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Abstract: The development of machine learning (ML) provides new means and methods for accurate
climate analysis and prediction. This study focuses on summer precipitation prediction using ML
algorithms. Based on BCC CSM1.1, ECMWF SEAS5, NCEP CFSv2, and JMA CPS2 model data,
we conducted a multi-model ensemble (MME) prediction experiment using three tree-based ML
algorithms: the decision tree (DT), random forest (RF), and adaptive boosting (AB) algorithms.
On this basis, we explored the applicability of ML algorithms for ensemble prediction of seasonal
precipitation in China, as well as the impact of different hyperparameters on prediction accuracy.
Then, MME predictions based on optimal hyperparameters were constructed for different regions of
China. The results showed that all three ML algorithms had an optimal maximum depth less than 2,
which means that, based on the current amount of data, the three algorithms could only predict
positive or negative precipitation anomalies, and extreme precipitation was hard to predict. The
importance of each model in the ML-based MME was quantitatively evaluated. The results showed
that NCEP CFSv2 and JMA CPS2 had a higher importance in MME for the eastern part of China.
Finally, summer precipitation in China was predicted and tested from 2019 to 2021. According to the
results, the method provided a more accurate prediction of the main rainband of summer precipitation
in China. ML-based MME had a mean ACC of 0.3, an improvement of 0.09 over the weighted average
MME of 0.21 for 2019–2021, exhibiting a significant improvement over the other methods. This shows
that ML methods have great potential for improving short-term climate prediction.

Keywords: machine learning; climate models; multi-model ensemble; short-term climate prediction;
precipitation

1. Introduction

Numerical climate models are important tools for the understanding of climatic phe-
nomena, as well as for making climate predictions [1]. However, the capability for climate
prediction is limited by internal atmospheric variability, which is largely unpredictable
beyond the deterministic predictability limit of about two weeks [2]. It is fundamentally
impossible to describe all the processes involved in the true climate system in a climate
model, regardless of how complex the model is [3,4]. There are numerous uncertainties
involved in constructing and applying these models, which are often classified as initial
conditions, boundary condition parameters, structural uncertainties, etc. [5]. In this sense,
knowledge of systematic errors occasioned by these uncertainties is of paramount impor-
tance in the realization of a suite of models, each of which carries a somewhat different
representation of the above processes, which can be combined to reduce the collective local
biases in space, time, and for different variables from the different models [6]. With the
availability of climate predictions produced using various dynamical models, multi-model
ensemble forecasting has gained more and more attention recently [7].

Multi-model ensembles (MME) are used to improve model predictions of tempera-
ture and precipitation where single-model prediction capabilities are limited [8–10]. In
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particular, studies discuss a “super-ensemble approach”, in which a multi-model linear
regression technique is used to improve deterministic forecasts locally [11]. In the sense of
its construction, the super-ensemble is a post-processing product of multi-model forecasts.
This super-ensemble can be used as a tool for making both deterministic and probabilistic
predictions [12]. In addition, the technique of MME prediction has been explored by various
researchers [13–15]. A combination of the results of various types of models, considering
the performance of each model, can produce predictions of greater reliability [16]. The key
challenge of MME is how to combine their complementary advantages.

With the development of artificial intelligence (AI), machine learning (ML) algorithms
represented by deep learning (DL) have made breakthroughs and are now more widely
used in the field of meteorology, covering many meteorological operations such as ob-
servation, forecasting, and services. ML provides an effective means of analyzing the
massive amounts of observation and model simulation data, as well as providing technical
support for weather forecasting [17]. ML can be used to learn laws and predict unknown
data automatically from the data, and it also is suitable for all kinds of data. Therefore,
ML is increasingly being applied to climate research [18]. Climate data can be efficiently
analyzed and processed using ML methods, to extract valuable information from massive
patterns of data and predict future climate conditions more accurately. With ML algorithms,
new interrelated signals can be discovered and extracted from the climate system. For
instance, SST data from a critical region can improve the climate prediction capability for
a land region in the subsequent months [19]. It has been shown that a model based on
convolutional neural networks can effectively predict ENSO events up to one and a half
years in advance, with an accuracy of up to 80% [20]. In addition, a shallow neural network
model was also effective in the identification of central and eastern El Niño events [21]. ML
requires a large amount of data, to conduct appropriate training [22]. Hindcast samples
for seasonal prediction models have been available for a few decades, but the volume of
data is insufficient for ML, especially for DL. Due to the limited amount of data available,
there have been relatively few studies on ML applied to MME prediction for seasonal
precipitation. In spite of this, a limited amount of data does not prevent ML from making
predictions, but early diagnosis and intervention are necessary [23].

