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Abstract: A series of carbon dioxide (CO2) emission inventories with high spatial resolutions covering
China have been developed in the last decade, making it possible to assess not only the anthropogenic
emissions of large administrational units (countries; provinces) but also those of small administra-
tional units (cities; counties). In this study, we investigate three open-source gridded CO2 emission
inventories (EDGAR; MEIC; PKU-CO2) and two statistical data-based inventories (CHRED; CEADs)
covering the period of 2000–2020 for 16 prefecture-level cities in Shandong province in order to quan-
tify the cross-inventory uncertainty and to discuss potential reasons for it. Despite ±20% differences
in aggregated provincial emissions, all inventories agree that the emissions from Shandong increased
by ~10% per year before 2012 and that the increasing trend slowed down after 2012, with a quasi-
stationary industrial emission proportion being observed during 2008–2014. The cross-inventory
discrepancies increased remarkably when downscaled to the city level. The relative differences
between two individual inventories for half of the cities exceeded 100%. Despite close estimations of
aggregated provincial emissions, the MEIC provides relatively high estimates for cities with complex
and dynamic industrial systems, while the CHRED tends to provide high estimates for heavily
industrial cities. The CHRED and MEIC show reasonable agreement regarding the evolution of
city-level emissions and the city-level industrial emission ratios over 2005–2020. The PKU-CO2 and
EDGAR failed to capture the emissions and their structural changes at the city level, which is related
to their point-source database stopping updates after 2012. Our results suggest that cross-inventory
differences for city-level emissions exist not only in their aggregated emissions but also in their
changes over time.

Keywords: city-level CO2 emission inventory; CO2 emission evolution

1. Introduction

Based on the global consensus that fast-growing anthropogenic fossil fuel carbon
dioxide (FFCO2; note that CO2 in this paper refers to FFCO2) emissions are the major
driver of global warming [1], increasing nations have united to reduce emissions. China, as
the lead emitter [2], has taken a series of actions towards climate change mitigation and
emission reduction. Ahead of the national emission reduction targets, a CO2 emission
estimate with high accuracy as well as a high spatial and temporal resolution is necessary for
policy making. A series of gridded and monthly inventories have been rapidly developed
in recent years for the design and evaluation of emission mitigation policies, not only
on the national or provincial scales but also on smaller administrative scales (region and
city). These global gridded emission inventories include global emission inventories such
as the Emission Database for Global Atmospheric Research (EDGAR) [3] and the Peking
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University CO2 emission inventory (PKU-CO2) [4,5]. Both inventories use point-source
statistics from the International Energy Agency (IEA). Aiming to achieve better estimates
of China’s CO2 emissions, nationwide emission databases have been established, including
gridded emission inventories such as the Multi-resolution Emission Inventory for China
(MEIC) developed by Tsinghua University [6,7], the China High Resolution Emission
Database (CHRED) [8,9], and the China Emission Accounts and Datasets (CEADs) [10–12].
The advantages of the nationwide emission inventories are the utilization of provincial-
level data and realistic emission factors (EFs) as well as up-to-date point-source information.
In particular, the CHRED uses unique enterprise-level point-source data and has been
reported to make reliable estimates of city-level emissions [13].

Due to various methodologies, EFs and data sources, nonnegligible uncertainties of
emission estimates have been reported, and moreover, the discrepancies are amplified
when downscaling to smaller administrative units. Despite uncertainty levels within
±10% seeming acceptable for global total CO2 emission estimates [14], the discrepancies of
national emissions are as high as 50% [15,16] and are commonly within the range of ±25%
for China.

Contributing ~70% of global CO2 emissions [17] and 85% of the emissions in China [18],
city-level emission evaluation has received a great deal of attention. However, downscaling
emission estimates to the city level is considered unreliable. The reported discrepancies
among multi-inventories range from 5% to 300%, among which differences over 100%
are not rare [13,19–21]. The suggested explanation for the significant differences between
emission inventories varies with the considered inventories and the local features. Several
studies have suggested that inventories based on international and national source data
have pronounced biases when used for city-level estimates [13,20]. The delayed and poor
point- and line-source information also leads to large differences as well as divergence
between sectors and EFs [22].

