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Abstract: Data collected over a period of 18 months (December 2019–May 2021) at the Bucharest–
Măgurele Cloudnet station were analysed for the first time to determine the macrophysical and
microphysical cloud properties over this site. A total number of 1,327,680 vertical profiles containing
the target classification based on the Cloudnet algorithm were analysed, of which 1,077,858 profiles
contained hydrometeors. The highest number of profiles with hydrometeors (>60%) was recorded in
December 2020, with hydrometeors being observed mainly below 5 km. Above 5 km, the frequency
of occurrence of hydrometeors was less than <20%. Based on the initial Cloudnet target classification,
a cloud classification scheme was implemented. Clouds were more frequently observed during
winter compared with other seasons (45% of all profiles). Ice clouds were the most frequent type
of cloud (468,463 profiles) during the study period, followed by mixed phases (220,280 profiles)
and mixed phased precipitable clouds (164,868 profiles). The geometrical thickness varied from a
median value of 244 m for liquid clouds during summer to 3362 m for mix phased precipitable clouds
during spring.

Keywords: cloud; radar; climatology

1. Introduction

Clouds exert a significant effect on the Earth’s radiation budget and thus on Earth’s
climate. This effect is modulated by the temporal and spatial distribution of clouds and by
their macrophysical (e.g., height, thickness) and microphysical (e.g., phase, particle size
distribution) properties [1,2]. To obtain a detailed understating of the macrophysical and
microphysical properties of clouds, long-term high-resolution spatial and temporal obser-
vations are required. These high-resolution observations can be obtained from different
satellite and ground-based instruments (e.g., cloud radars) and also by the synergistic use
of multiple instruments from ground-based remote sensing stations.

Observations of cloud characteristics have been collected from around the globe
during land-based, ship-borne, and airborne intense observation campaigns (e.g., [3]).
Longer-term continuous characterisation of clouds have been provided by ground-based
observation facilities (e.g., JOYCE–Jülich Observatory for Cloud Evolution [4], SIRTA–Site
Instrumental de Recherche par Telédéetection Atmospherique [5]), satellite missions aiming
to measure clouds and aerosols (e.g., CloudSat and CALIPSO [6], CERES–Clouds and the
Earth’s Radiant Energy System [7]) and networks for cloud observation (ARM–Atmospheric
Radiation Measurement program [8], Cloudnet [9]) implemented since the 1990s.
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The Cloudnet network was developed with the main purpose of combining accurate,
ground-based instrument observations from several instruments to obtain continuous
records of cloud variables (e.g., ice water content, liquid water content) and their associated
errors and to use these observations to evaluate and improve the quality of operational
forecast models [9]. Currently, Cloudnet comprises 20 stations, of which two stations,
the most eastern ones in the network, Bucharest–Măgurele and Galaţi stations, are located
in Romania (cloudnet.fmi.fi, accessed on 16 March 2022). To obtain detailed information
on the vertical profile of clouds, each Cloudnet station requires the continuous operation
of a cloud radar, a microwave radiometer and a ceilometer. The measurements are then
synergetically combined together with thermodynamic profiles from a numerical weather
prediction model within the Cloudnet algorithm suite [10], developed and implemented
within the Cloudnet project and then extended within the European Research Infrastructure
for Aerosol, Clouds and Trace Gases, ACTRIS. One of the products provided by Cloudnet
is the target classification, which gives information regarding the microphysical properties
of clouds [11]. Additional parameters provided by the algorithm suite include drizzle
and drizzle parameters below the cloud base [12], liquid water content [13], and ice cloud
microphysics [14,15].