The main objective of this study was to investigate the applicability of ML algorithms
for MME prediction and to design an optimal ML ensemble forecast technique for summer
precipitation in China. Decision tree (DT), random forest (RF), and adaptive boosting (AB)
algorithms, which are easy to understand, were used to predict summer precipitation in
China, based on the four dominant climate forecast systems. By varying the hyperpa-
rameters of each algorithm, we investigated the impact of hyperparameter changes on
summer precipitation prediction, hence determining the optimal parameters for MME
prediction across different regions. The importance of each model was quantitatively
evaluated following the determination of the optimal parameters of the algorithms. On this
basis, we applied the optimal MME algorithm to the prediction of summer precipitation
for 2019–2021 and assessed its predictive ability.

2. Data and Methods
2.1. Data

Model data were derived from the current business models of the four major inter-
national climate prediction agencies, namely the Beijing Climate Center Climate System
Model (BCC CSM), National Centers for Environmental Prediction Climate Forecast Sys-
tem version 2 (NCEP CFSv2), Japan Meteorological Agency Coupled Prediction System
version 2 (JMA CPS2), and the European Centre for Medium-Range Weather Forecasts
fifth long-range forecasting system (ECMWF SEAS5), hereafter referred to as BCC, NCEP,
JMA, and ECMWF [24–27]. Each month’s data are the average set of all samples (different
release times, different members) for the month. To take into account the need for the
China Meteorological Administration’s climate prediction meeting at the end of March
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each year, model precipitation data were used with a start date of March, with a data period
of 1991–2021, and with a spatial resolution of 1◦ × 1◦.

Observation of precipitation data was derived from the CPC Merged Analysis of
Precipitation (CMAP). CMAP is a technique that produces pentad and monthly analyses of
global precipitation in which observations from rain gauges are merged with precipitation
estimates from several satellite-based algorithms (infrared and microwave). The analyses
are on a 2.5 × 2.5 degree latitude/longitude grid and extend back to 1979. The time range
and spatial resolution of all data, as well as the training and testing periods, are shown
in Table 1. We interpolated the CMAP precipitation data to the model data resolution, to
ensure spatial consistency.

Table 1. Summary of the forecast and observation products used in this study.

Name Time Range Spatial Resolution Training Period Testing Period

BCC CSM 1991–2021 1◦ × 1◦

1993–2018 2019–2021
NCEP CFSv2 1982–2021 1◦ × 1◦

JMA CPS2 1979–2021 1◦ × 1◦

ECMWF SEAS5 1993–2021 1◦ × 1◦

CMAP 1979–2021 2.5◦ × 2.5◦

Given the needs of the study, China was divided into eight regions: (A) South China
(SC) contains Guangdong, the eastern part of Guangxi, Fujian, southern Jiangxi, and
southern Hunan; (B) East China (EC) contains Jiangsu, Zhejiang, Anhui, Henan, Hubei;
(C) North China (NC) contains Hebei, Shandong, eastern Shanxi, Beijing, and Tianjin;
(D) Northeast China (NE) contains most of Northeast China, including Heilongjiang, Jilin,
Liaoning, and Inner Mongolia; (E) western Northwest China (WN); (F) eastern Northwest
China (EN); (G) the Tibetan Plateau (TP) contains Tibet and southwestern Qinghai Province;
(H) Southwest China (SW) contains Yunnan, Guizhou, western Guangxi and Sichuan,
Chongqing, western Hunan, and southern Shaanxi.

2.2. Methods

Classification and regression tree (CART) is a decision tree algorithm that was first
introduced by Breiman [28]. This algorithm constructs an inverted tree-like graphical
structure from data, comprising of a series of logical decisions at their root node, branches,
and leaf nodes for classification or regression. The input and output data can be both
categorical and continuous for classification and regression. Each node in CART represents
a decision rule that splits the data into two or more homogeneous sets. The topmost node
of the tree is known as the root node, which gives rise to internal nodes. The internal nodes
have both parent and child nodes containing decision rules. The branches represent the
outcome of the respective test or decision rule. The leaf node or terminal node represents
the final output.