Massive urbanization and industry upgrades are ongoing in China. More effort should
be made to quantify, understand, and reduce the uncertainties among multi-inventories.
In this study, we will focus on 16 prefecture-level cities in Shandong province, a heavy
industry base that has contributed to the national CO2 emissions the most during the last
two decades, with an accumulative contribution of 10.35% over 2000–2012, as quantified
by previous research [18]. The characteristics of the cities in Shandong are quite diverse
and include the service-based capital Jinan, high-tech and rapidly developing city of
Qingdao, heavily industrial city of Zibo, energy-providing city of Dongying, and rural and
light-industry city of Linyi [23].

Different from previous comparisons of city-level emission inventories [13], in this
study, we assess the cross-inventory uncertainties not only from the perspective of provin-
cial aggregated emissions (Section 3.1) and city-level aggregated emissions (Section 3.2) but
also from the perspective of their time evolutions over the past two decades (Section 3.3).
In addition to aggregated emissions, the corresponding emission structure, represented by
the ratios of industry-related emissions to total emissions, is also analyzed. The results of
this study may help us to explore the reasons for the discrepancies across inventories.

2. Materials and Methods
2.1. Emission Inventories

In this study, the annual CO2 emissions from four emission inventories are consid-
ered: the Multi-resolution Emission Inventory for China (MEIC) version 1.3; the Peking
University CO2 emission inventory (PKU-CO2) version 2; the Emission Database for Global
Atmospheric Research (EDGAR) version 6.0; and the China High Resolution Emission
Database (CHRED). The provincial inventory of the China Emission Accounts and Datasets
(CEADs) is also included for the assessment of provincial emissions.

The key information regarding these inventories is listed in Table 1 (adapted from
official websites and Han et al. [13,24]).
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Table 1. Information about the emission inventories used in this study.

Database EDGAR v6 PKU-CO2 v2 MEIC v1.3 CHRED * CEADs *

Level of source data National level data National and subnational level data Province-level data City- and enterprise-level data Province-level data

Methodology Sectoral approach Apparent consumption Sectoral approach Sectoral approach Sectoral approach and apparent
consumption

Scope 1 1 1 1 and 2 1

Time window 1970–2018 1960–2014 2008–2017 2005, 2010, 2015 1997–2015

Spatial resolution 0.1◦ × 0.1◦ 0.1◦ × 0.1◦ 0.25◦ × 0.25◦ Prefecture-level administrative units Provincial administrative units

Original unit kg m−2 s−1 G km−2 year−1 G cell−1 year−1 Wt per unit Wt per unit

Emission factor of raw coal and
oil (tC /ton) 0.713/0.838 0.510/0.758 0.491/0.829 0.518/0.839 0.499/0.829

Point source Carma Carma Cped Fcpsc N/A

Info about point source Updates end at 2012 Unit-based1300 more small power planes
than CARMA in China at 2009 [25]

Enterprise-level1.5 million industrial
facilities and 2000 landfills and 4000

water treatment planes
N/A

Area source Population, nighttime light Population, nighttime light,
vegetation Population, land use Population, land use, human activity N/A

Line source Open street and railway map N/A Transport networks National road, railway, navigation
network, traffic flow N/A

Download link
EDAGR. Available online:

https://edgar.jrc.ec.europa.eu/
(accessed on 9 September 2022)

PKU-Fuel. Available online:
http://inventory.pku.edu.cn/

(accessed on 9 September 2022)

MEIC. Available online:
http://meicmodel.org/ (accessed on

9 September 2022)

CHRED. Available online:
http://www.cityghg.com (accessed

on 9 September 2022)

CEADs. Available online:
http://www.ceads.net (accessed on

9 September 2022)

Reference [3,26] [4,5] [6,7] [8,9] [10–12]

* Both the sectoral approach and the apparent consumption approach are applied to estimate emission for CEADs. Thus, the corresponding emission estimates are abbreviated to
CEADs sec and CEADs app. * Scope 1 (territorial emissions) accounts for emissions within the region boundary, while scope 2 accounts for indirect emissions due to electricity and heat
purchased outside the boundary, according to the IPCC definition [27]. In our study, only scope 1 is applied for CHRED, which is abbreviated to CHRED s1.

https://edgar.jrc.ec.europa.eu/
http://inventory.pku.edu.cn/
http://meicmodel.org/
http://www.cityghg.com
http://www.ceads.net
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In addition to the total CO2 emissions, we also investigate the evolution of industrial
CO2 emission ratios, which are defined as the ratio of emissions from industrial energy
consumption and from industrial processes (sum of these two referring to “industrial
emissions” in the following) to the total emissions. The sector information from each
inventory is used to calculate the industrial emissions. The industrial emission ratios
are representative of the emission structure. Urbanization is usually accompanied by the
growth of the population, transportation development, industrial upgrades, and a reduc-
tion in heavy-industrial enterprises. Therefore, the subsequent decrease in the industrial
emission ratio (or the increase in the non-industrial emission ratio) is expected.