A series of recent articles have used the Cloudnet algorithm suite to study the proper-
ties of clouds observed at different locations. Bühl et al. [16] studied the ice- and liquid-
water properties in mixed-phase clouds for a dataset collected at a Cloudnet station in
Leipzig, Germany and processed with the Cloudnet target classification scheme. The re-
sults indicated that a detailed insight into the microphysics of mixed-phase clouds is
possible with a combination of the Leipzig Aerosol and Cloud Remote Observation System
(LACROS, [17]) instrumentation (PollyXT Raman/depolarisation lidar, Jenoptik ceilometer
CHM15kx, MIRA-35 cloud radar, HATPRO microwave radiometer) and Cloudnet target
classification. Achtert et al. [18] also used the Cloudnet target classification to investigate
the properties of Arctic clouds using ship-borne observations collected over three months
in the summer and autumn of 2014 during the Arctic Clouds in Summer Experiment.
Their results showed that during autumn, compared to summer, mixed-phase and ice
clouds are more frequently observed, and liquid clouds are less frequent at lower altitudes.
Nomokonova et al. [19] further studied Arctic clouds with the first analysis of clouds
over Ny Ålesund, Svalbard, using data collected by a 94 GHz cloud radar, a ceilometer
and a microwave radiometer over 14 months (June 2016–July 2017). To obtain the macro-
physical and microphysical properties of clouds, the Cloudnet target classification was
applied. Clouds were present 82% of the time, with the highest frequency of occurrence
observed in October 2016 (92%). Multi-layer clouds represented 44.8% and single-layer
clouds 36%. At lower latitudes, the geometrical and microphysical properties of clouds
over the Eastern Mediterranean basin were analysed with the Cloudnet target classification
by Marinou et al. [20]. Observations with a PollyXT lidar, 35 GHz cloud radar, microwave
radiometer and a Doppler wind lidar were performed in Finokalia, Greece, as part of the
PRE-TECT experiment in April 2017. The result indicated that convective clouds were
observed most frequently (58% of the cases), followed by mid-level (38%) and low-level
clouds (2%).

Here, we present the properties of clouds over Bucharest–Măgurele based on the first
18 months of observations (December 2019–May 2021) at this Cloudnet station. To the
authors’ best knowledge, this is the first time that such a study has been performed in
Romania using continuous ground-based measurements and the Cloudnet target classifica-
tion. Previous cloud studies in Romania focused on the cloud cover fraction based on lidar
and satellite measurements [21,22] or on the synoptic environments associated with cumu-
lonimbus clouds based on station observation and reanalysis data [23] without providing
statistical insights into the cloud microphysics. The structure of this paper is as follows.
Section 2 discusses the observation dataset and the methodology (Sections 2.1–2.3) and
presents the hydrometeor and cloud classification (Section 2.4). Section 3 discusses the en-
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vironmental (Section 3.1), hydrometeor (Section 3.2), and cloud (Section 3.3) characteristics
captured during the study period, and Section 4 concludes this article.

2. Data and Methods

This section describes the remote sensing instruments used in this study (i.e., cloud
radar, microwave radiometer, and ceilometer), the datasets provided by these instruments
and the methods used to analyse the datasets. All the instruments were located at the
Măgurele Centre for Atmosphere and Radiation Studies (MARS), a research platform
situated (44.34◦ N, 26.01◦ E, 71 m MSL) approximately 12.5 km from Bucharest, Romania
(Figure 1). The Romanian plain, south of the Carpathian mountains, in which MARS
is situated, is characterised by hot summers and a humid continental climate with no
significant difference in precipitation between seasons (climate type Dfa, according to the
Köppen–Geiger climate classification [24]). The site is devoted to the characterisation of the
atmosphere using a synergy of active and passive remote sensing instruments along with
modelling and satellite data ([25–28]). The state-of-the-art instruments located at MARS
are further used in this study.

Romania

Bucharest
Măgurele center for 

Atmosphere and Radiation Studies 
(MARS)

Figure 1. The location of the Măgurele centre for Atmosphere and Radiation studies (MARS) with
respect to Bucharest. Based on Google Maps (map data: Google, Maxar Technologies) processed on
QGIS [29].

2.1. Cloud Radar

The W-band cloud radar is a Frequency-Modulated Continuous Wave (FMCW) Doppler
cloud radar [30], manufactured by Radiometer Physics GmbH (RPG), Germany, which was
installed at MARS in November 2019 for continuous observations of the macrophysical and
microphysical properties of clouds (Figure 2a). The cloud radar was deployed at MARS for
the FRM4RADAR project (https://geomet.uni-koeln.de/forschung/frm4radar, accessed
on 4 April 2022) with the aim of providing, as a part of a network, reference measurements
for the EarthCARE satellite mission.