Suppose that X and Y are input and output variables, respectively, and Y are con-
tinuous variables. Given the training data set D = {(x1, y1), (x2, y2), . . . , (xN , yN)}, the
input feature vector xi =

{(
x1

i , x2
i , . . . , xn

i
)}

. Considering that the input data has been
divided into M cells (R1, R2, . . . , RM) and that each cell Rm has a fixed output value cm, the
regression tree model can be expressed as follows:

f (x) = ∑M
m=1 cm I(x ∈ Rm) (1)

Following the division of the input data, the squared error can be used to express the
prediction error of the regression tree, and the optimum output value on each cell will be
determined by the least squared error criterion. The optimal value ĉm of cm on a cell Rm is
the mean value of the output yi corresponding to all input instances xi on Rm.

The CART regression tree divides the input data using a heuristic method, selecting the
j-th variable x and the value s as the splitting variable and splitting point, and defining two
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regions, R1(j, s) =
{

x
∣∣xj ≤ s

}
and R2(j, s) =

{
x
∣∣xj > s

}
. Then find the optimal splitting

variable j and the optimal splitting point s with Equation (2):

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (2)

Ensemble learning methods consist of a collection of weak learners, such as a decision
tree, whose predictions are aggregated to determine the most popular result. The most well-
known ensemble methods are bagging, also known as bootstrap aggregation, and boosting.

The random forest algorithm is an extension of the bagging method, as it utilizes both
bagging and feature randomness to create an uncorrelated forest of decision trees [29].
A schematic illustration of the random forest concept can be found in Figure 1. This
method generates a random subset of features, also known as feature bagging or the
random subspace method, which ensures that decision trees have a low correlation among
themselves. The random forest algorithm consists of a collection of decision trees, and
each tree in the ensemble is comprised of a bootstrap sample, which is a data sample
obtained from a training set with a replacement. Out of that training sample, one third is set
aside as test data, called the out-of-bag (OOB) sample. Depending on the type of problem,
the determination of the prediction will differ. For a regression problem, the individual
decision trees will be averaged, whereas for a classification problem, the predicted class
will be determined by a majority vote, or the most common categorical variable. Last but
not least, the OOB sample is used for cross-validation to finalize the prediction.

Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 17 

determined by the least squared error criterion. The optimal value mĉ  of mc  on a cell 
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Figure 1. Flow chart of the random forest algorithm.

Freund and Schapire proposed the adaptive boosting algorithm [30]. It can be used
to improve the performance of machine learning algorithms. It is best used with weak
learners, and these models achieve high accuracy above random chance on regression
problems. The common algorithms used with AdaBoost are decision trees of level one.
Figure 2 illustrates a flow chart of the Adaboost algorithm. A weak learner is a classifier
or predictor that performs relatively poorly in terms of accuracy. In addition, it can be
implied that the weak learners are simple to compute, and many instances of algorithms
are combined to create a strong learner through boosting.

As a next step, we describe the model training process. First, we extracted the precipi-
tation forecasts for June, July, and August from each model and added them up, to obtain
summer precipitation forecasts. After that, the summer precipitation prediction results
were converted to anomaly percentage predictions of summer precipitation. Since ECMWF
started in 1993, we chose 1993–2018 as the training period, and used 10-fold cross-validation
to divide the training period into 10 subsets. Then, each subset was extracted in turn, as the
validation period. The multi-year precipitation anomaly percentage predictions of the four
models were substituted into the three machine learning models as features, respectively.
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The mean value of the scores from the 10 cross-validation subsets was used as the prediction
skill for the ML algorithms. This enabled the influence of hyperparameter variation on the
prediction skill to be explored and the optimal hyperparameters to be determined.
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2.3. Assessment Criteria

The anomaly correlation coefficient (ACC) reflects the spatial similarity between the
forecast and observation. This was established and recommended by WMO in 1996. ACC
is calculated as follows:

ACC =

N
∑

i=1
(∆xi − ∆xi)× (∆ fi − ∆ f i)

N
∑

i=1
(∆xi − ∆xi)

2 × (∆ fi − ∆ f i)
2

(3)

where ∆ fi and ∆ fi are the anomaly percentage (AP) prediction and the average value of AP
prediction at the ith grid point, respectively. ∆xi and ∆xi are the PAP observation and the
average value of AP observation at the ith grid point, respectively. N is the total number of
grid points.