Note that different sectoral scopes and methodologies are applied to different invento-
ries. The most important source of differences in industrial emissions is the point-source
database, which the energy consumption information of power plants and industrial en-
terprises. More details regarding the sectoral scopes and methodologies are listed in the
Supplementary Materials. We are aware that discrepancies in the absolute values of the
industrial emission ratios are inevitable. We will focus on comparing its time evolutions,
which should show consistency due to the remarkable changes in the emission structure
over the last few decades.

2.2. Method

We first unified the annual emission units from all of the inventories to ton of CO2 per
km2. Then, using prefecture-level administrative units data from the National Geomatics
Center of China, we extracted the emission amounts within the city boundaries. For the
grids on the boundary edges, the emission cells are weighted according to their grid area
fractions intersected with the regional mask. Note that the prefecture city Laiwu was
incorporated into Jinan in 2018, which reduced the previous number of prefecture-level
cities in Shandong from 17 to 16 cities. In order to use consistent administrative division
among all inventories, we applied up-to-date administrative divisions (16 prefecture-level
cities) to all of the inventories.

Here, we used two quantities to represent the cross-inventory uncertainty. One was
the relative standard deviation among all of the considered inventories. The other was the
largest individual relative differences, i.e., 100% ×(emax − emin)/emin.

To quantify the relative differences for a specific inventory, the quantity
100% ×

(
e − ere f

)
/ere f was used. Following the cross-inventory comparison study by [13],

we also took CHRED s1 as an emission reference (ere f ) based on city-level statistics and
applied unique point sources, including over 1.5 million enterprises.

3. Results
3.1. Cross-Inventory Uncertainties in Provincial Emissions

We first compared the evolution of the annual emissions and ratios of industrial
emissions among the five inventories (Figure 1). All of the inventories show profound
increases, from 234 Mt (±17%, 195–273 Mt) in 2000 to 856 Mt (±20%, 671–1007 Mt) in
the provincial aggregated emissions in 2012. The emissions grew quickly, at a rate of
about 50MtC per year (~10% year−1) between 2000 and 2012. Most inventories (including
CHRED, CEADs(sec), MEIC, PKU-CO2, and EDGAR) agreed to slow emissions growth
after 2012.

We noticed that the discrepancies in the emission estimates not only increased be-
tween different inventories but also between different scopes or methodologies under one
inventory. For example, the estimates via the apparent consumption and sector approach
produce 20%~30% differences from CEADs (the light blue shaded area in Figure 1a). The
apparent energy consumption approach has advantages considering the poor quality of
energy statistics [18]. The provincial emissions agree reasonably among CHRED, MEIC,
and CEADs(app), which use provincial- or city-level source data. Their relative uncertainty
is ~10%. However, the estimates from the nation-level inventories (EDGAR and PKU-
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CO2) are remarkably lower (~15–50%) than the city-level and province-level inventories,
especially after 2005.
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Figure 1. Annual CO2 emissions during from 2000 to 2020 (a) and industrial emission ratios (b) from
multi-inventories for Shandong province.

Since all of the emission inventories cover the year 2010, we took a closer look into
their spatial distributions during 2010. The spatial distributions of the three inventories
show similarities: high emission spots are located at heavy-industry and energy-providing
cities, including Zibo, Rizhao, Dongying, Weifang, etc., while low emissions are mainly
located in economically underdeveloped cities such as Heze, Liaocheng, and Linyi. The
MEIC provides relatively high CO2 emission estimates for 2010 (904 Mt), even higher
emission estimates than CHRED (s1: 798Mt; s2: 877 Mt) and CEADs (sec: 795; app: 929 Mt),
which is likely due to stronger and larger proportional high emission spots than the other
inventories, especially in Yantai, Weihai, Qingdao, Dongying, and Jining (see Figure 2).
Although the provincial aggregated emissions estimated by EDGAR (642 Mt) and PKU-CO2
(641 Mt) are close, most of the grids in the PKU-CO2 have annual emissions ranging within
2000–5000 tonC per km2, whereas the EDGAR map shows that most grid emissions are
lower than 2000 tonC per km2 and have higher emission spots.

