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Abstract: Exploring the health risks of diseases attributed to PM2.5 and SO2 exposure and analyzing
the differences in their distribution over emissions can provide useful insights for decision-makers
to reduce premature mortality due to PM2.5 and SO2 exposure. This study used exposure-response
functions, health risk inequality curve (HRICU, based on Lorenz curve), and the health risk inequality
coefficient (HRICO, based on Gini coefficient) to estimate population health risks of PM2.5 and
SO2 exposure in China from 2013 to 2017 based on a full-coverage, high-precision PM2.5 and SO2

concentration and emission dataset. The inequality in the distribution of premature mortality was
explored in terms of pollutant emissions. The results showed that (1) premature mortalities from
cardiovascular disease (CVD) and respiratory disease (RD) due to PM2.5 and SO2 exposure decreased
by 21% and 54%, respectively, from 2013 to 2017. (2) At a national scale, the HRICO value for the
distribution of PM2.5 and SO2 health risks on emissions were lower than 0.10 and 0.20, respectively.
(3) More than 20% of provinces had HRICO values above 0.1 for PM2.5 or SO2. The provinces near
the national borders generally had higher HRICO for PM2.5, while the province with the most severe
inequity in the distribution of SO2 health risks on emissions appeared in Xinjiang Uygur Autonomous
Region, Ningxia Hui Autonomous Region, and Hainan Province.

Keywords: health risk inequalities; China; Gini coefficient

1. Introduction

Several advances have been made on environmental justice issues in China [1,2], with
inequitable health risks due to air pollutants being a topic of considerable interest for
research in recent years. Inequalities in exposure to air pollutants can be influenced by
socioeconomic status, population subgroups (age, gender, and education level), and the
distribution of public resources [3–5]. For example, it has been suggested that people with
different economic statuses are exposed to different levels of air pollution, with people
of low socioeconomic status bearing the worst consequences [6–8]. In addition, owing
to differences in population health, concentration of pollutants in the environment etc.,
exposure inequalities can arise between different population subgroups, even within the
same city [9]. Son et al. [10] noted that PM2.5 poses a higher risk of death for older adults. It
has also been shown that differences in air pollutant concentrations contribute to exposure
inequalities [11]. However, studies on the health disparities in terms of pollutant emissions
are currently lacking. Previous studies have primarily measured inequality using the Atkin-
son index [9], the Theil index [12], and the Gini coefficient [3]. However, the Atkinson index
considers people’s aversion to an inequality event, and this subjective parameter affects
the value of the inequality coefficient; comparatively, the Theil index focuses more on the
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magnitude of inequality within and between groups. These applicability difference of these
methods have led, especially in recent years, more and more scholars have begun to turn
their attention to the application of the Gini coefficient to environmental inequality [13,14].

The Gini coefficient, which is a ratio between 0 and 1, was originally proposed by
the Italian economist Gini in 1912 to measure the income inequality according to the
Lorenz curve [15]. By altering how the index is plotted on the X and Y axes, the Gini
coefficient has been extended to measure inequality in various other areas of interest,
including energy consumption, and pollutant emissions [16,17]. Traditionally, the data
for Gini coefficient calculations are usually sorted by Y/X; however, the expansion of
data dimensions and the complexity of research needs have led to some methodological
changes. For example, Soares et al. [17] used the CO2 emissions Gini coefficient to analyze
inequalities in the distribution of environmental efficiency across 60 major countries by
plotting GDP against CO2 emissions, ordered by research expenditure, and Liu et al. [3]
used the environmental Lorenz curve to calculate a Gini coefficient to describe the inequality
in national and interprovincial health outcomes by plotting premature deaths against
population, ordered by GDP per capita. The Gini coefficient can thus be calculated in
many different ways, including the direct calculation method, the fitted curve method and
the grouping calculation method. The direct calculation method does not depend on the
Lorenz curve, the fitted curve method may produce errors during the fitting process and
the grouping calculation method is suitable for scattered data and is comparatively easy to
calculate. Considering the simplicity and accuracy of calculating the Gini coefficient, in this
study, we chose the previous extension method based on the traditional Gini coefficient to
investigate the equity of the distribution of health risks in terms of emissions.

