail-
able at the time of writing. Out of 37 CMIP6 GCMs, some GCMs are from the same parent 
institute and share modelling components such as GCMs from Australian Community, 
whereas some GCMs just use different resolutions such as MPI-ESM1-2-HR and MPI-
ESM1-2-LR. The spatial resolution of the GCMs varies (Table 1). To compare the GCMs 
with the observations, we re-grid all 37 GCMs to the most common resolution of 1.5° × 
1.5° on a regular lat/lon grid using conservative re-gridding. We acknowledge that re-
gridding coarser resolution models onto a higher resolution has limitations [46]; however, 
going to any coarser resolution than 1.5° × 1.5° would lead to fewer grid points in the 
domain and thus affect the robustness of the analysis. In addition, past studies have also 
used similar re-gridding models to the most common resolution when analysing datasets 
like CMIP5 and CMIP6 [32,33]. We chose the most common present-day period between 
GCMs, i.e., 1951–2014, for the evaluation. The reason for choosing a longer period (64 
years) is to minimize inter-annual variations. 

Table 1. CMIP6 Models and simulations used in this study. Here colours other than black denote 
GCMs from the same modelling institution. 

 GCM Name Institution/Centre Run 
Atmosphere 
Lat/lon Grid 

(°) 
1. ACCESS-CM2 Australian Community r1i1p1f1 1.2 × 1.8 
2. ACCESS-ESM1-5 Australian Community r1i1p1f1 1.2 × 1.8 
3. AWI-ESM-1-1-LR Alfred Wegener Institute r1i1p1f1 0.9 × 0.9 
4. BCC-CSM2-MR Beijing Climate Centre r1i1p1f1 1.1 × 1.1 
5. BCC-ESM1 Beijing Climate Centre r1i1p1f1 2.8 × 2.8 
6. CMCC-CM2-SR5 Euro-Mediterranean Centre r1i1p1f1 ~ 0.9 
7. CNRM-CM6-1-HR National Centre of Meteorological Research (NCMR), France r1i1p1f2 ~ 0.5 
8. CNRM-CM6-1 National Centre of Meteorological Research (NCMR), France r1i1p1f2 1.4 × 1.4 
9. CNRM-ESM2-1 National Centre of Meteorological Research (NCMR), France r1i1p1f2 1.4 × 1.4 
10. CanESM5 Canadian Centre for Climate Modelling and Analysis  r1i1p1f1 2.8 × 2.8 
11. EC-Earth3-Veg-LR EC-EARTH consortium, The Netherlands/Ireland r1i1p1f1 0.7 × 0.7 
12. EC-Earth3-Veg EC-EARTH consortium, The Netherlands/Ireland r1i1p1f1 0.7 × 0.7 
13. EC-Earth3 EC-EARTH consortium, The Netherlands/Ireland r1i1p1f1 0.7 × 0.7 
14. FGOALS-f3-L Chinese Academy of Sciences, China r1i1p1f1 2.3 × 2.0 
15. FGOALS-g3 Chinese Academy of Sciences, China r1i1p1f1 2.3 × 2.0 
16. GFDL-CM4 NOAA Geophysical Fluid Dynamics Laboratory r1i1p1f1 1.0 × 1.3 
17. GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory  r1i1p1f1 1.0 × 1.3 

18. 
HadGEM3-GC31-

LL 
Met Office Hadley Centre, UK r1i1p1f3 2.2 × 2.2 

19. 
HadGEM3-GC31-

MM 
Met Office Hadley Centre, UK r1i1p1f3 0.9 × 0.9 

20. INM-CM4-8 Institute for Numerical Mathematics (INM), Russia r1i1p1f1 1.5 × 2.0 
21. INM-CM5-0 Institute for Numerical Mathematics (INM), Russia r1i1p1f1 1.5 × 2.0 
22. IPSL-CM6A-LR Institute Pierre Simon Laplace, France r1i1p1f1 1.3 × 2.5 

23. KACE-1-0-G 
National Institute of Meteorological Sciences/Korea Meteorological 

Administration 
r1i1p1f1 2.2 × 2.2 

24. KIOST-ESM Korean Institute of Ocean Science and technology r1i1p1f1 2.2 × 2.2 
25. MIR°C-ES2L National Institute for Environmental Studies, Japan r1i1p1f2 4.5 × 4.5 
26. MIR°C6 National Institute for Environmental Studies, Japan r1i1p1f1 1.4 × 1.4 
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27. 
MPI-ESM-1-2-

HAM 
Max Planck Institute for Meteorology (MPI), Germany r1i1p1f1 2.2 × 2.2 

28. MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI), Germany r1i1p1f1 ~0.9 
29. MPI-ESM1-2-LR Max Planck Institute for Meteorology (MPI), Germany r1i1p1f1 ~2.0 
30. MRI-ESM2-0 Meteorological Research Institute, Japan r1i1p1f1 1.1 × 1.1 
31 NESM3 Nanjing University of Information Science and Technology, Nanjing r1i1p1f1 1.9 × 1.9 
32. NorCPM1 Norwegian Climate Centre, Norway r1i1p1f1 1.9 × 2.5 
33. NorESM2-LM Norwegian Climate Centre, Norway r1i1p1f1 1.9 × 2.5 
34. NorESM2-MM Norwegian Climate Centre, Norway r1i1p1f1 0.9 × 0.9 
35. SAM0-UNICON Seoul National University r1i1p1f1 0.9 × 1.3 
36. TaiESM1 Taiwan Earth System Model r1i1p1f1 0.9 × 0.9 
37. UKESM1-0-LL UK Met Office and NERC research centres r1i1p1f2 1.3 × 1.9 

While extreme climate and weather events are generally multifaceted phenomena, in 
this study, we evaluate climate extremes based on daily precipitation and temperature as 
defined by the Expert Team on Sector-specific Climate Indices (ET-SCI; [47,48]. We use 
the ClimPACT version 2 software to calculate the ET-SCI indices (https://climpact-sci.org/ 
accessed on 1 November 2020), focusing on daily precipitation, maximum temperature, 
and minimum temperature. 

Although ClimPACT produces 34 core indices (more than 80 indices in total), we use 
12 indices based on the following considerations. 1. To capture key aspects of climate ex-
tremes; for example, we choose absolute indices (e.g., maximum 1-day precipitation 
(Rx1day), hottest day (TXx), coldest day (TNn)), threshold-based indices (e.g., number of 
heavy rain days (R10mm), tropical nights, i.e., the annual count of days when daily mini-
mum temperature > 20 °C (TR), summer days, i.e., the annual count of days when daily 
maximum temperature > 25 °C (SU), number of days when maximum temperature is 
greater than 35 °C (TXge35)), percentile indices (e.g., total annual precipitation from very 
heavy rain days (R99p)), and duration indices (e.g., consecutive wet days (CWD), consec-
utive dry days (CDD), warm spell duration index (WSDI), cold spell duration index 
(CSDI). 2. To capture extremes which have an impact on society and infrastructure; for 
example, extreme indices like TXge35, TR, and SU have the largest impacts on health [49], 
whereas indices like Rx1day, CDD, and CWD have the largest impact on agriculture, wa-
ter resources and the economy [50,51]. 

2.2. Observations 
We use observational data from the Australian Gridded Climate Dataset (AGCD Ev-

ans et al. 2020 [52]) to compare the CMIP6 GCM simulated extremes with observations for 
the present-day period. AGCD data have a spatial resolution of 0.05° × 0.05° and are ob-
tained from an interpolation of station observations across the Australian continent. Most 
of these stations are in the more heavily populated coastal areas with a sparser represen-
tation inland over central Australia. Taking the same approach as for the GCMs, we re-
grid the AGCD data to a common resolution of 1.5° × 1.5° and then calculate the ET-SCI 
indices using ClimPACT. 

Since AGCD observations are only available for land, in this study, we evaluate 
CMIP6 GCMs only for grids over land. Due to the sparse distribution of precipitation 
gauges in central Australia, this region has no quality gridded observations available [53]. 
Therefore, we mask both ocean and parts of central Australia to examine precipitation 
extremes. 

2.3. Methodology 
Several studies have proposed multiple metrics for evaluating climate models. The 

metrics range from summarising features of the spatial distribution of the climatological 
mean state to summarising the temporal variability [54–57]. Some of the common and 
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widely used metrics for evaluating the spatial climatology distribution of models against 
observations are biased (difference between the modelled and observed climatological 
mean field; here, smaller values indicate better performance of the model simulation), root 
mean square error (RMSE: square root of the difference between the modelled and ob-
served climatological mean field; here smaller values indicate better performance of the 
model simulation) and pattern correlation (PCorr: correlation between the modelled and 
observed climatological mean field; Equation (1); Benesty et al. 2009 [58]). Here 𝑥𝑥𝑚𝑚 and 
𝑥𝑥𝑜𝑜 denote the values of the variable in a sample of model simulations and the observa-
tional data sets, respectively, whereas 𝑥𝑥𝑚𝑚���� and𝑥𝑥𝑜𝑜��� denote the means of the variable in a 
sample of model simulations and the observational data sets, respectively. Here, larger 
PCorr values indicate better performance of the model simulation. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
∑(𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚����)(𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑜𝑜���)

�∑(𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑚𝑚����)2  ∑(𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑜𝑜���)2
 (1) 

For analysing the performance of the models with respect to temporal variation, 
studies have proposed the evaluation of interannual variability score (IVS, Equation (2); 
Chen et al. 2011 [59]; Fan et al. 2020 [60]). Here STDm and STDo denote the interannual 
standard deviation of the model simulations and the observational data sets, respectively. 
This score analyses the performance of models with respect to temporal variation and 
suggests how well the models can reproduce the temporal standard deviation. Smaller 
IVS values indicate better performance of the model simulation. 

𝐼𝐼𝐼𝐼𝐼𝐼 = �
𝐼𝐼𝑇𝑇𝐷𝐷𝑚𝑚
𝐼𝐼𝑇𝑇𝐷𝐷𝑜𝑜

−
𝐼𝐼𝑇𝑇𝐷𝐷𝑜𝑜
𝐼𝐼𝑇𝑇𝐷𝐷𝑚𝑚

�
2

 (2) 

For each extreme index mentioned in Table 2, we calculate all the above-mentioned 
metrics, i.e., bias, RMSE, PCorr and IVS, to determine the performance of GCMs in cap-
turing the observed extremes. 