Figure 1b shows that the differences in the ratios of the industrial emissions to the
aggregated provincial emissions are quite large across the inventories. The ratio values
spread from 80–90% during the common period of 2008–2014. MEIC and EDGAR suggest
~80% emissions from industry and ~20% non-industrial emissions (mainly from residential
and transportation) for the whole province. The CHRED estimates that ~90% of emissions
are from industry. We are aware that differences in the absolute values of the industrial
emission ratios among inventories are inevitable and are caused by the different scopes,
methodologies, and emission factors for each inventory (for more details, see the Supple-
mentary Materials).

Based on the self-consistency of individual inventories, we compared their changes
over time and their spatial distribution. We found that in their evolution, the industrial
ratios during the common period of 2008–2014 were similar to the proportion of industrial
emissions for Shandong Province and were quasi-stationary. CHRED and PKU-CO2
showed a subtle decline in these ratios starting from 2012 (2010 for CHRED).



Atmosphere 2022, 13, 1474 6 of 14
Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 15 
 

 

 

Figure 2. The CO2 emission distribution for Shandong province in 2010 from MEIC, EDGAR, and 

PKU-CO2. 

Based on the self-consistency of individual inventories, we compared their changes 

over time and their spatial distribution. We found that in their evolution, the industrial 

ratios during the common period of 2008–2014 were similar to the proportion of industrial 

emissions for Shandong Province and were quasi-stationary. CHRED and PKU-CO2 

showed a subtle decline in these ratios starting from 2012 (2010 for CHRED). 

The regional distribution of the industrial emission ratios at the city level in 2010 is 

shown in Figure 3. Note that ranges in the different colored-bars are used for the different 

inventories. Here, we only focus on the regional distributions interpreted by different in-

ventories. It is seen that some agreements are archived among the inventories. For exam-

ple, the highest industrial emission ratios are commonly found in heavily industrial cities 

such as Zibo and Zaozhuang. The ratios are relatively low in rural regions such as Linyi 

and Heze. However, clear disagreements can be observed. In contrast to other inventories 

showing a relatively low industrial emission ratios for cities such as Qingdao, Yantai, Wei-

hai, and Dongying, the MEIC suggests relatively high industrial emission proportions in 

those cities that are even comparable to those of heavily industrial cities such as Zibo. This 

is also reminiscent of the high emission spots shown in the MEIC map of these cities in 

Figure 2. The reason for this is that the power plant database (CPED) used in the MEIC 

includes many small power plants that are neglected by other point-source databases 

(CARMA and FCPSC) (referring to Figure 13 in [25]). 

Figure 2. The CO2 emission distribution for Shandong province in 2010 from MEIC, EDGAR, and
PKU-CO2.

The regional distribution of the industrial emission ratios at the city level in 2010 is
shown in Figure 3. Note that ranges in the different colored-bars are used for the different
inventories. Here, we only focus on the regional distributions interpreted by different
inventories. It is seen that some agreements are archived among the inventories. For
example, the highest industrial emission ratios are commonly found in heavily industrial
cities such as Zibo and Zaozhuang. The ratios are relatively low in rural regions such
as Linyi and Heze. However, clear disagreements can be observed. In contrast to other
inventories showing a relatively low industrial emission ratios for cities such as Qingdao,
Yantai, Weihai, and Dongying, the MEIC suggests relatively high industrial emission
proportions in those cities that are even comparable to those of heavily industrial cities
such as Zibo. This is also reminiscent of the high emission spots shown in the MEIC map
of these cities in Figure 2. The reason for this is that the power plant database (CPED) used
in the MEIC includes many small power plants that are neglected by other point-source
databases (CARMA and FCPSC) (referring to Figure 13 in [25]).
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3.2. Cross-Inventory Uncertainties in City-Level Emission Estimates