Climate change and greenhouse gas emissions are a topic of considerable interest for
current research [18,19]. In China, coal combustion contributes a significant amount of
greenhouse gas emissions [20,21]. At the same time, the process of burning coal produces
a large number of air pollutants that can affect human health, among which PM2.5 and
SO2 become important targets for prevention and control [22,23]. Data from the 2014
China Statistical Yearbook indicate that coal accounted for 66.0% of China’s total energy
consumption in 2013. During the same year, the “Air Pollution Prevention and Control
Action Plan” was implemented, and the proportion of coal consumption in China decreased,
with correlated reductions in PM2.5 and SO2 pollution [24]. Studies have shown that long-
term exposure to high concentrations of PM2.5 and SO2 can induce various diseases [25]. A
study by Liang et al. [26] found an increased risk of cardiovascular disease (CVD) morbidity
and mortality in association with chronic PM2.5 exposure in humans. According to world
health statistics, CVD and respiratory diseases (RD) are the leading causes of death and
disability worldwide [27].

Focusing on these risks, we aimed to explore the number of premature deaths caused
by PM2.5 and SO2 and the inequitable distribution of premature deaths in terms of emissions.
Specifically, we quantified the premature deaths due to CVD and RD that were attributable
to PM2.5 and SO2 exposure at national and provincial scales using exposure-response
functions based on national population data, PM2.5 and SO2 concentrations, and emission
data. We applied the health risk inequality curve (HRICU, based on the Lorenz curve) and
health risk inequality coefficient (HRICO, based on the Gini coefficient) to measure the
inequity in the distribution of premature deaths in terms of pollutant emissions. Our specific
aims were to identify: (1) the spatial and temporal evolution of health risks associated with
PM2.5 and SO2 exposure in China from 2013 to 2017; (2) how the health risks associated
with PM2.5 and SO2 exposure are distributed among populations with different emission
levels. (3) The possible reasons for the inequitable distribution of premature mortality in
typical regions of China in terms of per capita PM2.5 and SO2 emissions.
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2. Data and Methods
2.1. Data Sources and Pre-Processing
2.1.1. Data Sources

Annual average PM2.5 concentration data with a spatial resolution of 0.01◦ × 0.01◦

for the period 2013–2017 were obtained from China Regional Estimates (V4.CH.03) (https:
//sites.wustl.edu/acag/datasets/surface-pm2-5/, data range 2000–2018, accessed on 20
December 2021). Annual average SO2 concentration data for the same period were obtained
from the Chinese ground-level air pollutant dataset (https://doi.org/10.5281/zenodo.46
41538, data range 2013–2020, accessed on 21 December 2021) with a spatial resolution of
0.1◦ × 0.1◦. These data have been widely used for assessments of spatial and temporal
patterns, drivers, and exposure risk [28–30].

Annual PM2.5 and SO2 emissions data of 0.25◦ × 0.25◦ from 2013 to 2017 were obtained
from the multi-scale emission inventory reanalysis and data sharing platform developed
by the MEIC team at Tsinghua University (http://meicmodel.org/?page_id=541&lang=
en, data range 2008–2017, accessed on 23 December 2021). These data are mainly used
in air pollutant simulation studies and for the spatial and temporal characterization of
pollutant emissions [31]. The 1 km × 1 km population dataset for the period 2013–2017
was obtained from the Worldpop project at the University of South Hampton (https:
//www.worldpop.org/, data range 2000–2020, accessed on 23 December 2020). This
dataset has been widely used in spatial population studies and population density model
optimization experiments [32,33].