Table 2. List of ET-SCI Indices evaluated in this study. 

 Index Definition Units Timescale Sectors 

1. R99p 
Annual total precipitation when pre-

cipitation is greater than the 99th 
percentile 

mm Annual Coasts 

2. Rx1day Maximum 1-day precipitation mm Annual/Monthly Agriculture, Forestry 

3. R10mm 
Number of very heavy rain days 

(rain > 10 mm) 
days Annual/Monthly coasts 

4. CWD Consecutive wet days days Annual/Monthly 
Agriculture, Food security, 

Water resources 

5. CDD Consecutive dry days days Annual/Monthly 
Agriculture, Food security, 

Water resources 

6. TXge35 
Number of days when maximum 
temperature is greater than 35 C 

days Annual/Monthly 
Health, Agriculture and Disas-

ter and risk management 

7. TR 
Tropical nights (Number of days 
when minimum temperature  > 

 20 °C) 
days Annual/Monthly Health, forestry 

8. SU 
Summer days (Number of days 

when maximum tempera-
ture > 25 °C) 

days Annual/Monthly Health, forestry 

9. TXx Maximum maximum-temperature °C Annual/Monthly 
Agriculture and food, Energy, 

forestry 

10. TNn Minimum minimum-temperature °C Annual/Monthly 
Agriculture and food, Energy, 

forestry 
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11. CSDI 

Cold Spell Duration Indicator (An-
nual count of nights with at least 6 

consecutive nights when daily mini-
mum temperature < 10th percentile) 

days Annual 
Health, Energy, disaster risk 

reduction, Agriculture 

12. WSDI 

Warm Spell Duration Indicator (An-
nual count of days with at least 6 

consecutive days when daily maxi-
mum temperature > 90th percentile) 

days Annual 
Health, Energy, disaster risk 

reduction, Agriculture 

Not all metrics are independent, and some metrics will inevitably be correlated with 
others. Still, the effort has been made to include roughly the same number of metrics from 
each variable, minimizing this issue. Once performance metrics are calculated (i.e., biases, 
spatial RMSEs, spatial correlations, IVS score for each variable/statistic and for each time-
scale), these are normalized following Rupp et al. 2013 [54], as per Equation (3); 

𝐸𝐸𝑖𝑖,𝑗𝑗∗ =
𝐸𝐸𝑖𝑖,𝑗𝑗 − min (𝐸𝐸𝑖𝑖,𝑗𝑗)

max (𝐸𝐸𝑖𝑖,𝑗𝑗) − min (𝐸𝐸𝑖𝑖,𝑗𝑗)
 (3) 

where Ei,j is an error for a given model i and metric j. Note that for correlations, each min 
() or max () function in Equation (1) is reversed. The relative error is then summed across 
all m metrics following Rupp et al. (2013), as per Equation (4): 

𝐸𝐸𝑖𝑖,𝑡𝑡𝑜𝑜𝑡𝑡∗ =  ∑ 𝐸𝐸𝑖𝑖,𝑗𝑗  
∗𝑚𝑚

𝑖𝑖=1   (4) 

3. Results 
We evaluate indices for either monthly or annual periods (Table 2). For the annual 

indices, evaluation metrics (bias, RMSE, Pcorr and IVS) are only calculated at the annual 
timescale, whereas for the monthly indices, the evaluation metrics are calculated at both 
the annual and seasonal (December-January-February (DJF), March-April-May (MAM), 
June-July-August (JJA) and September-°October-November (SON)) timescales. Due to 
space limitations, we only show the biases at the annual scale in the main text. The biases 
at the seasonal scale are provided in the supplement. 

3.1. Climatology of Indices 
3.1.1. Precipitation Extremes 

Figures 1–5 show the observed climatological mean and biases in individual CMIP6 
GCMs for annual R99p, Rx1day, R10mm, CWD, and CDD, respectively. When assessing 
biases, we calculate the statistical significance of bias for each grid cell using t-tests (α = 
0.05) and Mann–Whitney U test for temperature and precipitation-based extremes, re-
spectively. Stippling shows statistically significant bias. 
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Figure 1. Climatological mean annual bias in total annual precipitation from very heavy rain days 
(R99p: mm) relative to the Australian Gridded Climate Data dataset (AGCD; panel 1) for the indi-
vidual CMIP6 GCMs (panels 2–38). Data spans 1951—2014. Stippling indicates statistically signifi-
cant differences using a student’s t-test at the 95% confidence level. The white masks in part of the 
inland domain are the regions with no station data. 
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Figure 2. Climatological mean annual bias in maximum 1-day precipitation (Rx1Day: mm) relative 
to the Australian Gridded Climate Data dataset (AGCD; panel 1) for the individual CMIP6 GCMs 
(panels 2–38). Data spans 1951–2014. Stippling indicates statistically significant differences using a 
student’s t-test at the 95% confidence level. The white masks in part of the inland domain are the 
regions with no station data. 

The spatial distribution of biases in R99p and Rx1day (Figures 1 and 2) look similar 
to each other. The majority of GCMS show the largest bias in the eastern half of Australia 
for both extremes. For R99p, TaiESM1 shows the least bias of 0.4 mm, and MPI-ESM1-1-
HR and BCC-CSM2-MR show the maximum dry and wet bias of 40.2 and 36.1 mm, re-
spectively. HadGEM3-GC31-MM, INM-CM4-8, TaiESM1, KIOST-ESM, ACCESS-CM2, 
FGOALS-f3-L and FGOALS-f3 show lower biases, whereas BCC-CSM2-MR and INM-
CM5-0 show higher wet bias and CNRM-CM6-1-HR, MPI-ESM-1-2-HAM, MPI-ESM1-2-
HR and MPI-ESM1-2LR (MPI Germany) show the highest dry bias respectively (Table 3). 

Table 3. Table of continentally averaged absolute bias recorded in 37 CMIP6 GCMs for the 12 ex-
treme indices. A smaller value of bias corresponds to the better performance of GCMs. Here, the 
colour green and red denote the best (top 25% subset) and worst (bottom 25% subset) performing 
GCMs. 

 GCM R99p Rx1day R10mm CWD CDD Txge35 TR SU TXX TNN WSDI CSDI 
1 ACCESS-CM2 2.67 0.51 1.08 0.43 3.49 1.05 3.4 2.01 1.44 2.78 7.09 0.07 
2 ACCESS-ESM1-5 7.9 0.2 0.98 0.69 4.12 0.13 3.63 1.25 0.45 2.56 5.07 0.81 
3 AWI-ESM-1-1-LR 20.46 0.93 8.22 1.08 1.34 3.13 3.45 2.69 2.42 2.79 3.95 1.34 
4 BCC-CSM2-MR 36.13 5.77 1.16 0.99 8.25 1.19 2.87 0.86 0.98 2.34 1.13 0.24 
5 BCC-ESM1 8.26 4.74 2.67 0.58 6.12 0.19 4.62 0.68 0.1 4.2 0.55 0.06 
6 CMCC-CM2-SR5 14.7 2.05 12.03 2.48 7.73 7.37 11 8.28 7.73 8.32 5.51 1.25 
7 CNRM-CM6-1-HR 25.56 3.15 5.18 0.72 8.39 0.68 0.18 1.02 0.98 0.89 1.43 0.77 
8 CNRM-CM6-1 21.2 1.27 1.48 0.18 3.52 1.18 1.51 1.21 1.35 1.74 3.73 0.09 



Atmosphere 2022, 13, 1478 9 of 33 
 

 

9 CNRM-ESM2-1 24.9 2.73 3.83 0.5 8.86 0.02 2.19 0.45 0.69 2.08 2.65 0.1 
10 CanESM5 19.85 1.64 2.29 1.12 6.03 1.38 2.97 0.39 1.34 1.71 5.88 1.42 
11 EC-Earth3-Veg-LR 20.43 3.01 3.92 1.39 2.8 1.45 1.66 0.86 1.39 2.23 6.76 0.27 
12 EC-Earth3-Veg 22.35 3.42 1.53 0.89 4.76 0.47 2.46 0.27 0.48 2.56 9.38 0.91 
13 EC-Earth3 21.91 3.89 0.4 0.53 5.37 0.06 2.6 0.72 0.08 2.82 13.37 1.19 
14 FGOALS-f3-L 1.35 1.73 3.83 0.62 6.99 1.83 1.33 2.55 1.95 2.64 8.03 1.33 
15 FGOALS-g3 2.04 1.04 0.27 0.91 8.18 0.8 2.5 0.94 1.01 3.1 2.23 0.67 
16 GFDL-CM4 7.91 0.25 3.36 0.25 3.05 2.23 0.92 3.49 1.97 0.09 2.08 0.54 
17 GFDL-ESM4 4.06 0.06 1.42 0.04 6.54 1.88 2.78 2.82 1.79 1.81 3.66 1.37 
18 HadGEM3-GC31-LL 4.01 0.71 0.58 0.45 4.17 0.83 0.52 1.48 0.73 0.8 3.84 1.62 