Compared to the discrepancies in the provincial aggregated emission estimates among
inventories, the differences in the city emissions based on different inventories are much
larger, as shown in Figure 4. The relative standard deviation of the city-level emissions in
2010 among all four inventories ranges from 5% (Linyi) to 50% (Dongying). The individual
relative differences range from 10% (Linyi) to 230% (Dongying), which is shown as the
light blue line in Figure 4 bottom panel. The individual relative differences suggest that
inventory uncertainties lower than 50% are only valid for one-third of cities, while the
uncertainties for half of the cities are larger than 100%. Although the MEIC provides
quite a close estimate of the provincially aggregated emissions, referring to CHRED and
CEADs (see Figure 1a), the estimates from MEIC at the city level are relatively higher
for low-carbon-intensity cities (e.g., Qingdao, Yantai, Weihai, and Dongying), while the
EDGAR provides low estimates for these low-carbon-intensity cities. The two inventories
(EDGAR and PKU-CO2) based on national- and provincial-level data tend to underestimate
the CO2 emissions for all of the cities except for two rural regions (Liaocheng and Heze).
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Figure 4. Top: CO2 emissions of 16 cities in Shandong province from MEIC, EDGAR, PKU-CO2,
and CHRED for 2010; bottom: the relative differences in MEIC, EDGAR, and PKU-CO2 in relation
to CHRED s1. The cities are ranked according to their emission intensity (emission/GDP, shown
as a dark blue line in the top panel). The light blue line in the bottom panel shows the differences
(estimated by (max-min)/min) among the inventories.
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The emissions for both the high- and low-carbon-intensity cities contain great un-
certainties obtained from the different inventories. The best agreements are archived for
the medium-carbon-intensity cities, which are either service-based cities, for example, the
capital city Jinan, where statistical data are more elaborate and reliable, or rural regions,
such as Heze and Linyi, where the energy flow is relatively simple. Heavy-manufacturing
cities (such as Zibo, Rizhao, and Zaozhuang) are underestimated by all three inventories by
20~55% compared to the CHRED. We further found that over 80% of the underestimation
can be attributed to the industrial emissions in these cities. This suggests that the unique
enterprise-level point-source data used in the CHRED provide more comprehensive in-
formation about the power planes and industrial processes in these traditional heavily
industrial cities. MEIC shows ~20–70% higher estimates for developed and quickly devel-
oping cities such as Qingdao, Yantai, Weihai, and Dongying than other inventories. The
relatively high estimates for those cities by the MEIC mainly come from its high estimates
for industrial power and processes. As we discussed in the last section, a number of small
power planes are uniquely marked by the point-source database used in MEIC [25]. These
small power planes might significantly contribute to the CO2 emissions in the cities where
the industrial system is more complex and diversified.

3.3. Evolution of the City-Level Emissions

The key question of this section is whether the gridded emission inventories are
capable of capturing the main features of emission evolutions as well as the features of
the structural changes in emissions at the city level. We will continue to use the CHRED
as a reference. According to the evolution observed in the city-level emissions based on
the CHRED (see the left column in Figure 5), we divided the 16 cities into three groups
according to the changes in their emissions from 2005–2020. The three relatively developed
cities (Jinan, Qingdao, and Zibo), whose emissions reached their peak around 2010 and
slowly decreased afterwards, make up the first group. The second group contains four
cities (Jining, Yantai, Weihai, and Dezhou). Their emissions all declined after 2015. The
third group includes all of the other cities that show a clear increasing trend until 2020.
Note that Binzhou is an outliner in the third group, in which emission declined a little
during 2015–2020 following a remarkable rise from 2010 to 2015. However, we found that
its emission intensity (not shown) continued to rise until 2020, which indicates the potential
for emission increases in the future.

In general, the MEIC shows more reasonable evaluation of the time evolution of the
city-level emissions. The MEIC identifies a clear decrease after 2012 for most of the cities
in the first and second groups, although it continuously shows relative high estimates for
Qingdao and Weihai. For the third group, the MEIC shows a particularly good ability
to identify the dramatic increase in emissions in Binzhou from 2013 to 2015 and in Heze
from 2010 to 2012, which is not found in other two inventories. Although the PKU-CO2
captured a decline in the CO2 emissions from Jinan and Zibo as well as quasi-stationary
emissions in Weihai and Dezhou, PKU-CO2 shows a synchronous emission evolution for
most other analyzed cities. This is potentially the result of the spatial averaging of the
provincial emissions, which thus neglects the changes in emission sources. In addition,
the high emissions in Liaocheng during 2005–2010 should be an overestimate, something
that is not supported by any of the other inventories. The EDGAR is clearly not capable
of capturing evolution of city-level emissions. We found that all of the cities show highly
synchronous changes.