Owing to a lack of data for Hong Kong, Macao, and Taiwan Provinces, these regions
were excluded from our analysis to ensure the accuracy of the results. As the monitoring of
atmospheric SO2 and PM2.5 China started in 2013, and given the lack of emission data prior
to this, we specifically focused on PM2.5 and SO2 exposure during the implementation
period of the “Air Pollution Prevention and Control Action Plan” (2013–2017).

2.1.2. Data Pre-Processing

To calculate the health risks due to PM2.5 and SO2 exposure in China, we first used
the conversion tool in ARC GIS10.6 software [34] to spatially match and convert PM2.5
(SO2 concentrations) and population data to the same scale for subsequent analyses. The
raster calculator tool was then used to calculate the number of premature deaths due to
PM2.5 or SO2 exposure in each raster based on the exposure-response function. The spatial
linkage tool was then used to link the population data, emissions data, premature deaths, and
provinces in terms of the spatial location. After doing so, HRICO was then calculated as a
measure of equitability considering the distribution of premature deaths in terms of emissions.

2.2. Methods
2.2.1. Inequality Analysis

We estimated the values of both emissions and environmental inequality. We mod-
ified the traditional Lorenz curve to describe the inequitable distribution of premature
mortality across populations with different pollutant emissions, based on the study by
Liu et al. [3] on the distribution of premature mortality across populations with different
income levels [3,28], and we defined it as the health risk inequality curve (HRICU).The
HRICU arranges people from the lowest emission population to the highest emission
population according to the emission level borne by people, and shows the distribution
of corresponding disease mortality rates from the lowest emission population to the high-
est emission population. In contrast to the traditional Lorenz curve, from the results of
Liu et al. [3], HRICU can be presented as concave or convex or concave-convex together. A
concave HRICU plot (either wholly or partially) indicates that the high-emitting population
has a relatively high premature mortality rate (the derivative of HRICU at this point) on this
segment of the emission population (or the whole population or partially); and a convex
HRICU plot (either wholly or partially) indicates that the high-emitting population has a
relatively low premature mortality rate on this segment of the emission population (the

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://doi.org/10.5281/zenodo.4641538
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https://www.worldpop.org/
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whole population or partially) instead. Both concave and convex present as premature
mortality is inequitably distributed over different emission populations (see Supplementary
Materials file for details). We build on this concept in order to characterize the distribution
of PM2.5 and SO2 attributable premature mortality. To do so, the population and excess
premature mortality in each pixel were first ranked by PM2.5 and SO2 emissions per capita.
The cumulative share of mortality was then plotted against the cumulative share of pop-
ulation, ranked by emissions per capita (see Figure S1). We also created HRICU at the
provincial scale to assess the distribution of mortality within each province as a measure of
provincial inequality.

In a traditional Lorenz curve, the Gini coefficient, as the measure of inequality, is
calculated by dividing the area of A by 0.5 (equivalent to A + B in Figure S1a). The smaller
the Gini coefficient, the smaller the area between the Lorenz curve and the ideal equality
line. Thus, a lower Gini coefficient reflects greater equality. In this study, based on the
calculation of the traditional Gini coefficient, we established the calculation of the health
risk inequality coefficient (HRICO) to measure inequity in the distribution of premature
mortality over different emission populations (see Supplementary Materials file for details).
The HRICO was calculated as follows:

HRICOj = 1 −
n

∑
i=1

(
xj,i − xj,i−1

)(
yj,i + yj,i−1

)
(1)

where HRICOj is the HRICO of province j, n represents the number of participating rasters
in province j; xj,i is the cumulative share of population in the i-th raster of province j; and
yj,i is the cumulative share of health risk in the i-th raster of province j. The HRICO value
for national health risk were calculated in the same way. By calculating HRICO values, we
measure the distribution and inequality of premature mortality caused by PM2.5 and SO2
exposure in China on the low-emission and high-emission populations. Although limited
by PM2.5 data, we were only able to consider inequalities in primary PM2.5 emissions,
Chuai et al. [35] confirmed that PM2.5 emissions and concentrations are strongly correlated
in both time and space.