https://geomet.uni-koeln.de/forschung/frm4radar
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During the study period, the radar was operated with a 4-chirp sequence covering the
height range 100–15000 m (Table 1). Between May 2020 and May 2021 vertical profiles were
produced continuously (with occasional small gaps due to power outages and calibration)
with a temporal resolution of 2.97 s and a spatial resolution varying from 27.1 m between
108 and 1100 m in altitude to 51.1 m between 10,016 and 14,973 m in altitude (Table 2).
Before this period, the radar was operated with a 4-chirp sequence covering the height
range 119–13,131 m (December 2019–May 2020) (Table 2). The radar was calibrated as
recommended by manufacturer using an absolute calibration with liquid nitrogen every
six months during the studied period.

(a) (b) (c)

Figure 2. Instruments installed at the Măgurele Centre for Atmosphere and Radiation studies (MARS)
used in this study: (a) 94 GHz RPG cloud radar, (b) HATPRO radiometer, and (c) CHM15k ceilometer.

Table 1. MARS instrument setup for the study period.

Instrument Measured Parameters Temporal Spatial Resolution Retrieved
Resolution Parameters

RPG 94 GHz Doppler spectrum 4.96 s 29.8–42.1 m cloud presence
cloud radar reflectivity 2.97 s 27.1–51.1 m and boundaries

LWP at 89 GHz (see Table 2) (see Table 2)

HATPRO G5 brightness temperatures 60 s column integrated liquid water pathmicrowave radiometer measurements

CHM 15K profiles of attenuated 30 s 15 m cloud base
ceilometer backscatter coefficient height

Figure 3 provides Contoured Frequency by Altitude Diagrams (CFADs, [31]) of re-
flectivity and Doppler velocity retrieved by the cloud radar during the entire observation
period. The jumps in the distribution at specific altitudes are the direct result of the change
in settings from chirp to chirp, with, for example, better vertical resolution being asso-
ciated with lower sensitivities [30]. The maximum reflectivity density is situated in the
−25–−45 dBZ interval and within the 1 km closest to the ground. Separate to this peak
in reflectivity density, there is also a distinct pattern of high reflectivity density for which
the peak in reflectivity values decreases with altitude (from 10 dBZ near the ground to
−25 dBZ at 9 km altitude). The Doppler velocity is mainly negative (i.e., falling towards
the radar) above a 3 km altitude, ranging from −1 m s−1 at 3 km in altitude to −0.1 m s−1

at 10 km in altitude. Below 3 km in altitude, the Doppler velocity varies from −4 m s−1

(due to large precipitating hydrometeors) to 2 m s−1 (small hydrometeors experiencing
thermal updrafts from convection in the planetary boundary layer [32]).
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Table 2. MARS 94 GHz FMCW Doppler cloud radar chirp tables used between December 2019 and
May 2021.

Attributes 1 2 3 4

Chirp sequence 1 used between December 2019 and May 2020
Integration Time (s) 0.621 0.798 1.539 2.007
Range Interval (m) 100–1200 1200–4500 4500–6963 7000–13,152

Range Resolution (m) 29.8 29.8 29.8 42.1
Nyquist Velocity (±m s−1) 10.5 8.2 5.8 4.5

Doppler FFT 1024 512 512 512

Total samples: 56,848,384 Total FFTs: 79,872 Total duration: 4.96 s

Chirp sequence 2 used between May 2020 and May 2021
Integration Time (s) 0.458 0.743 0.964 0.781
Range Interval (m) 100–1100 1100–5000 5000–10,000 10,000–15,000

Range Resolution (m) 27.1 30.4 31.1 51.1
Nyquist Velocity (±m s−1) 8.4 6.6 5.1 4.2

Doppler FFT 1024 512 512 512

Total samples: 34,033,664 Total FFTs: 47,104 Total duration: 2.97 s
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Figure 3. Contoured frequency by altitude diagrams (CFADs) of reflectivity (Ze, dBZ) (a,b) and
Doppler velocity (v, m s−1) (c,d) for Dec 2019–May 2020 (a,c) and May 2020–May 2021 (b,d). These
two periods correspond to the two chirp sequences described in Table 2 used during the study period.
The probability density as a percentage is shaded according to the scale.
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2.2. Microwave Radiometer