19 
HadGEM3-GC31-
MM 

1.52 1.32 3.7 0.03 1.84 0.63 0.21 0.48 0.22 0.46 1.96 1.89 

20 INM-CM4-8 3.62 0.94 6.63 3.69 14.56 2.24 1.77 1.64 1.84 1.67 3.87 0.19 
21 INM-CM5-0 27.21 2.89 3.84 2.76 13.8 2.03 0.6 2.51 2.01 0.49 1.98 0.83 
22 IPSL-CM6A-LR 3.33 2.51 10.22 2.51 8.08 5.01 2.91 3.92 4.05 2.61 6.94 1.28 
23 KACE-1-0-G 14.99 3.14 5.43 0.14 0.33 0.66 0.32 0.45 0.1 0.87 3.09 1.67 
24 KIOST-ESM 2.29 2.02 3.61 1.15 1.62 8 3.43 3.97 8.54 2.56 0.4 0.59 
25 MIR°C-ES2L 4.29 0.08 5.11 2.2 9.67 1.77 4.58 0.72 1.01 4.72 3.93 1.12 
26 MIR°C6 13.48 5.35 7.35 1.25 10.31 4.88 4.56 1.75 4.75 4.51 1.86 0.34 
27 MPI-ESM-1-2-HAM 28.14 2.67 7.53 0.55 4.5 2.57 3.46 1.8 2.11 2.93 1.45 1.13 
28 MPI-ESM1-2-HR 40.21 7.26 7.86 1.02 30.31 1.09 4.98 0.03 0.3 3.95 2.42 0.51 
29 MPI-ESM1-2-LR 33.52 5.83 2.56 0.51 19.27 0.45 4.41 0.76 0.39 3.1 4.25 0.01 
30 MRI-ESM2-0 19.27 3.16 3.82 0.09 0.44 1.99 3.59 0.08 1.81 2.09 0.51 1.37 
31 NESM3 19.6 1.05 14.22 1.04 5.21 6.13 9.27 7.16 6.61 7.05 5.01 0.27 
32 NorCPM1 3.92 1.17 12.52 3.19 10.02 6.07 0.56 5 5.11 1.93 2.57 1.96 
33 NorESM2-LM 5.81 1.79 6.31 1.34 6.61 2.81 4.65 2.79 2.53 4.43 1.45 0.71 
34 NorESM2-MM 8.97 4.47 8.02 1.16 7.79 3.09 3.41 2.98 2.48 3.54 0.11 0.39 
35 SAM0-UNICON 14.16 1.66 7.89 1.62 2.66 2.58 1.92 1.64 1.81 2.55 6 1.39 
36 TaiESM1 0.44 1.32 7.09 1.62 6.41 7.1 11.14 8.52 7.34 8.35 3.9 0.95 
37 UKESM1-0-LL 4.06 1.16 2.68 0.04 1.31 0.88 0.71 1.7 0.89 0.26 7.11 1.01 

For Rx1day, GCMs typically show absolute mean biases in the range of 0.1 mm 
(MIR°C-ES2L) and 7.3 mm (MPI-ESM1-2-HR). Here, ACCESS-CM2, ACCESS-ESM1-5 
(Australian Community), AWI-ESM-1-1-LR, FGOALS-g3, HadGEM3-GC31-LL, INM-
CM4-8, GFDL-ESM4 and GFDL-CM4 (NOAA) show the lowest bias whereas BCC-CSM2-
MR, BCC-ESM1 (Beijing Climate Centre), MPI-ESM1-2-HR, MPI-ESM1-2LR, MIR°C6, 
NorESM2-MM, EC-Earth3-Veg and EC-Earth3 (EC-Earth Consortium) show the largest 
bias (~ 4–7 mm) (Table 3) both wet and dry. 

For both R99p and Rx1day, there are two subsets of GCMs showing greater dry bias 
(EC-Earth-Veg-LR, EC-Earth3-Veg and EC-Earth3 (EC-Earth Consortium), MPI-ESM-1-2-
HAM, MPI-ESM1-2-HR and MPI-ESM1-2-LR (MPI-Germany)) and wet bias (BCC-CSM2-MR 
and BCC-ESM1 (Beijing Climate Centre), INM-CM4-8 and INM-CM5-0 (INM Russia)). 
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Figure 3. Climatological mean annual bias in the number of very heavy rain days (rain > 10 mm) 
(R10mm: days) relative to the Australian Gridded Climate Data dataset (AGCD; panel 1) for the 
individual CMIP6 GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates statistically sig-
nificant differences using a student’s t-test at the 95% confidence level. The white masks in part of 
the inland domain are the regions with no station data. 

For R10mm (Figure 3), ACCESS-CM2, ACCESS-ESM1-5 (Australian Community), 
BCC-CSM2-MR, CNRM-CM6-1, FGOALS-g3, GFDL-ESM4, HadGEM3-GC31-LL show 
the smallest wet bias whereas AWI-ESM-1-1-LR, CMCC-CM2-SR5, IPSL-CM6A-LR, MPI-
ESM-1-2-HAM, MPI-ESM1-2-HR, NESM3, NorCPM1, NorESM2-MM and SAM0- 
UNICON show the largest wet bias. Like R99p and Rx1day, GCMs for R10mm also show 
greater bias in eastern Australia than elsewhere. 
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Figure 4. Climatological mean annual bias in consecutive wet days (CWD: days) relative to the Aus-
tralian Gridded Climate Data dataset (AGCD; panel 1) for the individual CMIP6 GCMs (panels 2–
38). Data spans 1951–2014. Stippling indicates statistically significant differences using a student’s 
t-test at the 95% confidence level. The white masks in part of the inland domain are the regions with 
no station data. 

 
Figure 5. Climatological mean annual bias in consecutive dry days (CDD: days) relative to the Aus-
tralian Gridded Climate Data dataset (AGCD; panel 1) for the individual CMIP6 GCMs (panels 2–
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38). Data spans 1951–2014. Stippling indicates statistically significant differences using a student’s 
t-test at the 95% confidence level. The white masks in part of the inland domain are the regions with 
no station data. 

For CDD and CWD (Figures 4 and 5), GCMs do not show large spatial variation in 
the sign of the bias. In addition to this, the GCMs with dry and wet biases in R99p and 
Rx1day overestimate (CDD) and underestimate (CWD) consecutive days, respectively. 
For CWD, GCMs typically show a small bias (between 0.5–2.5 days); however, there are 
outlier GCMs (INM-CM4-8 and NorCPM1) which show biases greater than 3 days. Here, 
ACCESS-CM2, GFDL-ESM4, GFDL-CM4 (NOAA), HadGEM3-GC31-LL and HadGEM3-
GC31-MM (Hadley Centre) are found to be top performers (top 25% subset). In addition, 
CNRM-CM6-1, KACE-1-0-G, MRI-ESM2-0 and UKESM1-0-LL also show small biases and 
are among the top performers. For CDD, GCMs typically show a very strong bias (be-
tween 4–10 days) compared to CWD. Outlier GCMs show bias greater than 10 days; for 
example, MPI-ESM1-2-HR show the strongest bias of 30.3 days, whereas INM-CM4-8 and 
INM-CM5-0 (INM Russia) show biases greater than 15 days. 

The large biases in CDD for GCMs from CNRM, INM Russia, MPI Germany, and 
National Institute for Environmental Studies Japan suggest that some GCMs typically 
struggle to capture the CDD. This can be attributed to the drizzle problem in GCMs. Past 
studies have suggested that convective precipitation generated by the cumulus parame-
terisation in coarse resolution GCMs is too frequent and long-lasting with reduced inten-
sity, leading to the “drizzling” bias [61]. The drizzling bias impedes realistic representa-
tion of precipitation extremes like CDD and results in a large bias. 

Spatial maps of biases at seasonal timescales for Rx1day (Figures S1–S4), R10mm 
(Figures S5–S8), CWD (Figures S9–S12) and CDD (Figures S13–S16) are provided in the 
supplementary material. A comparison of seasonal biases showed a similar story as the 
annual biases for all the precipitation extremes, i.e., GCMs with annual dry and wet biases 
demonstrate similar seasonal dry and wet biases, and those biases have similar spatial 
distributions. 

We observe that models from the same parent institution tend to have similar biases 
for precipitation extremes (i.e., in terms of spatial structure, sign and magnitude). For ex-
ample, both GCMs from the Beijing Climate Centre: BCC-CSM2-MR and BCC-ESM1, 
show wet biases in most parts of the continent. Similarly, GCMs from Norwegian Climate 
Centre: NorCPM1, NorESM2-LM and NorESM2-MM and GCMs from INM Russia: INM-
CM4-8 and INM-CM5-0 also have wet biases over most parts of Australia. The GCMs from 
MPI Germany: MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-2-LR, respectively, 
show dry biases across the continent. We note that GCMs from the same parent institution 
often share key modelling components such as land-surface components, atmospheric 
and °Ocean models and are thus not highly independent of each other. 

Although GCMs from the same parent institution can show large inter-model simi-
larity, GCMs from the Chinese Academy of Sciences appear more independent. Here, 
FGOALS-f3-L shows dry bias, whereas FGOALS-g3 shows wet bias for most precipitation 
indices except for Rx1day. After investigating details about the model configurations, we 
found that both these GCMs have substantial differences in their components. For exam-
ple, FGOALS-f3-L is a fully coupled climate system model consisting of four component 
models, whereas FGOALS-g3 comprises five components [62]. In FGOALS-f3-L, all the 
component models are coupled via the NCAR Coupler 7 [63], whereas, in FGOALS-g3, all 
the component models are coupled via Community Coupler, version 2 (C-Coupler2), de-
veloped by Tsinghua University [64]. These differences between the modelling compo-
nents of these two GCMs are likely the reason for their dissimilarity. 
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Typically, for most precipitation extremes, the GCMs which show large bias also 
show large RMSE. At the annual timescale, for Rx1day and R99p, CNRM-CM6-1-HR, 
MPI-ESM-1-2-HAM, NESM3, and EC-Earth3-Veg-LR show the smallest RMSE, whereas 
BCC-CSM2-MR, BCC-ESM1 (Beijing Climate Centre), CanESM5, FGOALS-f3-L, INM-
CM5-0, MIR°C6 and NorESM2-MM show the largest RMSE (Table 4). For R10mm and 
CWD, HadGEM3-GC31-LL, HadGEM3-GC31-MM (Hadley Centre), GFDL-ESM4, GFDL-
CM4 (NOAA), and UKESM1-0-LL show the smallest RMSE whereas SAM0-UNICON, 
NorCPM1, IPSL-CM6A-LR and CMCC-CM2-SR5 show the largest RMSE. 

Table 4. Table of continentally averaged root mean square error (RMSE) recorded in 37 CMIP6 
GCMs for the 12 extreme indices. A smaller value of RMSE corresponds to the better performance 
of GCMs. Here, the colour green and red denote the best (top 25% subset) and worst (bottom 25% 
subset) performing GCMs. 