2.2.2. Health Risk Evaluation

We used exposure-response functions to estimate the number of premature deaths due
to PM2.5 and SO2 exposure (including CVD and RD). When PM2.5 and SO2 concentrations
exceed the safe concentration limit X0, the relative risk index (RR) for diseases can be
calculated based on the results of epidemiological surveys and the current concentration of
pollutants in the atmosphere as follows.

RR = exp[β(X − X0)] (2)

where X0 is the highest annual average concentration of PM2.5 or SO2 without health
damage, X is the current annual average concentration of PM2.5 or SO2, and β is the health
effect assessment parameter for PM2.5 or SO2. The number of premature deaths caused by
CVD and RD associated with air pollution is denoted as ∆Mort, calculated as follows:

∆Mort = y0 ×
[

RR − 1
RR

]
× Pop (3)

where y0 is the mortality rate of the calculation region, which obtained from the China
Statistical Yearbook, and Pop is the total resident population in the calculated area.

As there are still no definitive studies confirming the magnitude of health effects
resulting from PM2.5 and SO2 exposure, different maximum annual average concentrations
without health damage (X0) have been applied previously [13,36–39]. Here, the PM2.5 con-
centrations without health damage was selected from the WHO recommended concentra-
tion limit for health risk calculation (5 µg/m3). As the WHO standard does not recommend
a safe concentration limit for long-term exposure to SO2, the X0 for SO2 was selected as the
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lowest concentration (2.09 ppb) used in previous health risk studies [40]. The value of β
was taken from the results of existing domestic and international studies as well as the epi-
demiological findings on air pollution that are widely used and applicable to China. The β
for PM2.5 was selected from the summary of 57 research results conducted by Liu et al. [41]
on 127 cities in China, corresponding to 0.0006280 (95% CI: 0.0003493~0.0009059) and
0.0007472 (95% CI: 0.0003892~0.0011039) for CVD and RD, respectively. For SO2, β was
selected from the summary of health load caused by air pollutant concentration in 338 cities
in China. [42], corresponding to 0.0006976 (95% CI: 0.0004988~0.0007968) and 0.0011929
(95% CI. 0.0008960~0.0015373) for CVD and RD, respectively.

3. Results
3.1. Health Risk Assessment
3.1.1. Characteristics of the Health Risk Variation with Time in National Scale

Between 2013 and 2017, the number of premature deaths caused by CVD and RD due
to PM2.5 and SO2 exposure in China decreased by 21% and 54%, respectively (Figure 1).
The number of premature deaths caused by CVD due to PM2.5 and SO2 exposure decreased
from 123,525 and 68,747 in 2013 to 98,957 and 32,271 in 2017, corresponding reductions of
20% and 53%, respectively. For the same years, the number of premature deaths caused
by RD due to PM2.5 and SO2 exposure decreased from 39,165 and 31,154 to 29,535 and
13,817 corresponding to decreases of 25% and 56%, respectively. Notably, premature deaths
associated with PM2.5 declined relatively rapidly between 2014 and 2016. During these
five years, the number of premature deaths associated with SO2 declined sharply, with
the number of reductions in both CVD premature deaths and RD premature deaths more
than halving. This suggests that SO2 pollution control in China improved during the
years considered.
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Figure 1. Trends in premature deaths attributable to PM2.5 and SO2 exposure (the vertical line is the
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disease (RD) attributable to PM2.5 (a,b), and SO2 (c,d).