A 14-channel humidity and temperature microwave profiler (HATPRO G5 series,
RPG, [33]), installed at MARS in November 2019, provided profiles of temperature, hu-
midity, Integrated Water Vapor content (IWV) and Liquid Water Path (LWP) during the
study period (Figure 2b). The temperature profiles were obtained with 10 min resolu-
tion and those of humidity with 1 min resolution. IWV and LWP are retrieved every
minute [34]. HATPRO provides IWV observations with approximately 0.5–0.8 kg m−2

uncertainty [4] and LWP observations with a 20–30 g m−2 accuracy [34]. According to
the manufacturer, temperature profiles have an accuracy of ±0.6 K RMS (0–2000 m) and
±1.0 K RMS (>2000 m) and the humidity profiles of ±0.4 g m3 RMS. The retrieved profiles
are provided with a vertical resolution varying from 30 m below 520 to 300 m between
6000 and 10,000 m; although, it should be noted that the true vertical resolution is lower
than this [35,36]. The radiometer was calibrated as recommended by the manufacturer
using an absolute calibration with liquid nitrogen every six months during the studied
period, at the same time as the cloud radar.

2.3. Ceilometer Data

The CHM15k—Cloud Height Monitor up to 15 km altitude—ceilometer manufactured
by Lufft (G. Lufft Mess-und Regeltechnik GmbH), installed at MARS in November 2019 [37],
provided information about aerosols and clouds (droplets and ice crystals) (Figure 2c).
The ceilometer is sensitive to high concentrations of cloud droplets and aerosols and thus
can be used to detect liquid layers and cloud-base heights [38]. The instrument operates at
a 1064 nm wavelength, with a 59.5 mW output power from a Nd:YAG solid-state, diode-
pumped laser. The CHM15k ceilometer provides uncalibrated backscatter profiles up to
15,000 m with a vertical resolution of 15 m and a temporal resolution of 60 s.

2.4. Hydrometeors and Cloud Classification

The cloud classification used in this study was based on the target classification pro-
vided by the Cloudnet algorithm suite [9,11]. An example of the cloud radar data (i.e.,
radar reflectivity factor, Doppler velocity) and ceilometer data (i.e., attenuated backscatter
coefficient) collected at the Bucharest–Măgurele Cloudnet station are shown in Figure 4a–c
for 29 May 2020. Based on data retrieved by the cloud radar, microwave radiometer,
and ceilometer, together with thermodynamic profiles from ECMWF, the Cloudnet al-
gorithm suite returns the radar and lidar detection status and the target classification
(Figure 4d,e). Furthermore, the radar data are corrected for liquid and gas attenuation in
the Cloudnet algorithm suite. Thus, the ECMFW data are used together with LWP data to
provide atmospheric profiles [11].

Vertical profiles containing the target classification above the Bucharest–Măgurele
station were provided by Cloudnet every 30 s with a vertical resolution of 27–51 m (i.e.,
range bin) [39]. Between December 2019 (when the measurements started at the Bucharest-
Măgurele station) and 31 May 2021 (when the cloud radar was deployed in Cape Verde
for the international Aeolus Cal/Val Campaign, https://askos.space.noa.gr/, accessed on
17 March 2022), a total number of 1,327,680 profiles (84% of the total number of possible
profiles during this period) were collected. Of the total number of profiles, 1,077,858
(81%) were profiles containing hydrometeors and 249,822 (19%) were clear-sky profiles.
For the majority of months during the study period, the data availability was above 93%.
The exceptions are for May (42% of the total number of possible profiles), June (30%), July
(7%) 2020, and Sep 2020 (86%) (Figure 5).