 GCM R99p Rx1day R10mm CWD CDD Txge35 TR SU TXX TNN WSDI CSDI 
0 ACCESS-CM2 74.87 5.71 0.65 1.05 7.5 2.25 3.47 2.3 1.81 2.79 18.7 4.66 
1 ACCESS-ESM1-5 73.24 5.46 0.58 1.08 7.84 1.98 3.67 1.78 1.28 2.58 15.37 4.12 
2 AWI-ESM-1-1-LR 59.12 5.32 0.97 1.54 9.38 3.49 3.59 2.96 2.58 2.81 17.41 5.37 
3 BCC-CSM2-MR 92.9 8.11 0.62 1.28 9.56 1.93 3.1 1.44 1.45 2.48 11.12 4.15 
4 BCC-ESM1 77.92 7.66 0.72 1.22 8.9 1.88 4.72 1.56 1.44 4.23 12.65 4.5 
5 CMCC-CM2-SR5 76 5.62 1.15 2.62 9.19 7.37 11 8.28 7.73 8.32 16.22 3.76 
6 CNRM-CM6-1-HR 57.55 5.14 0.66 1.03 11.53 1.82 1.83 1.61 1.24 1.33 11.96 4.08 
7 CNRM-CM6-1 60.66 5.14 0.65 0.93 9.43 2.14 2.29 1.9 1.6 1.9 14.28 4.89 
8 CNRM-ESM2-1 60.04 5.42 0.66 0.98 13.31 1.76 2.7 1.66 1.2 2.2 12.85 4.52 
9 CanESM5 82.74 6.4 0.7 1.5 9.15 2.66 3.12 1.79 2.48 2.25 16.77 3.76 
10 EC-Earth3-Veg-LR 58.24 5.11 0.75 1.71 8.47 2.67 2.21 2.09 1.9 2.38 17.32 4.1 
11 EC-Earth3-Veg 58.84 5.29 0.66 1.37 9.79 2.52 2.71 1.71 1.43 2.61 18.36 3.94 
12 EC-Earth3 57.8 5.31 0.59 1.13 9.66 2.39 2.85 1.61 1.24 2.85 20.48 3.61 
13 FGOALS-f3-L 73.3 6.41 0.64 1.05 11.76 2.31 1.86 2.76 2.05 2.68 17.66 3.56 
14 FGOALS-g3 68.62 5.37 0.61 1.29 9.52 1.91 2.73 1.59 1.48 3.12 12.86 3.74 
15 GFDL-CM4 65.14 5.22 0.56 0.81 8.64 2.61 1.6 3.52 2.06 1.11 13.51 4.21 
16 GFDL-ESM4 68.16 5.48 0.56 0.9 11.76 2.48 2.93 3.01 1.96 1.92 14.85 3.46 
17 HadGEM3-GC31-LL 71.27 5.25 0.59 1.01 7.45 2.11 1.73 1.82 1.33 1.67 14.47 3.63 
18 HadGEM3-GC31-MM 68.15 5.03 0.55 0.75 6.68 1.72 1.48 1.19 0.98 1.29 12.15 3.33 
19 INM-CM4-8 70.85 5.35 0.8 3.72 14.6 2.92 2.23 2.09 2.06 2.24 14.42 4.08 
20 INM-CM5-0 88.48 6.26 0.71 2.81 13.86 2.86 1.91 2.73 2.17 1.92 14.45 4.8 
21 IPSL-CM6A-LR 69.71 6.03 1.09 2.72 9.96 5.06 3.02 3.95 4.06 2.64 16.42 3.77 
22 KACE-1-0-G 61.6 5.36 0.64 0.89 8.05 1.82 1.77 1.44 1.26 1.68 13.22 3.34 
23 KIOST-ESM 69.4 5.47 0.62 1.55 7.83 8.18 3.58 4.38 8.59 2.71 15.19 4.85 
24 MIR°C-ES2L 61.93 4.74 0.74 2.3 10.43 2.49 4.65 1.51 1.77 4.72 14.34 5.14 
25 MIR°C6 75.53 7.43 0.85 1.47 11.06 5.04 4.58 2.15 4.85 4.51 15.75 4.24 
26 MPI-ESM-1-2-HAM 54.65 5.08 1.02 1.38 10.63 2.99 3.5 2.18 2.29 2.93 12.41 5.27 
27 MPI-ESM1-2-HR 53.7 7.71 0.78 1.3 32.47 2.04 4.99 1.26 1.11 3.95 14.84 4.07 
28 MPI-ESM1-2-LR 55.17 6.69 0.63 1.09 21.65 1.98 4.42 1.56 1.31 3.11 15.38 4.29 
29 MRI-ESM2-0 62.8 5.69 0.63 0.86 8.42 2.51 3.62 1.49 2.23 2.21 13 3.79 
30 NESM3 59.32 4.55 1.39 1.48 9.77 6.14 9.27 7.18 6.61 7.05 16.01 4.46 
31 NorCPM1 66.8 5.41 1.27 3.28 10.86 6.07 2.02 5.03 5.12 2.13 14.84 5.57 
32 NorESM2-LM 64.93 5.99 0.9 1.64 9.31 3.09 4.66 2.87 2.62 4.43 13.61 5.02 
33 NorESM2-MM 72.54 6.86 0.88 1.38 9.36 3.21 3.5 3.06 2.52 3.54 12.47 4.43 
34 SAM0-UNICON 79.68 6.16 1 1.96 8.65 3.14 2.25 2.08 2 2.63 15.61 5.53 
35 TaiESM1 67.91 5.45 0.87 1.86 9.25 7.1 11.14 8.52 7.34 8.35 16.41 4.04 
36 UKESM1-0-LL 71.46 5.09 0.57 0.85 7.25 1.91 1.71 1.92 1.35 1.55 15.48 3.88 

For CDD, MPI-ESM1-2-HR and MPI-ESM1-2-LR (MPI Germany) show the largest 
RMSE, whereas HadGEM3-GC31-LL, HadGEM3-GC31-MM (Hadley Centre), UKESM1-
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0-LL, ACCESS-CM2 and ACCESS-ESM1-5 (Australian Community) show the smallest 
RMSE (Table 4). 

For PCorr and IVS (Tables 5 and 6), GCMs show approximately similar results to the 
bias and RMSE evaluation, i.e., GCMs which show low bias and RMSE also capture spatial 
(have high Pcorr) and temporal patterns (have low IVS score) well, like HadGEM3-GC31-
LL, HadGEM3-GC31-MM, GFDL-ESM4, GFDL-CM4 and UKESM1-0-LL. There are also 
exceptions to this pattern. For example, EC-Earth-Veg-LR, EC-Earth3-Veg and EC-Earth3 
(EC-EARTH Consortium) show top and average performance for PCorr and IVS, respec-
tively, but they are not always in the top performing models for bias and RMSEs for most 
indices. 

Table 5. Table of pattern correlation (PCorr) recorded in 37 CMIP6 GCMs for the 12 extreme indices. 
A larger value of PCorr corresponds to the better performance of GCMs. Here, the colour green and 
red denote the best (top 25% subset) and worst (bottom 25% subset) performing GCMs. 

 GCM R99p Rx1day R10mm CWD CDD Txge35 TR SU TXX TNN WSDI CSDI 
0 ACCESS-CM2 0.62 0.79 0.9 0.87 0.81 0.96 0.98 0.98 0.96 0.97 0.67 0.41 
1 ACCESS-ESM1-5 0.64 0.73 0.89 0.9 0.75 0.95 0.97 0.98 0.94 0.95 0.76 0.61 
2 AWI-ESM-1-1-LR 0.43 0.69 0.85 0.83 0.65 0.88 0.98 0.98 0.96 0.95 0.64 0.53 
3 BCC-CSM2-MR 0.8 0.77 0.83 0.87 0.62 0.97 0.96 0.99 0.95 0.94 0.68 0.32 
4 BCC-ESM1 0.54 0.57 0.8 0.68 0.52 0.94 0.9 0.98 0.89 0.85 0.64 0.39 
5 CMCC-CM2-SR5 0.62 0.8 0.83 0.77 0.78 0.37 0.96 0.95 0.95 0.98 0.67 0.32 
6 CNRM-CM6-1-HR 0.64 0.86 0.72 0.79 0.83 0.97 0.94 0.98 0.97 0.96 0.77 0.39 
7 CNRM-CM6-1 0.46 0.76 0.77 0.83 0.78 0.97 0.96 0.97 0.97 0.96 0.71 0.48 
8 CNRM-ESM2-1 0.59 0.8 0.8 0.83 0.81 0.97 0.95 0.98 0.97 0.95 0.66 0.41 
9 CanESM5 0.65 0.69 0.86 0.8 0.62 0.91 0.94 0.98 0.92 0.89 0.65 0.36 