3.1.2. Characteristics of Temporal and Spatial Distribution of Health Risk in Provincial Scale

The distribution of premature deaths caused by CVD and RD attributed to PM2.5 in
China showed an obvious spatial aggregation during the study period in Henan, Hebei,
and Shandong provinces (Figure 2a,b). The corresponding five-year average number of
premature deaths due to CVD and RD in these provinces were 11,721 and 3693, 9360 and
2950, 10,808 and 3408, respectively. Tibet had the lowest number of premature deaths
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caused by CVD and RD due to PM2.5 exposure. Despite a decline between 2013 and 2017,
Henan Province still had the highest number of premature deaths in China. From 2013
to 2017, the premature deaths due to CVD caused by PM2.5 exposure in Henan province
were 13,984, 12,149, 11,708, 10,716, and 10,048, respectively, and those due to RD caused by
PM2.5 were 4428, 3948, 3754, 3341, and 2997, respectively.
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The distribution of premature deaths due to CVD and RD attributed to SO2 exposure
also showed significant temporal variability and spatial aggregation (Figure 2c,d), being the
highest in Shandong Province, followed by Hebei, Henan, and Shanxi provinces between
2013 and 2014. After 2014, the number of premature deaths due to CVD and RD caused by
SO2 exposure declined in Shandong and Hebei provinces. From 2013 to 2017, the number
of premature deaths due to CVD and RD caused by SO2 exposure in Shandong province
decreased by more than 63%, while those in Hebei province decreased by more than 60%
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from 2013 to 2017. In contrast, Shandong province had 9833, 9316, 6939, 5384 and 3592
premature deaths due to CVD caused by SO2 exposure from 2013 to 2017, which is one of
the provinces with the largest number of premature deaths due to CVD and RD caused by
SO2 exposure in China. Although the number of premature deaths due to CVD and RD
caused by SO2 exposure in Shandong Province showed an overall downward trend, the
number was still high in 2017.

3.2. Inequality Analysis

From 2013 to 2017, HRICO value of the distribution of premature deaths due to
PM2.5 exposure on emissions per capita was less than 0.10 (Figure 3), indicating that the
distribution of premature deaths due to PM2.5 exposure on emissions per capita in China
was close to the absolute equity state. Notably, there was a significant downward trend in
HRICO during the study period, especially between 2015 and 2017. This indicates an overall
improvement in the fairness of the distribution of premature deaths due to PM2.5 exposure
on emissions per capita in China. From 2013 to 2017, HRICO value of the distribution of
premature death due to SO2 exposure on emissions per capita was less than 0.20, but all
are well above the HRICO value of PM2.5, indicating that the equity of the distribution
of premature deaths due to SO2 exposure on emissions per capita was much lower than
that for PM2.5. Different from PM2.5, the change of the HRICO value of SO2 does not show
a single upward or downward trend. In 2017, the HRICO reached the maximum of 0.15,
while in 2015, it reached the minimum of 0.13, showing a fluctuating trend of “decline,
rise”. The HRICU of PM2.5 and SO2 from 2013 to 2017 are shown in Figure S2, and both
show a concave pattern in general, indicating that high premature mortality caused by
PM2.5 and SO2 exposure is usually found in the population with high emissions, creating
an inequitable distribution of premature mortality. However, in the population with high
PM2.5 emissions, a convex pattern of HRICU may be observed, suggesting that in this
population, high premature mortality due to PM2.5 exposure may occur in the population
with relatively low emissions.
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Based on Figure 4a and Table S1, the HRICO values of PM2.5 were generally higher
in the national border regions relative to those in inland provinces. In 2013, the Tibet
Autonomous Region and Qinghai Province experienced much higher inequity in the
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distribution of premature deaths due to PM2.5 exposure in terms of emissions. In 2014
and 2015, although HRICO values decreased in most regions of China, inequity was still
observed in many provinces. By 2016 and 2017, HRICO values increased significantly in
some provinces, notably in the Tibet Autonomous Region, exceeding 0.2 in 2016. During
2013–2017, the HRICO values for PM2.5 remained below 0.10 during the study period in
all provinces other than the Tibet Autonomous Region and Qinghai Province. This clearly
indicates that in these five years, the other provinces had a relatively more even distribution
of premature deaths due to PM2.5 exposure in terms of emissions.
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Figure 4b and Table S2 show the spatial distribution of the HRICO values of SO2 in
China between 2013 and 2017. In this case, most regions had values less than 0.1, indicating
almost absolute equity. In 2013, the Ningxia Hui Autonomous Region, Chongqing Mu-
nicipality and Hainan Province had values above 0.1, with Hainan Province showing the
greatest level of inequality. In 2014, the Xinjiang Uygur Autonomous Region, Heilongjiang
Province, Ningxia Hui Autonomous Region, and Hainan Province had values above 0.1.
By 2015, relatively high HRICO values persisted in the Ningxia Hui Autonomous Region,
Fujian Province and most notably, in the Xinjiang Uyghur Autonomous Region (0.20) and
Hainan Province (0.27). In 2016, only the Xinjiang Uyghur Autonomous Region, Hainan
Province and Ningxia Hui Autonomous Region had HRICO values above 0.1, with the
largest HRICO value in Ningxia Hui Autonomous Region (0.17). Between 2014 and 2016,
the HRICO values for the Xinjiang Uyghur Autonomous Region exceeded 0.1, but in 2017,
most provinces in China experienced a significant decrease in HRCIO values.