Targets were classified as one of the following categories: (1) cloud droplets , (2) drizzle
or rain, (3) drizzle/rain and cloud droplets, (4) ice, (5) ice and supercooled droplets, (6) melting ice,
(7) melting ice and cloud droplets, (8) aerosols, (9) insects, or (10) aerosols and insects (Figure 6).
These were then grouped into three categories (Figure 6): ice (category 4 from the Cloudnet
target classification), liquid (categories 1, 2, and 3), and mixed-phase bins (categories 5, 6,
and 7).

https://askos.space.noa.gr/
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(c) Attenuated backscatter coefficient

(b) Doppler velocity

(a) Radar reflectivity factor

(e) Target classification

(d) Detection status

Figure 4. Time series of (a) radar reflectivity factor (dBZ), (b) Doppler velocity (m s−1), (c) attenuated
backscatter coefficient (sr−1 m−1), (d) detection status, and (e) target classification based on the
Cloudnet algorithm for 29 May 2020 between 0000 UTC and 2359 UTC. (Source https://cloudnet.fmi.
fi, [39], accessed on 6 December 2021).

In this study, we define a cloud as having a layer of at least 5 consecutive height bins
classified as meteorological targets (i.e., range bins classified as aerosols and/or insects
were removed from the analysis) within an individual vertical profile. Thus, the minimum
thickness of a classified cloud is 135–250 m (depending on the height bin resolution at a
certain altitude (Table 2). Each profile can have multiple cloud layers if the 5-bin height
containing meteorological targets is separated by 5 bins classified as: clear sky, aerosol
particles, no cloud or precipitation, insects, no cloud or precipitation or aerosol coexisting with
insects, no cloud or precipitation. Cloud top and base height are then extracted for each
cloud layer satisfying these conditions. Next, the cloud layers were classified based on
the cloud type. Figure 6 shows the cloud categories adapted from [18], in which the
clouds are classified as: ice only, mixed phase, precipitating mixed phase, liquid and
precipitating liquid.

https://cloudnet.fmi.fi
https://cloudnet.fmi.fi
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 [1]  Cloud liquid droplets only
 [2]  Drizzle or rain
 [3]  Drizzle or rain coexisting 
       with cloud liquid droplets
 [4]  Ice particles
 [5]  Ice coexisting with supercooled 
        liquid droplets
 [6]  Melting ice particles
 [7]  Melting ice particles coexisting 
       with cloud liquid droplets
 [8]  Aerosol particles, no cloud 
       or precipitation
 [9]  Insects, no cloud or precipitation
[10] Aerosol coexisting with insects, 
        no cloud or precipitation

Cloudnet target 
classification

liquid

mixed
phase

ice

Hydrometeors
classification

liquid
([1] or  [3])

precipitating
liquid

(+ [2] below cloud base)

mixed 
phase

(all combinations 
of [4]−[7])

ice
(only [4])

precipitating
mixed phase
(+ [2] below cloud base) 

Cloud classification
(adapted from Achtert et al. 2020)

(or [1] + [4] below cloud base)

Figure 6. The Cloudnet target classification and the hydrometeors and cloud classification used in
this study. The cloud classification is adapted from [18].

A cloud layer was classified as precipitating liquid cloud if the vertical range bins in the
layer were cloud liquid droplets only or drizzle or rain coexisting with cloud liquid droplets, and
the bins below the cloud base were classified as drizzle or rain. A mixed-phase precipitating
cloud was defined in a similar manner; a mixed-phase cloud with drizzle or rain below the
cloud base (Figure 6).

3. Results

We first summarise the thermodynamic conditions for the study period based on
hourly profiles of cloud fraction, temperature, and relative humidity from the Integrated
Forecasting System (IFS), the global operational numerical weather prediction model from
the European Centre for Medium-Range Weather Forecasting (ECMWF) available from the
Cloudnet database [40]. The data are available with a temporal resolution of one hour and
a temporal resolution varying from 30 m at the ground level to 136 m at 15 km altitudes.