10 EC-Earth3-Veg-LR 0.63 0.89 0.92 0.91 0.84 0.84 0.97 0.97 0.92 0.95 0.73 0.22 
11 EC-Earth3-Veg 0.66 0.9 0.9 0.91 0.86 0.85 0.97 0.98 0.92 0.96 0.74 0.31 
12 EC-Earth3 0.73 0.91 0.92 0.93 0.85 0.87 0.97 0.98 0.93 0.96 0.68 0.13 
13 FGOALS-f3-L 0.67 0.87 0.87 0.76 0.8 0.95 0.98 0.96 0.95 0.96 0.73 0.44 
14 FGOALS-g3 0.72 0.74 0.86 0.81 0.69 0.97 0.97 0.98 0.94 0.93 0.73 0.54 
15 GFDL-CM4 0.73 0.85 0.94 0.95 0.81 0.95 0.99 0.98 0.98 0.98 0.58 0.23 
16 GFDL-ESM4 0.68 0.86 0.94 0.95 0.81 0.92 0.98 0.96 0.97 0.96 0.72 0.48 
17 HadGEM3-GC31-LL 0.73 0.84 0.92 0.89 0.77 0.94 0.96 0.99 0.95 0.9 0.71 0.52 
18 HadGEM3-GC31-MM 0.76 0.88 0.96 0.96 0.81 0.98 0.97 0.99 0.98 0.94 0.7 0.38 
19 INM-CM4-8 0.36 0.68 0.92 0.81 0.72 0.78 0.95 0.98 0.94 0.87 0.74 0.43 
20 INM-CM5-0 0.59 0.8 0.9 0.82 0.66 0.81 0.94 0.97 0.95 0.87 0.75 0.45 
21 IPSL-CM6A-LR 0.63 0.74 0.77 0.8 0.59 0.65 0.97 0.97 0.98 0.95 0.7 0.27 
22 KACE-1-0-G 0.72 0.82 0.91 0.87 0.73 0.95 0.95 0.98 0.91 0.91 0.7 0.32 
23 KIOST-ESM 0.7 0.74 0.79 0.79 0.72 0.69 0.96 0.91 0.72 0.93 0.57 0.5 
24 MIR°C-ES2L 0.8 0.8 0.87 0.81 0.65 0.92 0.9 0.97 0.87 0.89 0.62 0.48 
25 MIR°C6 0.73 0.73 0.9 0.86 0.6 0.91 0.96 0.98 0.92 0.95 0.59 0.49 
26 MPI-ESM-1-2-HAM 0.64 0.73 0.71 0.69 0.59 0.92 0.97 0.99 0.95 0.96 0.76 0.42 
27 MPI-ESM1-2-HR 0.49 0.72 0.88 0.86 0.78 0.98 0.98 0.99 0.98 0.97 0.65 0.55 
28 MPI-ESM1-2-LR 0.69 0.78 0.86 0.88 0.75 0.95 0.98 0.99 0.94 0.96 0.72 0.46 
29 MRI-ESM2-0 0.62 0.8 0.92 0.89 0.69 0.97 0.99 0.99 0.97 0.96 0.66 0.53 
30 NESM3 0.65 0.76 0.76 0.8 0.77 0.44 0.94 0.92 0.89 0.96 0.74 0.19 
31 NorCPM1 0.6 0.61 0.73 0.73 0.71 0.61 0.95 0.95 0.9 0.93 0.49 0.4 
32 NorESM2-LM 0.75 0.68 0.79 0.8 0.59 0.9 0.97 0.98 0.93 0.95 0.6 0.61 
33 NorESM2-MM 0.71 0.74 0.86 0.89 0.7 0.92 0.98 0.99 0.96 0.97 0.68 0.58 
34 SAM0-UNICON 0.63 0.69 0.8 0.85 0.65 0.81 0.98 0.98 0.94 0.96 0.66 0.51 
35 TaiESM1 0.77 0.9 0.9 0.87 0.82 0.51 0.96 0.93 0.96 0.97 0.67 0.27 
36 UKESM1-0-LL 0.66 0.86 0.92 0.91 0.76 0.97 0.96 0.99 0.95 0.91 0.64 0.37 
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Table 6. Table of interannual variability score (IVS) recorded in 37 CMIP6 GCMs for the 12 extreme 
indices. A smaller value of IVS corresponds to the better performance of GCMs. Here, the colour 
green and red denote the best (top 25% subset) and worst (bottom 25% subset) performing GCMs. 

 GCM R99p Rx1day R10mm CWD CDD Txge35 TR SU TXX TNN WSDI CSDI 
0 ACCESS-CM2 7.41 0.26 0.05 0.07 1.55 0.09 0.2 0.09 0.06 0.07 4.56 0.3 
1 ACCESS-ESM1-5 5.57 0.15 0.04 0.04 1.59 0.36 0.14 0.23 0.03 0.14 2.2 0.49 
2 AWI-ESM-1-1-LR 6.15 0.06 0.17 0.28 0.85 0.15 0.32 0.65 0.43 0.1 5.46 0.6 
3 BCC-CSM2-MR 6.53 0.18 0.07 0.01 3.01 0.55 0.04 0.08 0.14 0.05 3.06 0.46 
4 BCC-ESM1 1.44 0.4 0.03 0.06 2.39 0.42 0.03 0.17 0.09 0.07 1.17 0.19 
5 CMCC-CM2-SR5 12.05 1.12 0.28 0.51 0.38 0.73 0.4 0.29 0.14 0.28 7.59 0.33 
6 CNRM-CM6-1-HR 6.13 0.65 0.11 0.12 1.06 0.03 0.22 0.08 0.14 0 0.24 0.37 
7 CNRM-CM6-1 5.41 0.45 0.05 0.06 0.04 0.26 0.22 0.13 0.08 0.11 0.07 0.55 
8 CNRM-ESM2-1 4.2 0.37 0.04 0.04 0.77 0.21 0.1 0.24 0.05 0.03 0.18 0.23 
9 CanESM5 6.31 0.19 0.06 0.12 1.75 0.13 0.03 0.26 0.14 0.05 3.35 0.96 

10 EC-Earth3-Veg-LR 3.38 0.25 0.13 0.48 0.03 0.1 0.17 0.68 0.41 0.03 7.03 0.06 
11 EC-Earth3-Veg 5.85 0.56 0.01 0.22 0.01 0.14 0.15 0.26 0.07 0.03 4.94 0.6 
12 EC-Earth3 4.99 0.7 0.01 0.05 0.92 0.11 0.15 0.08 0.09 0.05 6.74 0.64 
13 FGOALS-f3-L 1.64 0.57 0.07 0.1 0.06 0.35 0.17 0.21 0.1 0 3.71 0.41 
14 FGOALS-g3 4.02 0.06 0.02 0.11 2.21 0.32 0.02 0.02 0.14 0.11 1.55 0.16 
15 GFDL-CM4 1.18 0.08 0.05 0.03 0.87 0.3 0.12 0.1 0.05 0.18 1.09 0.24 
16 GFDL-ESM4 0.61 0.3 0.01 0.13 1.72 0.3 0.21 0.37 0.06 0.04 2.8 0.82 
17 HadGEM3-GC31-LL 0.3 0.27 0.05 0.01 1.9 0.37 0.17 0.03 0.11 0.14 1.53 1.2 

18 
HadGEM3-GC31-
MM 0.8 0.46 0.11 0.1 2.02 0.46 0.11 0.06 0.09 0.07 0.66 1.22 

19 INM-CM4-8 2.1 0.47 0.07 0.21 3.51 0.22 0.05 0.08 0.02 0.14 3.26 0 
20 INM-CM5-0 3.58 0.33 0.02 0.06 3.18 0.25 0.02 0.02 0.05 0.12 0.58 0.22 
21 IPSL-CM6A-LR 4.62 0.42 0.17 0.48 2.36 0.33 0 0.09 0.05 0 3.46 0.73 
22 KACE-1-0-G 0.07 0.39 0.08 0.03 0.88 0.34 0.04 0.06 0.16 0.01 0.36 1 
23 KIOST-ESM 4.8 0.67 0.13 0.05 2.45 0.24 0.55 0.33 0.55 0.14 0.37 0.91 
24 MIR°C-ES2L 1.51 0.38 0.03 0.24 2.38 0.16 0.03 0.06 0.06 0.04 1.19 0.76 
25 MIR°C6 2.88 0.82 0.12 0.1 2.44 0.31 0.43 0.26 0.69 0.11 3.88 0.14 
26 MPI-ESM-1-2-HAM 5.57 0.58 0 0.02 0.15 0.4 0.08 0.29 0.05 0.01 0.23 0.65 
27 MPI-ESM1-2-HR 10.16 0.6 0.03 0.04 7.84 0.06 0.01 0.12 0.06 0.04 1.03 0.26 
28 MPI-ESM1-2-LR 9.41 0.43 0.02 0.05 3.69 0.02 0.25 0.26 0.14 0.11 2.98 0.41 
29 MRI-ESM2-0 1.81 0.26 0.03 0.03 0.69 0.2 0.12 0.23 0.01 0.11 1.95 0.18 
30 NESM3 3.92 0.86 0.07 0.04 1.75 0.59 0.02 0.03 0.07 0.02 2.6 0.31 
31 NorCPM1 0.09 0.34 0.14 0.37 2.29 0.39 0.06 0.42 0.15 0.02 1.97 0.9 
32 NorESM2-LM 0.4 0.59 0.15 0.17 1.81 0.35 0.07 0.2 0.19 0.09 0.18 0.42 
33 NorESM2-MM 2.06 1.35 0.24 0.28 0.79 0.04 0.12 0.1 0.01 0.07 0.07 0.13 
34 SAM0-UNICON 6.38 0.5 0.23 0.38 0.07 0.06 0.19 0.2 0.09 0.07 1.39 1.36 
35 TaiESM1 5.02 0.66 0.16 0.35 0.33 0.79 0.25 0.13 0.08 0.17 3.3 0.43 
36 UKESM1-0-LL 2.85 0.6 0.11 0.11 1.82 0.3 0.16 0.14 0.03 0.11 0.88 0.47 

3.1.2. Temperature Extremes 
Figures 6–12 show the observed annual climatological mean and biases in CMIP6 

GCMs for TXx, TXge35, SU, TNn, TR, WSDI and CSDI, respectively. On average, most 
GCMs typically show cold biases for hot extremes and warm biases for cold extremes, 
except for WSDI and CSDI. However, the magnitude of bias for cold extremes is generally 
larger than that of hot extremes. There also exists an exception to this pattern. For exam-
ple, CanESM5, KIOST-ESM, MIR°C-ES2L, MIR°C6 and MRO-ESM2-0 show strong hot 
bias for hot extremes, whereas GFDL-CM4, USESM1-0-LL and NorCPM1 show slight cold 
bias for cold extremes. In addition, GCMs which struggle to capture the extremes of max-
imum temperature also perform poorly in capturing extremes of minimum temperature. 
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Figure 6. Climatological mean annual bias in maximum maximum temperature (TXx: °C) relative 
to the Australian Gridded Climate Data dataset (AGCD; panel 1) for the individual CMIP6 GCMs 
(panels 2–38). Data spans 1951–2014. Stippling indicates statistically significant differences using a 
student’s t-test at the 95% confidence level. 
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Figure 7. Climatological mean annual bias in the number of days when maximum temperature is 
greater than 35 C (Txge35: days) relative to the Australian Gridded Climate Data dataset (AGCD; 
panel 1) for the individual CMIP6 GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates 
statistically significant differences using a student’s t-test at the 95% confidence level. 
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Figure 8. Climatological mean annual bias in summer days (number of days when maximum tem-
perature > 25 °C) (SU: days) relative to the Australian Gridded Climate Data dataset (AGCD; panel 
1) for the individual CMIP6 GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates statisti-
cally significant differences using a student’s t-test at the 95% confidence level. 