In Figure 6, we again divided the cities into three groups according to the evolutionary
features of their industrial emission ratios. The first group experienced a remarkable
decrease in the industrial emission ratios interpreted by the CHRED. This feature is captured
fairly well by the MEIC. The PKU-CO2 shows decrease for three cities in the first group,
but only before 2012. Note that the point-source data used in the PKU stopped being
updated in 2012, which might explain this and will be discussed later. However, the
rises in the industrial ratios in Jining interpreted by the PKU-CO2 are contradictory to the
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interpretations by the MEIC and CHRED. The industrial emission ratios in the second group
did not show pronounced changes from the CHRED. For the three cities in the third group,
the industrial emission ratios were increased, which suggests that some high-emission
enterprises were introduced. This is well-captured by the MEIC and partially captured
by the PKU-CO2 (except for Liaocheng). Again, the EDGAR shows highly synchronous
changes in all of the cities, which suggests that it is not qualified for studies on the evolution
of city-level emissions.
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From the analysis above, we found that the aggregated provincial emissions as well
as those of most cities experienced a remarkable change in their trends around the year
2012, i.e., either increasing before 2012 and declining afterwards (first group in Figure 5)
or increasing before 2012 and remaining stationary afterwards (second group in Figure 5).
Another fact is that the point-source database (CARMA) for PKU-CO2 and EDGAR stopped
being updated in 2012, which would clearly influence their source emission estimates.
Therefore, we show the annual change rates for the gridded emissions separately for the
period before and after 2012. The common period between 2008 and 2017 (MEIC time
coverage) is applied to the other two inventories for a fair comparison.

Figure 7 shows various interesting features in the annual changes in the grid emissions
from the three gridded inventories despite the aggregated provincial emissions experienc-
ing a similar evolution (see Figure 1a). First, both the PKU-CO2 and EDGAR are clearly
influenced by the pause of point-source database collection after 2012. The renewal of point
sources, which is the pronounced increase or decrease in grid emissions (i.e., circles with
black edges), almost disappeared in the PKU-CO2 and EDGAR inventories after 2012.
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Figure 7. The change rates of grid emissions for three inventories during their covered period before
2012 (left column) and after 2012 (right column). The change rates for each grid are derived by

100% ×
(

eiyear+1 − eiyear

)
/eiyear. The red circles indicate increasing rates (>10%), while blue circles

indicate decreasing rates (<−10%). The sizes of the circles are proportional to the change magnitudes,
and the circled marking change rates over 50% are plotted with black edges. The bar-plots on the left
side of each map show the corresponding cumulative annual change emissions (outlined in black)
and the amount of industrial emissions (shaded in color), which are sorted using the different gridded
change scales (y-axis).

Secondly, the increase in the provincial emissions before 2012 at a rate of about 50 MtC
per year is interpreted completely differently among the three gridded inventories. The
MEIC and EDGAR indicate that the increase is mainly from grid emission increases of
0–10% per year combined with a small fraction of dramatic increases (i.e., new point
sources). Nevertheless, the distributions of the grid-changes are very different between
the MEIC and EDGAR. On the other hand, the increase in emissions interpreted by the
PKU-CO2 is the result of a widespread grid emission increase of 10–30% per year balanced
by a dramatic decrease in some grids (see the blue circles with black edges). Moreover, from
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the bar plots, we found that only the MEIC attributes the ~20% increase during 2008–2012
to non-industrial emissions (shown as the parts of the bars that are in white), while all
of the other inventories attributing an increase of over 95% to the growth in industrial
emissions (the parts of the bars that are in color).

Thirdly, the MEIC suggests that the slow-down in emission increases in Shandong
after 2012 is the result of an equilibrium between the general 0–20% annual decrease in
industrial emissions and of an emission increase resulting from some updated industrial
point sources. The updated sources after 2012 are mainly located in Binzhou, which are
also validated by city-level inventory, CHRED.