4. Discussion
4.1. Health Risk Analysis

Compared with that in 2013, the number of premature deaths due to CVD and RD
attributed to PM2.5 exposure in China decreased significantly by 2017. This was likely
mainly because of the implementation of the “Air Pollution Prevention and Control Action
Plan” (2013–2017), which significantly reduced the use of solid fuels in Chinese house-
holds [43] and rapidly reduced the average annual concentration of PM2.5 nationally [24].
Consequently, there was a rapid reduction in the total number of premature deaths at-
tributed to PM2.5 exposure in China [37,44]. Although the regulation of PM2.5 pollution in
China has achieved some positive results, it is undeniable that health risks caused by PM2.5
pollution still exist [42]. Until 2017, the health risk situation caused by PM2.5 in Henan,
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Hebei, and Shandong provinces remained severe. Lu et al. [37] pointed out that the highest
number of premature deaths caused by PM2.5 exposure in Henan, Hebei, and Shandong
provinces was mainly due to the high concentration of PM2.5, not the population. From
2013 to 2014, Shandong, Hebei, Henan, and Shanxi provinces had the highest number
of premature deaths due to CVD and RD attributed to SO2 exposure, which is closely
related to their dense population [45] and excessive atmospheric SO2 concentrations [46].
Until 2017, the number of CVD- and RD-related premature deaths due to SO2 exposure
had decreased to below 4000 and 1800, respectively, further suggesting the success of the
implementation of the “Air Pollution Prevention and Control Action Plan” had achieved
remarkable results in controlling SO2 concentration [42]. Zeng et al. [47] pointed out that
even though the effectiveness of renewable energy policy is greater than that of emission
reduction policies for controlling SO2 pollutants, in major coal consuming provinces in
China (Shandong, Henan, and Shanxi provinces), controlling SO2 emissions remains a
significant challenge [48].

4.2. Analysis of Inequality

The increasingly equitable distribution of premature deaths due to PM2.5 exposure
across Chinese provinces in terms of emissions may be related to the mitigation of air pollu-
tion, the economic development of provinces, population migration and mobility, and the
improvement of health and education [49], and the study of Liu et al. [3] had also confirmed
this. Previous studies have shown that China’s sewage inequality is diminishing [50] and
the sewage gap between cities in the Yangtze River Delta is narrowing. Importantly, a
reduction in the pollutant emissions gap leads to the diminution of the inequality of health
risks caused by pollutants [35,51,52]. From 2013 to 2017, the inequity in the distribution
of premature deaths due to PM2.5 exposure in terms of emissions was generally higher in
border provinces than that in inland provinces. This difference may be mainly caused by
the interference of transboundary pollution due to atmospheric transmission of PM2.5 [53]
alongside the distribution of local industrial pollution [54]. Similar conclusions were drawn
by Chuai et al. [35]. PM2.5 emissions are an important factor contributing to health risks of
PM2.5 exposure [55]. Guan et al. [56] point out that local pollutant emissions only form part
of the air pollution problem, with regional pollutant concentrations affected by emissions
from other nearby areas. Furthermore, the emission of precursor pollutants is an impor-
tant factor affecting atmospheric PM2.5 concentrations [57]. In their study in Australia,
Cooper et al. [58] also pointed out that areas with a poor social economy and a high propor-
tion of ethnic minorities are likely exposed to higher PM2.5 concentrations. In China, as
border or near-border provinces with a high proportion of ethnic minorities, the Tibet and
Qinghai provinces may be exposed to higher atmospheric PM2.5 concentrations originating
from exogenous sources. Therefore, there may be serious inequity in the distribution of
premature deaths due to PM2.5 exposure in terms of emissions in these regions.