In Figure 6, GCMs KIOST-ESM, MIR°C6, CanESM5 and MRI-ESM2-0 show the 
strongest warm biases (~ 2–8 °C), whereas NorCPM1, NorESM2-LM and NorESM2-MM 
(Norwegian Climate Centre), TaiESM1, IPSL-CM6A-LR and CMCC-CM2-SR5 show the 
strongest cold bias (~ −2 to −10 °C) throughout the continent. Previously, Alexander & 
Arblaster (2017) [11] evaluated CMIP5 GCMs and noted that GCMs from the MIR°C fam-
ily show a strong warm bias over Australia. Our results are broadly consistent with these 
findings. Most GCMs typically show cold bias ranging from −1 to −3 °C. Txge35 (Figure 
7) and SU (Figure 8) follow a similar pattern to TXx, and the GCMs with warm bias in TXx 
also overestimate TXge35 and SU, whereas GCMs with cold bias in TXx, underestimate 
TXge35 and SU. 

Overall, for hot extremes (TXx, Txge35 and SU), BCC-ESM1, CNRM-ESM2-1, EC-
Earth3-Veg, EC-Earth3, HadGEM3-GC31-MM, MPI-ESM1-2-HR and KACE-1-0-G are 
found to be top-performing GCMs whereas CMCC-CM2-SR5, IPSL-CM6A-LR, KIOST-
ESM, MIR°C6, NESM3, NorCPM1, NorESM2-MM and TaiESM1 are found to be the worst-
performing GCMs (Table 3). 
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Figure 9. Climatological mean annual bias in the minimum minimum temperature (TNn: °C) rela-
tive to the Australian Gridded Climate Data dataset (AGCD; panel 1) for the individual CMIP6 
GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates statistically significant differences 
using a student’s t-test at the 95% confidence level. 

For TNn (Figure 9), most GCMs typically show warm biases over the entire continent. 
The GCMs GFDL-CM4 and UKESM1-0-LL show slight cold biases in western and eastern 
Australia. However, the magnitude of these biases is small (~ −0.2–0.5 °C). CanESM5, 
GFDL-CM4, KACE-1-0-G, UKESM1-0-LL, HadGEM3-GC31-LL, HadGEM3-GC31-MM 
(Hadley Centre), INM-CM4-8 and INM-CM5-0 (INM Russia) show the smallest bias. 
TaiESM1, CMCC-CM2-SR5 and NESM3 show the largest bias of ~ −7 to −8.5 °C (Table 3). 
The GCMs with large warm biases in TNn (TaiESM1, CMCC-CM2-SR5 and NESM3) also 
show large overestimations in TR (Figure 10 ~10–12 days). For all other GCMs, overesti-
mation in TR varies between 2–5 days. 
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Figure 10. Climatological mean annual bias in tropical nights (number of days when minimum tem-
perature > 20 °C (TR: days) relative to Australian Gridded Climate Data dataset (AGCD; panel 1), 
for the individual CMIP6 GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates statisti-
cally significant differences using a student’s t-test at the 95% confidence level. 

The GCMs typically overestimate CSDI in northern and central Australia, whereas 
they underestimate cold spell durations over other parts of Australia, including the heav-
ily populated east coast (Figure 11). However, these biases are not found to be significant. 
GFDL-ESM4, HadGEM3-1LL, HadGEM3-GC31-MM and KACE-1-0G show underestima-
tion throughout the domain. In terms of bias magnitude, ACCESS-CM2, BCC-CSM2-MR 
and BCC-ESM1 (Beijing Climate Centre), CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3-Veg-
LR, INM-CM4-8, MPI-ESM1-2-LR and NESM3 show the smallest bias (<0.3 days), whereas 
NorCPM1, SAMO-UNICON, CanESM5, GFDL-ESM4, HadGEM3-GC31-LL and 
HadGEM3-GC31-MM (Hadley Centre), MRI-ESM2-0 and AWI-ESM-1-1LR show the larg-
est biases (>1 day). 
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Figure 11. Climatological mean annual bias in the annual count of nights with at least 4 consecutive 
nights when daily minimum temperature < 10th percentile (CSDI: days) relative to Australian Grid-
ded Climate Data dataset (AGCD; panel 1), for the individual CMIP6 GCMs (panels 2–38). Data 
spans 1951–2014. Stippling indicates statistically significant differences using a student’s t-test at the 
95% confidence level. 

For WSDI (Figure 12), biases are much larger than CSDI. The large biases in WSDI 
compared to CSDI can be attributed to the observed WSDI (Figure 12, panel 1) typically 
being 4-times higher than CDSI (Figure 11, panel 1). Here, except for ACCESS-CM2 and  
ACCESS-ESM1-5 (Australian Community) and EC-Earth-Veg-LR, EC-Earth3-Veg and 
EC-Earth3 (EC-Earth consortium), all other GCMs overestimate warm spells in northern 
and central Australia and underestimate them in other parts of the domain. Positive biases 
are mostly significant, whereas negative biases are mostly not significant. The EC-Earth 
consortium GCMs show the largest bias (~ >8 days), followed by ACCESS-CM2, 
CanESM5, FGOALS-f3-L, IPSL-CM6A-LR, TaiESM1 and UKESM1-0-LL. 
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Figure 12. Climatological mean annual bias in the annual count of days with at least 4 consecutive 
days when daily maximum temperature > 90th percentile (WSDI: days) relative to Australian Grid-
ded Climate Data dataset (AGCD; panel 1), for the individual CMIP6 GCMs (panels 2–38). Data 
spans 1951–2014. Stippling indicates statistically significant differences using a student’s t-test at the 
95% confidence level. 

Similar to precipitation extremes, the biases at the seasonal scale for temperature ex-
tremes (TXx (Figures S17–S20), Txge35 (Figure S21–S24), SU (Figures S25–S28), TNn (Fig-
ures S29–S32) and TR (Figures S33–S36) mimicked the annual biasesz (Supplementary 
Materials), i.e., GCMs with cold and warm biases at annual scales also exhibit cold and 
warm seasonal biases, respectively, and these biases have approximately similar spatial 
distributions. For impact modellers and stakeholders using GCM data, bias corrections of 
extremes are recommended. 

In terms of RMSE, for all the temperature extremes except WSDI and CSDI, a com-
mon pattern is seen, i.e., GCMs that show large biases also show large RMSEs and vice 
versa (Table 4). Hence, the evaluation of GCM performance remains robust across bias 
and RMSE for all temperature extremes except WSDI and CSDI. For WSDI, there seems 
to be some overlap in the best and worst performing GCMs as measured by bias and 
RMSE, with a few exceptions such as AWI-ESM-1-1-LR and TaiESM1 (which show large 
RMSEs and small bias). For CSDI, there is more variance in results, and the biases are 
found to be mostly not significant. Due to this, GCMs which are the worst performers for 
bias (GFDL-ESM4, HadGEM3-GC31-LL, HadGEM3-GC31-MM, CanESM5 and KACE-1-
0-G) are found to be among the best performers for RMSE. 

For PCorr (Table 5), the GCM performance ranking does not completely align with 
that of other metrics (bias, RMSE and IVS). For example, MPI-ESM-1-2-HAM, MPI-ESM-
1-2-LR and MPI-ESM-1-2-HR (MPI Germany) and MRI-ESM2-0 are among the best per-
formers for PCorr for more than three extremes. However, these GCMs are not in the best 
performing subset for other metrics (bias, RMSE and IVS). For IVS, GCMs show overlap 
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in the best and worst performing subset for most of the extremes; for example, INM-CM4-
8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G and CNRM-ESM2-1 are found to be the best 
performers whereas AWI-ESM-1-1-LR, CMCC-CM2-SR5, KIOST-ESM, MIR°C6, MPI-
ESM1-2-LR are found to be the worst performers for more than three extremes. The GCMs 
ranking for IVS is thus roughly comparable with bias and RMSE. 

3.2. Normalisation and Averaging 
We calculate the continental means of biases and RMSEs, then normalise (based on 

Equations (3) and (4)) and average all the metrics (bias, RMSE, PCorr, IVS) for all indices. 
For the extreme indices available at the monthly timescale (Table 2), 20 normalised metrics 
(i.e., bias, RMSE, PCorr and IVS for Annual, DJF, MAM, JJA and SON, respectively) are 
calculated (Figure 13). In contrast, for the extreme indices only available at the annual 
timescale (Table 2), four normalised metrics (i.e., bias, RMSE, PCorr and IVS for Annual) 
are generated (Figure 14). 

 
Figure 13. Normalised and continentally averaged annual and seasonal means of individual metrics 
(bias, root mean square error (RMSE), pattern correlation (PCorr) and interannual variability score 
(IVS)) for the extreme indices (a) maximum 1-day precipitation (Rx1Day), (b) number of very heavy 
rain days (rain > 10 mm) (R10mm), (c) consecutive wet days (CWD), (d) consecutive dry days (CDD), 
(e) number of days when maximum temperature is greater than 35 °C (Txge35), (f) tropical nights 
(number of days when minimum temperature  >  20 °C) (TR), (g) summer days (number of days 
when maximum temperature >25  °C) (SU), (h) maximum maximum-temperature (TXx) and (i) min-
imum minimum-temperature (TNn). Here, the smaller values of normalised metrics correspond to 
the better performance of GCMs. Moreover, for each extreme index, GCMs are arranged from best 
to worst performance as we move from left and right. Data spans 1951–2014. 
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Figure 14. Normalised and continentally averaged annual means of individual metrics (bias, root 
mean square error (RMSE), pattern correlation (PCorr) and interannual variability score (IVS)) for 
the extreme indices (a) total annual precipitation from very heavy rain days (R99p), (b) annual count 
of nights with at least 4 consecutive nights when daily minimum temperature <10th percentile 
(CSDI) and (c) annual count of days with at least 4 consecutive days when daily maximum temper-
ature >90th percentile (WSDI). Here, the smaller values of normalised metrics correspond to the 
better performance of GCMs. Moreover, for each extreme index, GCMs are arranged from best to 
worst performance as we move from left and right. Data spans 1951–2014. 