Atmosphere 2022, 13, 1445 9 of 15

3.1. Environmental Characteristics

The mean monthly occurrence of cloud fraction from ECWMF-IFS shows high values
over the entire column between Nov 2020 and Mar 2021 (Figure 7a). The annual cycle of
temperature is characteristic of northern hemisphere mid-latitudes (Figure 7b). Close to the
surface (<100 m in altitude), the lowest values for mean monthly temperature occurred
in Jan 2020 (0.8 ◦C), and the highest value occurred in Aug 2020 (25.1 ◦C) (Figure 7b).
At 5.5 km in altitude, the mean monthly temperature varied between −31.8 ◦C in Mar
2021 and −15.6 ◦C in Aug 2020. Relative humidity (with respect to water for temperatures
above 0 ◦C, with respect to ice for temperatures below 0 ◦C) is shown in Figure 7c, and here,
it should be noted that since the cloud physics scheme in a forecast model will generate
clouds at relative humidities lower than the saturation value of 100%, a strong correlation
between RH and clouds is not expected since the cloud physics scheme will also be taking
into account other sub-gridscale processes (e.g., vertical motion). Close to the surface, the
highest values of RH occurred during the winter months. In general, RH at low levels
depends on the properties of the active surface layer [41]. High values of RH at upper
levels (7–10 km) are associated with advection due to tropospheric circulations, such as
moisture advection from the Mediterranean Sea [41].
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Figure 7. ECMWF−IFS monthly averages for (a) cloud fraction (>0.01), (b) temperature (◦C),
and (c) relative humidity (%) over MARS from December 2019 to May 2021.

3.2. Hydrometeor Characteristics

The monthly occurrence of hydrometeors as a function of altitude is shown in Figure 8.
The majority of hydrometeors were observed below 5 km, with the exception of Jan and
Mar 2021. Above 5 km, the frequency of occurrence is less than 20% (Figure 8a, left
panel). The highest number of profiles with hydrometeors (>60%) were recorded in Dec
2020. As shown in Figure 8d (left panel), these were mainly liquid hydrometeors below
1 km. The lowest frequency (<20% over the entire column) was observed in Apr 2020,
corresponding with low values for RH (Figure 7c). The analysis of clouds over Ny Ålesund,
Svalbard [19], showed that the majority of hydrometeors were observed below 2 km with a
maximum at 660 m.

The seasonal distribution of ice hydrometeors over the Bucharest–Măgurele Cloudnet
station shows that this hydrometeor was most frequently (12–14%) observed between 2 and



Atmosphere 2022, 13, 1445 10 of 15

4 km (Figure 8b). During winter seasons, the frequency of occurrence for ice hydrometeors
was between 14 and 16%, with winter 2019–2020 having the maximum value around 2 km
in altitude, and winter 2020–2021 having the maximum value around 3 km. The maximum
between 2 and 4 km is mainly associated with clouds reaching in general 5–8 km and
with the melting ice layer (as indicated by the Cloudnet algorithm) situated approximately
at 2 km or with clouds producing snow (e.g., January 2021). This is also highlighted in
Figure 9b, showing the distribution of the cloud base and cloud top for the winter and
spring months. Spring 2020–2021 displayed a different distribution to the other seasons,
with a maximum (16%) in the occurrence of ice hydrometeors at approximately 4.5 km and
a secondary maximum (>14%) at approximately 9 km (mainly due to high frequencies
of occurrence in May 2021). The maximum frequency of occurrence for mixed-phased
hydrometeors was between 25 and 30% at 1–3 km, with the exception of Sep 2020–Feb
2021 (Figure 8c). For mixed-phase hydrometeors in autumn 2020, the maximum occurrence
(17%) was observed at 2 km in altitude, while for winter 2021, the maximum occurrence
(34%) was observed at around 1 km. The occurrence of hydrometeors during the Dec
2020–Feb 2021 winter period was dominated by Dec 2020 events. Liquid hydrometeors
were mainly observed below 4 km in altitude, with maximum values of occurrence below
2 km (Figure 8d).

3.3. Cloud Characteristics

Figure 9 shows the distribution of cloud base height, cloud top height, and geometrical
thickness for the five types of cloud layers analysed in this study (Figure 6).

For the studied region, the cloud spectrum varies from deep convective clouds reach-
ing the tropopause during the warm season to shallow stratiform clouds during the cold
season. Clouds were more frequently observed during winter (45% of all profiles) than in
other seasons. Ice clouds were the most frequent type of cloud observed (468,463 profiles,
49.5% of all cloud profiles), followed by mixed-phase (220,280 profiles, 23.3%) and mixed-
phase precipitable clouds (164,868 profiles, 17.4%). Liquid and liquid precipitable cloud
profiles represented 5.1% and 4.5%, respectively, of the total number of cloud profiles. These
results agree with those for the Eastern Mediterranean obtained by Marinou et al. [20], who
showed that the most frequent type of clouds were ice clouds (41.8% of all cloud profiles)
followed by mixed-phased clouds (12.2%). When compared with results from studies
conducted in high latitudes [19], our results are not in agreement, as the most frequent
type of clouds in high latitudes are mixed-phase clouds (20.6% of all single-layer clouds
profiles), followed by ice (9%) and liquid clouds (6%).