The temporal correlation coefficients (TCC) can provide a more accurate assessment
of the forecasting capability of the model for each grid point anomaly from a statistical
perspective. TCC is calculated as follows:

TCC =

N
∑

i=1
(xi − xi)× ( fi − f i)

N
∑

i=1
(xi − xi)

2 × ( fi − f i)
2

(4)

where fi and fi are the prediction and the average value of prediction at the ith grid point,
respectively. xi and xi are the observation and the average value of observation at the ith
grid point, respectively. N is the total number of time series.

Root mean square error (RMSE) is the standard deviation of the prediction errors.
RMSE is calculated as follows:

RMSE =

√√√√√ N
∑

i=1
( fi − xi)

2

N
(5)

where fi and xi are the prediction and the observation at the ith grid. N is the total number
of grid points.
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3. Results
3.1. Prediction of the Skill of Models

To facilitate the comparison of the differences in forecasting skill between the models,
Figure 3 depicts the distribution of each model’s forecasting skill across the country. The
time correlation coefficients (TCC) of the multi-year returns and actual precipitation for
the BCC, ECMWF, NCEP, and JMA models are depicted in Figure 3a–d, respectively.
The comparison of Figure 3a–d reveals that the forecasting accuracy varied considerably
between regions. BCC (Figure 3a) had a high forecasting skill in the southwest, middle
reaches of the Yangtze River, northern northeast region, and northern northwest region,
whereas ECMWF (Figure 3b) had relatively large areas of high forecasting skill, with
relatively high skill from the southwest to northern China and western Inner Mongolia. In
the southwest to northern China region and western Inner Mongolia, the forecast accuracy
was relatively high, whereas it was low in regions south of the Yangtze River, the northeast,
and parts of the northwest. In Figure 3c, the distribution of NCEP forecasting skills was
comparable to that of ECMWF, with the highest forecasting skills primarily in the southwest
to Huang-huai regions, and the largest differences with ECMWF forecasting skills occurring
in the Jiangnan and eastern northwest regions. ECMWF’s predictive ability in these two
regions was the exact opposite of NCEP’s. Figure 3d demonstrates that the JMA had a high
prediction skill in the region between the two river basins, but a low prediction skill in the
region south of the Yangtze River and in the northeast.Atmosphere 2022, 13, x FOR PEER REVIEW 7 of 17 
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In Figure 4a–f, the characteristics of the TCC distributions for each of the four models
are presented with respect to one another. Comparing the TCC between each model allows
us to determine whether they are highly correlated. According to Figure 4a, the TCC
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between BCC and ECMWF was higher in North China, the middle and lower Yangtze
River, and South China, and its coefficient passed the 5% level of significance test, indicating
that the forecasts of the two models were consistent in these areas; in Southwest China,
the differences were larger, and the forecasts often contradicted each other. A high TCC
between BCC and NCEP can be found in Figure 4b, mainly in the middle and upper reaches
of the Yangtze River, in northern China, and in eastern northwest China. It can be seen
from Figure 4c that regions with a higher TCC between BCC and JMA were primarily
located in South China, Central China, and North China. Figure 4d illustrates regions
with high TCC between ECMWF and NCEP that were primarily located in the middle and
southern reaches of the Yangtze River. Despite the lower TCCs in eastern Yunnan, southern
Northeast China, and the southeast coast, the correlation between ECMWF and JMA is
strong in Figure 4e. In most areas, the TCC between the NCEP and the JMA models in
Figure 4f is low, with the exception of the eastern northwest, western Yunnan, and some
parts of the middle and lower reaches of the Yangtze River, where most TCCs were negative,
indicating that the models made opposite predictions over time.
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3.2. Parameter Optimization

The DT, RF, and AB algorithms have various hyperparameters, including feature
selection criteria, feature partition criteria, maximum depth, leaf node minimum sample
number, node partition minimum impure, maximum leaf node number, etc. Different
configurations of hyperparameters have a significant effect on the simulation of the model.
In essence, model learning refers to the process of adjusting the model parameters so
that the observation data and the model prediction data become as close as possible. By
adjusting the different configurations of parameters, the optimal model parameters are
established, to achieve the optimal prediction effect. The maximum depth of the tree is the
key tuning parameter in the CART, determining the complexity of the model.