Overall, for both precipitation and temperature extremes (Figures 13 and 14), we find 
that the top performing GCMs consistently score well (<0.2) in most metrics, capturing the 
magnitude, spatial and temporal patterns of the observed field. In contrast, the poorly 
performing GCMs are less skilled at capturing spatial and temporal patterns. For temper-
ature extremes (except for CSDI and WSDI), approximately 5–7 GCMs perform poorly 
(normalised mean score of all metrics > 0.6) (Figure 13e–i). For precipitation extremes, 15–
17 GCMs perform poorly (normalised score > 0.6) at capturing the spatial and temporal 
pattern of the observed field (Figure 13a–d). These results suggest that GCMs show higher 
overall skill in capturing observed temperature extremes. In contrast, many GCMs strug-
gle to replicate observed precipitation extremes, with only a small subset of high-skill 
GCMs. These results reflect the findings of previous studies [11,21,22], which have sug-
gested that GCMs struggle to capture precipitation and its extremes. 

Based on these results, we find that HadGEM3-GC31-MM, HadGEM3-GC31-LL 
(Hadley Centre), GFDL-CM4, GFDL-ESM4 (NOAA), UKESM1-0-LL, KACE-1-0-G, and 
MRI-ESM2-0 tend to show consistently good performance for more than 50% of the ex-
treme precipitation indices analysed in this study. Whereas GCMs INM-CM4-8, INM-
CM5-0 (INM Russia), MPI-ESM1-2-LR, MPI-ESM1-2-HR (MPI Germany), MIR°C6, 
NorCPM1, BCC-ESM1 and IPSL-CM6A-LR tend to show consistently poor performance 
for more than 50% of the extreme precipitation indices. 

For Australian temperature extremes, consistently good performing GCMs for more 
than 50% of the extreme indices are: BCC-ESM1, HadGEM3-GC31-MM, CNRM-CM6-1-
HR, CNRM-ESM2-1, FGOALS-g3, MPI-ESM1-2-LR, GFDL-ESM4 and GFDL-CM4 
(NOAA), and KACE-1-0G whereas the consistently poor performing GCMs are: KIOST-
ES, MIR°C6, CMCC-CM2-SR5, TaiESM1, MIR°C-ES2L, NorCPM1, and NESM3. 

Considering both precipitation and temperature extremes, HadGEM3-GC31-MM, 
HadGEM3-GC31-LL (Hadley Centre), UKESM1-0-LL, FGOALS-g3, GFDL-ESM4 and 
GFDL-CM4 (NOAA) show consistently good performance. Conversely, CMCC-CM2-SR5, 
MIR°C6, NESM3 and NorCPM1 consistently perform poorly in replicating Australian 
temperature and precipitation extremes. 

We also compare the overall GCM performance ranking at the continental scale with 
performance calculated for the four Natural Resource Management (NRM) regions (Fig-
ure S37) to assess if GCM performance varies for different regions (Figure 15). The four 
NRM regions are named southern Australia (south), eastern Australia (east), northern 
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Australia (north), and Rangelands covering the central area (centre). These regions are 
broadly aligned with climatological boundaries (CSIRO and Bureau of Meteorology 2015 
[65]; Fiddes et al. 2021 [66]) and align with the IPCC reference regions [67]. Examining the 
performance of GCMs over these regions is particularly important when considering the 
design of regional downscaling experiments or assessing regional scale climate impacts. 
For example, regional climate projections like New South Wales (NSW) and Australian 
Regional Climate Modelling (NARCliM) are made by choosing a subset of best-perform-
ing GCMs over a smaller sub-domain which falls within eastern and southern Australia 
NRM regions [68,69]. This analysis will be of strong interest for producing updated na-
tional climate change projections for Australia and providing new insights into the climate 
system and climate change relevant to the region. 

The result reveals that for all the extreme precipitation indices (except R99p), GCM 
performance does not show much regional variance and performance rankings remain 
the same for the continent and the four sub-regions (Figure S37). In contrast, for R99p 
(Figure 15a), some GCMs show notable inter-regional differences. For example, 
HadGEM3-GC31-LL is one of the worst performers in eastern Australia whereas it is 
among the best for continental scale and other regions. A similar pattern is also seen for 
ACCESS-CM2. This GCM is one of the best performers for southern Australia; however, 
it remains in the mid-range performance on a continental scale and for other regions. 

For all the temperature extremes except WSDI and CSDI (Figure 15k,l), GCM perfor-
mance at the continental and regional scale show little variance. However, for WSDI and 
CSDI, strong inter-regional differences are observed for eastern, northern, and southern 
Australia. 
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Figure 15. Spatially averaged normalised scores of the GCMs for the extreme indices (a) total annual 
precipitation from very heavy rain days (R99p), (b) maximum 1-day precipitation (Rx1Day), (c) 
number of very heavy rain days (rain > 10 mm) (R10mm), (d) consecutive wet days (CWD), (e) 
consecutive dry days (CDD), (f) number of days when maximum temperature is greater than 35 °C 
(Txge35), (g) tropical nights (number of days when minimum temperature  >  20  °C) (TR), (h) sum-
mer days (number of days when maximum temperature >  25  °C) (SU), (i) maximum maximum-
temperature (TXx), (j) minimum minimum-temperature (TNn), (k) annual count of nights with at 
least 4 consecutive nights when daily minimum temperature < 10th percentile (CSDI) and (l) annual 
count of days with at least 4 consecutive days when daily maximum temperature > 90th percentile 
(WSDI). Here, the smaller score values correspond to the better performance of GCMs. Also, for 
each extreme index, GCMs are arranged from best to worst performance as we move from left and 
right. Here black, blue, red, magenta and cyan colours denote means over the continent, eastern 
Australia, northern Australia, southern Australia and rangelands. The markers denote the continen-
tal (triangle), northern Australia (star), eastern Australia (circle), southern Australia (diamond) and 
rangelands (square) values. Data spans 1951–2014. 

Previous studies have also shown that for different climate variables, GCM perfor-
mance varies in different regions [70,71]. This is related to how GCMs represent the land 
cover, terrain morphology, and climate zones which are crucial for the simulation of par-
ticular climate variables. 
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4. Discussion and Conclusions 
Di Virgilio et al. 2022 [33] evaluated CMIP6 GCMs for downscaling over Australia by 

assessing individual GCMs against criteria like performance simulating daily climate var-
iable distributions, climate means, extremes, and modes; model independence; and cli-
mate change signal diversity. Grose et al. 2020 [32] evaluated how the CMIP6 ensemble 
performs in comparison to CMIP5 for present and future climates. A recent study by 
Zhang et al. 2022 [72] evaluated the performance of CMIP6 GCMs over the Australia 
CORDEX domain by examining the climatological mean and interannual variability. 
However, none of these studies comprehensively examined the climate extremes in Aus-
tralia. We, in this study, present the detailed evaluation of 12 extreme precipitation and 
temperature indices as simulated by 37 CMIP6 GCMs. Although this study did not eval-
uate all possible aspects of GCM performance, it aimed to select some key evaluation met-
rics fundamental to characterising GCM performance for simulating climate extremes. 

Our results show that overall, CMIP6 GCMs underestimate precipitation intensity 
and overestimate wet days, overestimate minimum temperature extremes, and underes-
timate maximum temperature extremes. We also find that a greater number of GCMs 
show high skill in capturing the observed temperature extremes, whereas GCMs typically 
show low skill for precipitation extremes. Past studies have suggested that GCMs typi-
cally struggle to capture the observed changes in precipitation extremes due to multiple 
factors [73]. For example, the inability of GCMs to simulate internal variability in heavy 
regional precipitation, statistical effects of different grid resolutions of GCMs and obser-
vations, and the inability to resolve convective processes due to convective parametrisa-
tions used by the GCMs [74]. 

We find a subset of GCMs (HadGEM3-GC31-MM and HadGEM3-GC31-LL (Hadley 
Centre), UKESM1-0-LL, FGOALS-g3, and GFDL-ESM4 and GFDL-CM4 (NOAA)) that 
tend to show consistently good performance for more than 50% of climate extremes ana-
lysed in this study and across a broad suite of evaluation metrics. Our results are compa-
rable to the recent study by Srivastava et al. (2020) [43] and Ayugi et al. (2021) [26], who eval-
uated the performance of CMIP6 GCMs for simulating precipitation extremes over the United 
States and East Africa, respectively. Both studies showed that HadGEM3-GC31-LL and 
UKESM1-0-LL consistently show good performance for the United States and East Africa. 

We also find that a subset of GCMs (CMCC-CM2-SR5, MIR°C6, NESM3 and 
NorCPM1) tend to perform poorly overall. It is well known that some aspects of climate 
are poorly represented in all GCMs due to common limitations in model parametrisations 
and spatial resolution. For example, Chen et al. (2021) [45] showed that the convective 
parametrisation in most CMIP5 GCMs typically leads to a slight drizzling bias. In contrast, 
Alexander and Arblaster (2017) [11] showed that CMIP5 GCMs tend to slightly overesti-
mate minimum temperature extremes and underestimate maximum temperature ex-
tremes. However, we find that the poor performing GCMs tend to show unrealistic errors 
compared to common errors found in most GCMs. For example, CMCC-CM2-SR5, 
MIR°C6, NESM3 and NorCPM1 were found to perform extremely poorly for most of the 
extreme indices analysed in this study. The magnitude of biases shown in these GCMs 
was exceptionally high compared to the median bias across the 37 GCMs. Past study has 
shown that GCMs showing unrealistic errors are often those for which projections lie on 
the margins of or outside the range of most of the ensemble [75]. 