4. Discussion

A series of previous studies found that cross-inventory uncertainties when downscal-
ing to the city-level units range from 10% to 300% [13,20,28]. Previous studies related the
remarkable differences among multiple inventories at the prefectural-city-level to (1) the
utilization of data sources from the national, provincial, or enterprise levels and (2) the
divergence of point-source information [13,20].

Our study found a similar range of prefectural-city-level emission differences
(10–230%) among the inventories under investigation. Our study found two facts based
on the investigation of 16 cities in Shandong. One is that outdated point-source databases
cause inventories such as PKU-CO2 and EDGAR to be unqualified for evaluating city-level
emissions and their evolution. Another finding is that different point-source databases
introduce regional biases to the inventories. For example, comparing the two inventories
using a highly resolved point-source database, the CHRED shows high estimates for tradi-
tional industrial cities, while the MEIC provides high estimates for cities with complex and
dynamic industrial systems.

Thus, we suggest that a reliable and up-to-date point-source database at unit (/enter-
prise) level is of the first priority to improve the quality of city-level emission estimates
from bottom-up emission inventories. This is particularly important for the regions such as
Shandong, where the industrial structure transitions and industrial technological upgrades
(e.g., [29,30]) are remarkable, while the quality of the statistical data is poor.

Another valuable approach to independently verify the bottom-up CO2 emission
inventories is CO2 flux inversion based on a transport model assimilating observed CO2
concentrations. A series of monitoring networks have been established, for example,
the INFLUX project in Indianapolis [31], Paris [32], and Beijing [33]. The ongoing CO2-
monitoring project located at Jinan will provide insights into the potential of atmospheric
observations for evaluating city-level inventories in the future.

5. Conclusions

The provincial- and city-level CO2 emissions in Shandong province were investigated
using open-source gridded CO2 emission inventories (EDGAR; MEIC; PKU-CO2) and
statistical data-based inventories (CHRED; CEAD). The provincial- and city-level uncer-
tainties were evaluated to determine the aggregated emissions as well as the emission
structure (industrial emissions/total emissions). The results suggest that (1) cross-inventory
discrepancies for aggregated provincial emissions are acceptable (~20%) and that all inven-
tories are qualified to evaluate provincial emission changes; (2) remarkable cross-inventory
uncertainties for city-level emissions exist not only in their aggregated emissions but also
in their changes over time.

The results show that the uncertainties in the provincially aggregated emissions across
the involved five inventories are around ±20%, as quantified by the relative standard
deviation, and 50%, as quantified by the relative differences between the individual inven-
tories ((max-min)/min). The MEIC agrees better with city-level statistics-based inventories
(CEADs and CHRED), while the EDGAR and PKU-CO2 are 15%-50% lower than them.
Although the involved inventories show similarity in their spatial patterns, the discrepan-
cies in the emission estimations for individual cities are very large. The city-level emission
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differences between maximum and minimum estimates vary from 10% to 230% for the
16 cities in 2010. The large cross-inventory uncertainties (>100%) are identified for heavily
industrial cities with high carbon intensities and cities with complex and dynamic industrial
systems where the carbon intensities are relatively low. The MEIC provides relatively high
estimates for cities with complex and dynamic industrial systems (e.g., Qingdao, Yantai,
Weihai, and Jining), while CHRED tends to provide high estimates for heavily industrial
cities (e.g., Zibo and Zaozhuang). Our results suggest that this is related to the different
point-source databases used in the MEIC and CHRED.

Good agreement was found among all of the involved inventories in terms of the time
evolution of the aggregated provincial emissions: the provincial emissions increased by
~5% per year before 2012, and the increasing trend slowed down after 2012. In addition, all
of the inventories show a quasi-stationary industrial emission proportion over the common
time range (2008–2014). However, the discrepancies in the emission changes over the
same period are remarkable when downscaled to cities. The CHRED and MEIC agree
well regarding the evolution of city-level emissions and their structure changes. Both
inventories characterize three groups of cities: the first group shows a clear decline as early
as 2005; the second one shows a decline a few years later; and the third group shows a
continuous emission increase. The PKU-CO2 and EDGAR failed to capture these emission
characteristics and their structural changes at the city level. This is clearly related to the
fact that their common point-source database stopped being updated in 2012. The MEIC
is the only qualified inventory among the three gridded inventories and can be used to
represent city-level emission changes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13091474/s1, 1. EDGAR, 2. PKU-CO2, 3. MEIC and 4.
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