The geometrical thickness of clouds over the Bucharest–Măgurele Cloudnet station
varied from a median value of 244 m for liquid clouds during summer to 3362 m for mixed-
phase precipitable clouds during spring. The minimum detected value for the geometrical
thickness is between 135 and 155 m, given that a cloud layer is defined as at least five
consecutive bins. For ice clouds, the distribution of these cloud properties does not change
much between seasons, except for a slight increase in the cloud base height from winter
(7994 m) to summer (9456 m). We should note that in the summer (4% of all available
observations), the cloud classification was based on a smaller sample size compared with
the other months. Mixed-phase precipitable clouds were deeper in spring and summer
than in other months. Mixed-phase cloud thickness varied from 1218 m in winter to 792
m in autumn, with cloud base and cloud top heights increasing from winter to summer.
The liquid cloud thickness varies by about 100 m from winter (358 m) to summer (244 m),
and liquid precipitable clouds were deeper in summer than liquid clouds. For comparison,
in the study of Arctic clouds by Achtert et al. [18], the thickness of liquid clouds varied
little from summer to autumn. This is not in agreement with our results, which showed
that the largest variation occurs from summer to autumn. Lower cloud top and cloud base
heights were observed for mixed-phased and ice clouds in autumn than in summer for the
Arctic, which is in agreement with our results. Concerning the cloud thickness, the results
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obtained in this article agree well with those for the Eastern Mediterranean, where the
cloud thickness was below 6 km for 74% of all clouds [20].
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Figure 8. Frequency of occurrence for (a) liquid, mixed-phase and ice hydrometeors, (b) ice hydrom-
eteors, (c) mixed-phase hydrometeors, and (d) liquid hydrometeors identified using the method
proposed by [19] and based on target classification data from Cloudnet. The values are normalised
to the total number of profiles for each month. The red dotted rectangle indicates the months with
incomplete data (as shown in Figure 5). Left panels show the monthly distribution by altitude, and
the right panels show the seasonal distribution by altitude.



Atmosphere 2022, 13, 1445 12 of 15

winter spring summer autumn
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Figure 9. The seasonal occurrence of (a) ice, (b) mixed-phase, (c) mixed-phase precipitable, (d) liquid,
and (e) liquid precipitable cloud as observed by the Bucharest–Măgurele Cloudnet station between
Dec 2019 and May 2021. For each season, the distribution of cloud base height (in km, light blue),
cloud top height (in km, blue), and cloud thickness (km, green) is presented as a box-and-whiskers
plot. The number in each panel represents the total number of profiles for the type of cloud and for
each season. Note that the data from summer and autumn are collected for one year, and for winter
and spring, the data are collected for two years.

4. Conclusions

For the first time in Romania, cloud properties have been synergistically retrieved
from the Bucharest–Măgurele Cloudnet station. The datasets were collected over a period
of 18 months (Dec 2019–May 2021) in order to investigate the seasonal variations in cloud
properties (i.e., phase, type). A total number of 1,327,680 profiles were analysed. The results
indicate that clouds over the studied area were more frequently observed during winter
(597,456 profiles) compared with other seasons. The most frequent type of clouds observed
were ice clouds, followed by mixed-phase and mixed-phased precipitable clouds, totalling
853,611 profiles. Our results agree with those from previous studies, in particular for
Eastern Mediterranean.

The results presented here are a baseline for future studies, which will focus on (1) bet-
ter understanding the cloud properties over Bucharest–Măgurele using longer continuous
datasets and including other properties (e.g., liquid water path); (2) the effect of the bound-
ary layer structure on cloud evolution using measurements from a co-located Doppler wind
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lidar; (3) the radiative properties of clouds using data from a co-located radiation station,
which is part of the Baseline Surface Radiation Network; (4) the calibration and valida-
tion of products from future satellite missions, including the cloud profile measurements
from EarthCARE.
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