The paper’s results also highlighted that resolution does not appear to be a deciding 
factor in how well a model performs at reproducing temperature/precipitation indices for 
Australia. For example, the relatively high-resolution CNRM-CM6-1 does not necessarily 
‘outperform’ lower resolution models such as BCC-ESM1. The key factor that is more 
closely tied to the model performance is the ‘model family’. GCMs from the same parent 
institution and GCMs from different institutions that share key model components either 
do a good or bad job in capturing the broad-scale features and processes of the climate, 
resulting in similar model performance. For example, in GCMs from the same parent in-
stitution (GCMs from MPI Germany, INM Russia, Beijing Climate Centre etc.), if one 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/precipitation-intensity
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model version is too hot or too wet, then this is apparent in all the model versions. GCMs 
from the Australian community, UK Met Office Hadley Centre, NOAA-GFDL and 
UKESM1-0-LL, which share atmospheric model codes, also indicate similar results. Past 
studies have also reported a similar impact of the ‘model family’ on the GCM performance 
of CMIP3 [10] and CMIP5 models [11]. The large dependence of different versions of mod-
els on the model ‘family’ highlights an important issue regarding model dependence and 
whether we are using false assumptions that these multiple simulations all constitute in-
dependent samples (e.g., Abramowitz 2010 [76]; Abramowitz and Bishop 2015 [77]). 

Although this study provides a comprehensive evaluation of CMIP6 GCMs, it also 
has some caveats. This study assessed the performance of CMIP6 GCMs in simulating 
climate extremes using a metric-based approach. It should be recognised that models are 
complex in nature, and summarising the performance of models using a few metrics is 
quite challenging and may be inadequate. In addition to the limitations in performance met-
rics, the choice of reference dataset also affects the performance of models. Past studies have 
shown that the reference dataset’s choice can bias the model performance results [22,78,79]. 

In this study, we used the Rupp et al. (2013) [54] normalisation method, which nor-
malised the GCMs based on the maximum and minimum value of the metric among the 
GCMs. Normalisation is performed such that different metrics can be fairly compared. 
This method assumes the spread of each metric for all the GCMs is relatively equal. This 
assumption is not necessarily true; thus, this method can bias the results, as it is possible 
to subdivide the GCMs and manipulate rankings by changing the relative weights be-
tween the different metrics. For example, if a single GCM performs extraordinarily poorly 
in only one metric, the inclusion of that GCM greatly reduces the importance of that metric 
as the normalisation factor becomes too small because of the range being extremely large. 

Despite these limitations, our study has important implications for multiple systems 
affected by climate extremes. For instance, our evaluation shows that precipitation ex-
tremes typically record the largest bias in Australia’s northern and eastern parts. The 
northern part of Australia is the region belonging to the northern monsoon cluster. This 
region receives widespread rainfall from the large oceanic mesoscale convective systems 
[80]. Past studies have shown that GCMs typically struggle to simulate the characteristic 
of mesoscale convective systems with reasonable accuracy and thus record large errors in 
monsoon-dominated regions [70,81–84]. The eastern part of Australia is a region of com-
plex topography composed of mountains, alpines, and lakes [85]. Past studies have shown 
that the topography of GCMs is generally smoother and lower in elevation than that in 
reality [86]. For this reason, GCMs typically record large biases over these regions [87]. 
Northern Australia is a major region for agricultural production, whereas eastern coast-
lines are where more than 50% of the Australian population resides. The large uncertainty 
in GCM performances over these economically and societally important regions reveals 
the limitations of GCMs for their application in studying impacts from precipitation and 
temperature extremes over these areas. 

The results of this study are useful for identifying potential CMIP6 GCMs for per-
forming exercises like dynamical downscaling experiments as part of endeavours such as 
CORDEX Australasia. Regional climate modelling helps provide information at fine, sub-
GCM grid scales, which is more suitable for studies of regional phenomena and applica-
tion to vulnerability, climate impacts, and adaptation assessments. However, we 
acknowledge that for selecting potential GCMs for dynamical downscaling, additional 
and more comprehensive evaluations like the GCM performance for simulating mean cli-
mate, and climate drivers like El Niño, Southern Annular mode, etc., should be under-
taken to rank the overall GCM performance. An in-depth analysis of physical processes is 
also required to identify the cause of the model bias. Another crucial factor is selecting 
GCMs based on the sign of GCM future climate change signals. 

Modelling factors like choice of model physics and land-atmosphere coupling in the 
GCMs can directly affect precipitation and temperature extremes. Analysing and attrib-
uting the GCMs with respect to these factors was beyond the scope of this study. 
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However, it will be crucial to investigate further to identify what modelling factors con-
tribute to the high and poor skill in GCMs for simulating different extreme indices. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/atmos13091478/s1, Figure S1. Climatological mean Decem-
ber-January-February bias in maximum 1-day precipita-tion (Rx1Day: mm) relative to Australian 
Gridded Climate Data dataset (AGCD; panel 1), for the individual CMIP6 GCMs (panels 2–38). Data 
spans 1951–2014. Stippling indicates statistically significant differences using a student’s t-test at the 
95% confidence level. The white mask in part of the inland domain are the regions with no station 
data. Figure S2. Same as S1 but for March-April-May. Figure S3. Same as S1 but for June-July-Au-
gust. Figure S4. Same as S1 but for September-October-November. Figure S5. Climatological mean 
December-January-February bias in number of very heavy rain days (rain > 10 mm) (R10mm: days) 
relative to Australian Gridded Climate Data dataset (AGCD; panel 1), for the individual CMIP6 
GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates statistically significant differences 
using a student’s t-test at the 95% confidence level. The white mask in part of the inland domain are 
the regions with no station data. Figure S6. Same as S5 but for March-April-May. Figure S7. Same 
as S5 but for June-July-August. Figure S8. Same as S5 but for September-October-November. Figure 
S9. Climatological mean December-January-February bias in consecutive wet days (CWD: days) rel-
ative to Australian Gridded Climate Data dataset (AGCD; panel 1), for the indi-vidual CMIP6 GCMs 
(panels 2–38). Data spans 1951–2014. Stippling indicates statistically signif-icant differences using a 
student’s t-test at the 95% confidence level. The white mask in part of the inland domain are the 
regions with no station data. Figure S10. Same as S9 but for March-April-May. Figure S11. Same as 
S9 but for June-July-August. Figure S12. Same as S9 but for September-October-November. Figure 
S13. Climatological mean December-January-February bias in consecutive dry days (CDD: days) 
relative to Australian Gridded Climate Data dataset (AGCD; panel 1), for the in-dividual CMIP6 
GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates statistically sig-nificant differences 
using a student’s t-test at the 95% confidence level. The white mask in part of the inland domain are 
the regions with no station data. Figure S14. Same as S13 but for March-April-May. Figure S15. Same 
as S13 but for June-July-August. Figure S16. Same as S13 but for September-October-November. 
Figure S17. Climatological mean December-January-February bias in maximum maxi-mum-temper-
ature (TXx: oC) relative to Australian Gridded Climate Data dataset (AGCD; panel 1), for the indi-
vidual CMIP6 GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates sta-tistically signifi-
cant differences using a student’s t-test at the 95% confidence level. The white mask in part of the 
inland domain are the regions with no station data. Figure S18. Same as S17 but for March-April-
May. Figure S19. Same as S17 but for June-July-August. Figure S20. Same as S17 but for September-
October-November. Figure S21. Climatological mean December-January-February bias in number 
of days when maximum temperature is greater than 35 C (Txge35: days) relative to Australian Grid-
ded Cli-mate Data dataset (AGCD; panel 1), for the individual CMIP6 GCMs (panels 2–38). Data 
spans 1951–2014. Stippling indicates statistically significant differences using a student’s t-test at the 
95% confidence level. The white mask in part of the inland domain are the regions with no sta-tion 
data. Figure S22. Same as S21 but for March-April-May. Figure S23. Same as S21 but for June-July-
August. Figure S24. Same as S21 but for September-October-November. Figure S25. Climatological 
mean December-January-February bias in summer days (number of days when maximum temper-
ature > 25 °C) (SU: days) relative to Australian Gridded Climate Data dataset (AGCD; panel 1), for 
the individual CMIP6 GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates statistically 
significant differences using a student’s t-test at the 95% confidence level. The white mask in part of 
the inland domain are the regions with no station data. Figure S26. Same as S25 but for March-April-
May. Figure S27. Same as S25 but for June-July-August. Figure S28. Same as S25 but for September-
October-November. Figure S29. Climatological mean December-January-February bias in minimum 
mini-mum-temperature (TNn: oC) relative to Australian Gridded Climate Data dataset (AGCD; 
panel 1), for the individual CMIP6 GCMs (panels 2–38). Data spans 1951–2014. Stippling indicates 
sta-tistically significant differences using a student’s t-test at the 95% confidence level. The white 
mask in part of the inland domain are the regions with no station data. Figure S30. Same as S29 but 
for March-April-May. Figure S31. Same as S29 but for June-July-August. Figure S32. Same as S29 
but for September-October-November. Figure S33. Climatological mean December-January-Febru-
ary bias in tropical nights (number of days when minimum temperature  > 20 °C (TR: days) relative 
to Australian Gridded Climate Data dataset (AGCD; panel 1), for the individual CMIP6 GCMs (pan-
els 2–38). Data spans 1951–2014. Stippling indicates statistically significant differences using a stu-
dent’s t-test at the 95% confi-dence level. The white mask in part of the inland domain are the re-
gions with no station data. Figure S34. Same as S33 but for March-April-May. Figure S35. Same as 
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S33 but for June-July-August. Figure S36. Same as S33 but for September-October-November. Figure 
S37. (Figure 3 from Grose et al. 2020). Here red lines indicate the borders of the four “supercluster” 
averaging regions: Northern Australia (North), Rangelands (Centre), Southern Australia (South), 
Eastern Australia (East). Given that there is a substantial distinction between the coastal (temperate) 
East, versus the semi-arid inland East. 
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