As shown in Figure 5, a MME prediction with a maximum depth of three was con-
structed for summer precipitation in eastern China. As can be seen from the figure, the
model used the JMA as the root node and whether the precipitation anomaly percentage
was greater than −9.36% as the basis for node splitting. The ECMWF model and the NCEP
model were used as the decision nodes, while ECMWF, NCEP, and the JMA were the
decision nodes of the next layer. As can be seen from the figure, when the predicted value
of JMA was greater than −9.36%, it entered the right-hand branch of the tree. For the
right-hand branch, we determined whether the NCEP prediction was greater than 7.91%,
in order to proceed to the next node. The terminal node and its corresponding precipitation
prediction value were obtained. The same applied to the left-hand branch, where different
configurations of the JMA and ECMWF models were used to obtain their corresponding
precipitation predictions. From the tree structure, we can see that the BCC was not used in
the tree, and therefore BCC was of relatively low reference value for the East China region.
In this tree structure, the ECMWF, NCEP, and JMA do not act as nodes in the tree structure
the same number of times. JMA was used as the root node of the whole tree structure and
ECMWF acted as a leaf node many times in the branches for node splitting, whereas the
NCEP only acted as two leaf nodes. Therefore, the importance of JMA and ECMWF was
relatively higher in this tree structure.
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To investigate the effect of the maximum depth of the tree on the prediction skills,
cross-validation of the DT, RF, and AB algorithms was conducted using data from the last
30 years. For the four regions of South China, East China, North China, and Northeast
China, Figure 6a–d show the variation of root mean square error (RMSE) with increasing
maximum depth. A comparison of the RMSEs of the three ML algorithms for the South
China region (Figure 6a) revealed that the RF algorithm had the lowest RMSE, regardless
of the variation in maximum depth. DT algorithms had lower RMSEs than AB algorithms
when the maximum depth was less than 6, and AB algorithms had lower RMSEs than DT
algorithms when the maximum depth was greater. In both the RF and DT algorithms, the
RMSE reached a minimum value when a maximum depth of 2 was reached, whereas in
the AB algorithm, the RMSE reached its minimum value when a maximum depth of 1 was
reached. According to the DT and RF algorithms, the optimal depth for South China is
2, while for the AB algorithm, the optimal depth is 1. For the East, North, and Northeast
China regions, a comparison of the RMSE with maximum depth also showed that the
RMSE was dependent on maximum depth. Based on the cross-validation results, the
RMSEs of the three algorithms showed a trend of decreasing and then increasing according
to the maximum depth of the tree, and the RMSE of the RF algorithm had the smallest
RMSE across all regions. RMSE reached a global minimum for East and North China at
a maximum depth of 2, and RMSE reached a global minimum for Northeast China at a
maximum depth of 1. Generally, each algorithm minimized the RMSE at maximum depths
below 2, which was a consequence of the small amount of model data. Consequently, when
developing prediction models, the maximum depth of the tree should not exceed two.
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Additionally, when it comes to the AB and RF algorithms, the number of trees is an
important parameter that affects the prediction skill. Figure 7a–d illustrates the effect of
changing the number of trees in the AB algorithm and RF algorithm on the prediction skill
in South China, East China, North China, and Northeast China, respectively. According to
Figure 7a, the variation of RMSE was relatively similar for the AB and RF algorithms in
South China as the number of trees increased. As the number of ensemble trees increased,
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the cross-validation RMSE decreased rapidly when the number of trees was less than 10. In
the presence of more than 10 trees, the decline in RMSE became significant and stabilized
over time. RMSE essentially reached a minimum value when the number of trees reached 20.
Further increases in the number of ensemble trees did not result in further decreases in
the RMSE. The comparison of the three plots in Figure 7b–d shows that the effect of the
number of integration trees on RMSE in East China, North China, and Northeast China
was essentially the same as that in South China. As the number of ensemble trees increased,
the RMSE for the three regions decreased rapidly at an early stage. Subsequently, with
a further increase in the number of trees, the rate of decline decreased, and the RMSE
reached a stable value when the number of trees reached 20 or more and no longer declined.
Accordingly, the optimal number of integration trees for both the AB algorithm and the
RF algorithm is about 20. Table 2 shows the hyperparameter selection of the three ML
algorithms when carrying out independent prediction.Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 17 
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Table 2. The selection of key hyperparameters.