Premature deaths due to SO2 exposure in China are unevenly distributed in terms of
emissions, with high HRICO values in the Xinjiang Uyghur Autonomous Region, Hainan
Province, and Ningxia Hui Autonomous Region. Qian et al. [59] noted that the developed
provinces in China bear a larger share of the responsibility for SO2 emissions. The outflow
of SO2 emissions from developed provinces is greater than the inflow, and they are mainly
outsourced to neighboring developing provinces with energy-intensive industries [35,59].
Thus, developing provinces, such as the Xinjiang Uyghur Autonomous Region, which
are dominated by fossil energy industries, are responsible for excess SO2 emissions, as
confirmed by Liang et al. [60] and Yang et al. [61]. In addition, as a coastal city, Hainan
Province consumes a disproportionately high share of coal, although coal consumption has
decreased overall [62], which may be one of the reasons for the high HRICO values and the
decreasing HRICO trend in Hainan. Moreover, given its location, Hainan Province may be
more prone to the migration of air pollutants compared with other provinces.



Atmosphere 2022, 13, 1422 10 of 13

4.3. Uncertainties

The main limitation of this study derives from the spatial matching between popula-
tion data, PM2.5 and SO2 concentrations, and emission data. Specifically, minor statistical
biases may occur when matching population data with a spatial resolution of 1 km to
0.25◦ × 0.25◦. The selection of pollutant exposure response coefficients may also be biased
because of the complexity of clinical data acquisition [41,63] and the difficulty of verifying
the number of deaths calculated by the coefficient with the actual number of deaths. In
addition, as there are currently no definitive studies identifying a reasonable (unbiased)
relationship between emissions and premature mortality, our results can only be considered
to represent the relative magnitude of the distribution of premature deaths over emissions
at different spaces or times.

5. Conclusions

Based on the exposure-response function, HRICU, and HRICO, we analyzed the
spatial and temporal differences in health risks attributed to PM2.5 and SO2 exposure at
national and provincial scales in China. We also evaluated the inequity in the distribution
of premature mortality due to PM2.5 and SO2 exposure across the country and provinces
in terms of emissions. Our results show that the total number of premature deaths due to
RD and CVD attributed to PM2.5 and SO2 decreased significantly from 2013 to 2017. These
premature deaths were mainly concentrated in Henan, Hebei, and Shandong provinces,
and all showed significant temporal variations and spatial aggregation. From 2013 to 2017,
the overall HRICO values for PM2.5 decreased to 0.03, compared with a slight increase for
SO2 to 0.15. Provincial analysis showed that inequities in the distribution of premature
deaths due to PM2.5 exposure in terms of emissions are mainly concentrated in the border
provinces, while inequities for SO2 are mainly found in the Xinjiang Uyghur Autonomous
Region, Ningxia Hui Autonomous Region, and Hainan Province. From 2013 to 2017, the
range and degree of inequity in the distribution of premature deaths due to PM2.5 and SO2
exposure on emissions showed a decreasing trend at the provincial scale.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13091422/s1, Figure S1. Definition of HRICU and HRICO;
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Table S2. The HRICO of SO2. Reference [3] are cited in the supplementary materials.
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