DT Parameter RF Parameter AB Parameter

criterion mse criterion mse base estimator decision tree
max depth 2 max depth 2 max depth 2

random state 0 n estimators 20 n estimators 20
min samples split 2 random state 0 random state 0

In the tree-based models, we can calculate the mean square error for each feature, and
the feature importance is the normalized value of this mean square error reduction. This
enabled us to calculate the importance of each model in the DT, RF, and AB algorithms. A
distribution of the importance of each model in China could also be obtained, as shown in
Figure 8.
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Figure 8. The importance of four models in the algorithms for decision trees, random forests, and
AdaBoost: (a) BCC’s importance in DT algorithm, (b) BCC’s importance in RF algorithm, (c) BCC’s
importance in AB algorithm, (d) NCEP’s importance in DT algorithm, (e) NCEP’s importance in
RF algorithm, (f) NCEP’s importance in AB algorithm, (g) ECMWF’s importance in DT algorithm,
(h) ECMWF’s importance in RF algorithm, (i) ECMWF’s importance in AB algorithm, (j) JMA’s
importance in DT algorithm, (k) JMA’s importance in RF algorithm, and (l) JMA’s importance in
AB algorithm.

As shown in Figure 8, each of the three ML algorithms, DT, RF, and AB, was evaluated
based on its importance for each of the four regions. Figure 8a–c illustrates the importance
of BCC in the three algorithms. Comparison of the three figures shows that the importance
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of BCC in all three algorithms had similar distribution characteristics, all of them having a
higher importance in the Yangtze River basin and the northeast region, while the importance
of the DT algorithm was greater than the others. In part, this was due to the fact that both
the RF and AB are ensemble algorithms, which build multiple decision trees, in order to
utilize as much valid information as possible from all models without over-reliance on one
model, as in the case of individual decision trees. Therefore, the difference in importance
between the RF and AB algorithms was relatively low. Figure 8d–f shows the spatial
distribution characteristics of the importance of ECMWF in each of the three algorithms,
where it can be seen that ECMWF were highly significant in the Yellow River Basin, east
of the northwest region, and west of the southwest region. According to Figure 8g–i, the
importance of the NCEP model varied by region in the three algorithms, and the model
mainly relied on the results of NCEP in most regions south of the Yangtze River, northern
China, and western Northwest China. JMA mainly had a high importance in the Huaihe
River basin, central China, and northern northeast China, as shown in Figure 8j–l. In
general, the importance of each model varied widely from region to region. It can be seen
from all graphs that both NCEP and JMA played a leading role in ensemble forecasting
in eastern parts of China. Although BCC and ECMWF were less important than the other
two models, they were of great importance in certain areas where the prediction accuracy
was low, such as South China and Northeast China. ML algorithms can effectively evaluate
the importance of each model for different regional zones and realize the complementary
advantages of multiple models, resulting in an optimal MME prediction.

Comparing Figures 3 and 8, it can be seen that the importance of the model is more
similar to that of TCC. The areas where a single model has high skill also has higher
importance for MME. This is because the ML-based MME is essentially a regression of
multi-models. If the prediction of a model is more accurate in a specific region, the
machine learning method will inevitably use this prediction information more in the
training process, thus increasing the importance of the model. The biggest difference
between Figures 3 and 8 is that a model with lower predictive skill does not mean that the
model is less important in the ML-based MME. For example, the prediction skill of a model
is so low that predictions and observations are opposite in most years. It is also prediction
information that can be used in ML algorithms. ML can obtain a relatively high accuracy by
taking the inverse of the predictions of these models. Therefore, in such a training process,
a model with low prediction skill could have a higher importance.

The validation results of the three ML algorithms were relatively similar, and in gen-
eral, RF was the most stable of the three algorithms. Based on RF algorithms, Figure 9
shows the comparison between the MME prediction and actual summer precipitation in
China for 2019–2021. According to Figure 9a, the summer precipitation in China in 2019
can be divided into two rain belts, from north to south, with the southern rain belt located
in Jiangnan, while the northern rain belt is located in the northeast and east northwest,
while North China, the Huaihe River basin, and Southwest China receive little rainfall.
It can be observed that the integrated multi-model prediction results in Figure 9b were
more accurate in predicting the overall distribution characteristics of the rainbands, as well
as the general distribution characteristics of two rainbands in general. The precipitation
predictions for Jiangnan and Northwest China are more accurate, while those for Northeast
China are less accurate. Based on Figure 9c, China’s summer precipitation in 2020 was rela-
tively anomalous, with unusually high precipitation levels compared to climate averages,
especially in the Yangtze River basin. It was only in a few small areas of southern China,
southern northeast China, and central northwest China that the precipitation was less.
Figure 9d depicts the general distribution of precipitation for 2020, with most areas in good
agreement with the actual conditions, except for some areas in the northwest and northeast,
where the actual conditions were reversed. However, the predictions differ significantly
in magnitude from the actual conditions, and the anomalies in actual precipitation were
not well predicted. Figure 9e represents the distribution of summer precipitation in China
in 2021 as a rainband extending from northeast to southwest, mostly covering eastern



Atmosphere 2022, 13, 1424 13 of 16

Inner Mongolia, north and central China, the Jianghuai basin, and the middle and lower
Yangtze River reaches, with most other areas showing reduced precipitation. In Figure 9f,
the prediction offered a relatively good interpretation of the rainband, although the extent
of the rainband was larger than in reality. Forecasts and actuals differ mainly in the eastern
part of the northwest region, in the northern part of the northeast region, and in the middle
and lower reaches of the Yangtze River. In addition, the predictions were smaller than
the actual results, when comparing the forecast and actual precipitation levels. The MME
prediction for 2019–2021 better captured the overall distribution of summer precipitation
in China, but the magnitude of the forecast differed significantly from that of the actual
situation, which was significantly higher.Atmosphere 2022, 13, x FOR PEER REVIEW 14 of 17 
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A quantitative evaluation of the forecasting skill was conducted by computing the
ACC and RMSE of the four models, weighted average MME, and ML-based MME, as
shown in Figure 10. When comparing the ACC of the various methods in Figure 10a, it
can be seen that the single model’s ACC was unstable and exhibited large interannual
variations, but the two MME methods both had higher and more stable ACCs. It was
determined that the mean ACC of ML-based MME was 0.3, an improvement of 0.09 over
the weighted average MME of 0.21 for 2019–2021. The ML-based MME had a significant
improvement over the other methods. RMSE comparison results in Figure 10b are similar to
those of ACC. The ML-based MME had the lowest RMSEs. However, RMSE’s improvement
of ML-based MME was not as significant as ACC’s.Atmosphere 2022, 13, x FOR PEER REVIEW 15 of 17 
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4. Conclusions and Discussion

This study was based on three tree-based ML algorithms for predicting summer
precipitation in China with MME. Using BCC CSM1.1, ECMWF SEAS5, NCEP CFSv2,
and JMA CPS2 model data, a MME prediction experiment was conducted of summer
precipitation in China. On this basis, the applicability of ML algorithms for MME prediction
was explored. The influence of hyperparameters, including maximum depth and number
of trees, on the MME was investigated. Using optimum hyperparameters, MME forecasts
were then created for various regions of China. The importance of each model in the
ensemble prediction was quantified.

According to the cross-validation results, the RMSEs of the three algorithms declined
and then increased, depending on the maximum depth of the tree, with the RF algorithm
having the lowest RMSE across all regions. In light of the limited quantity of model data,
each algorithm minimized RMSE at maximum depths below 2. Thus, based on the current
data, the three algorithms were only able to predict precipitation anomalies that were
positive or negative, and extreme precipitation was difficult to predict. In the case of the
number of integration trees, the RMSE for all regions decreased rapidly as the number of
ensemble trees increased at an early stage of the analysis. The rate of decline decreased as
the number of trees was increased, and the RMSE reached a stable value when the number
of trees reached 20 or more. Therefore, approximately 20 ensemble trees are optimal for
both AB and RF algorithms.

In eastern parts of China, NCEP and JMA had a higher importance in MME. Despite
the fact that BCC and ECMWF were less relevant than the other two models, they were
of significant importance in certain areas where prediction accuracy is low, such as South
China and Northeast China. MME prediction can be achieved with the use of machine
learning algorithms that effectively evaluate the importance of each model for different
regions, thereby utilizing the complementary advantages of multiple models.

The prediction results of summer precipitation from 2019 to 2021 implied that MME
prediction with the ML algorithms represents a potential means for improving prediction
skill. It is apparent that the ACC of a single model is unstable and exhibits large interannual
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variations, and that MME have both higher and more stable ACCs. ML-based MME had
a mean ACC of 0.3, an improvement of 0.09 over the weighted average MME of 0.21
for 2019–2021, which demonstrates a significant improvement over the other methods.
However, throughout the study, it was evident that the improvement in prediction skill
of ML-based MME was mainly due to a more accurate prediction of overall distribution
characteristics, with little improvement in the prediction of extreme precipitations. In
terms of development, MME prediction shows considerable promise in predicting summer
precipitation in China.
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