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Abstract: Chinese New Year has traditionally been welcomed with fireworks, but this has meant
this holiday can experience intense peaks of pollutants, particularly as particulate matter. Such
environmental issues add to other risks (e.g., accident, fire, and ecological and health threats) posed
by firework displays, but cultural reasons encourage such celebrations. This study examines air pollu-
tion from fireworks across a time of increasingly stringent bans as a time series from 2014–2021 using
a random forest (decision-tree) model to explore the effect of year-to-year weather changes on pollu-
tant concentrations at Chinese New Year. Peak concentrations of firework pollutants have decreased
in cities and hint at the importance of well-enforced regulation of these traditional celebrations, e.g.,
Beijing, Tianjin, and Chongqing. The model suggested relative humidity was an important controlling
variable, perhaps as the presence of water vapor might also accelerate particle growth but also as
a surrogate parameter related to atmospheric mixing. Bans on fireworks, resisted at first, have shown
evidence of growing public acceptance. The regulations are increasingly effective, even in the outer
parts of cities. Celebrations might safely return as public firework displays, including light shows
and the use of lanterns.

Keywords: Chinese New Year; spring festival; random forest model; particulate matter; Beijing;
Chongqing; Guangzhou; Shenzhen; Tianjin

1. Introduction

Firework displays pose many risks, so there are often attempts to reduce environmental
and health impacts while maintaining a sense of celebration. As with many air pollution
problems, there is a conflict between individual freedom and the adoption of restrictive
regulatory policies, e.g., choice of fuel [1] or to live in remote suburbs that require a car [2].
Cultural issues can be a special problem with fireworks, as for many centuries, these have
been an important part of the spring festival, which welcomes the Chinese New Year [3].

The problems of fireworks are widely experienced, and include direct injury [4],
visibility reduction [5], and health effects [6]. Air quality during and after festivals may
decline, with enhanced levels of toxic metals (e.g., [7,8]) and increased particulate loads
in many places: Columbia [9], Slovenia [10], the USA on Independence Day [11], at
German New Year [12], and in India during the Diwali festival [13–15]. Chinese New
Year has been the basis of much research over many years [16–19], with the focus on the
pollution within northeast China, where there is a high population density and gross
domestic product (GDP) combined with persistent local customs [17,20]. As regulations
have tightened and lowered concentrations, research has recently focused on the response to
restrictions [21–25] and decreased use of fireworks during the COVID-19 pandemic [26,27].
Regulatory concern is driven by fears of health effects associated with short exposure to
firework pollution [28–31], though claims of health effects are often potential as changes in
health outcomes are difficult to detect [32]. However, it is likely that pyrotechnic workers
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experience a more extended exposure [33,34], along with aerobiological effects [35], reactive
oxygen species [36], and toxicological and ecological risk [8,37,38].

Concerns regarding fireworks and air pollution during New Year celebrations have
been broadly recognized, so there have been shifts away from private use to public pyrotech-
nic displays [17]. Lai and Brimblecombe [22] showed that in Beijing, despite a long-held
enthusiasm for fireworks to welcome the Chinese New Year, inhabitants have gradually
come to accept the need for restrictions.

The current study explores changes in firework-related air pollution in some large
Chinese cities. Control of such pollution has often been difficult to implement because
fireworks are such an important part of many celebrations and cultural events [39]. In
Hong Kong, for example, fireworks were used in frequent public displays over the harbor
but have gradually been replaced by light shows [40]; such alternatives are also possible
for New Year celebrations [17]. In Beijing, regulations were not really developed until
the 1990s, but even then, fireworks remained popular in Beijing, so many wanted the ban
removed [41]. In 2006, the Beijing bans were redefined to limit the varieties of fireworks and
time and place of use, and finally, fireworks in urban areas were banned in 2018; however,
fireworks continued to be allowed in suburban areas. Regulation in Beijing has generally
become more stringent while, in parallel, public acceptance of the bans has increased [22].
However, restrictions on mobility during the COVID-19 lockdowns led to a period with
reduced air pollution [42] while also meaning that people missed the celebratory use of
fireworks [26]. Another important difficulty in comparing firework pollution events in
different cities are the meteorological conditions. Weather is a key factor influencing urban
air pollutants, and thus the dispersion of firework pollutants.

Our previous work [17,22] suggested the importance of restrictions on private use of
fireworks and a shift to public displays to reduce pollutant concentrations. However, mete-
orological conditions have a strong effect on the level of pollutants resulting from firework
displays, most notably mixing height and vertical dispersion [9,22]. High humidity and
low wind speed are also important [19]. This means the effects of varying meteorological
conditions year to year need to be considered when assessing the effectiveness of firework
regulations. The current work aimed to: (i) use the machine learning method to normalize
the meteorological conditions and predict the pollution concentrations under business-as-
usual scenarios during firework celebrations in some Chinese cities, (ii) further compare
the pollution levels from different celebrations from 2014 to 2021, (iii) assess potential
improvements arising from regulation rather than changes in weather, and (iv) examine
the spatial difference across the cities, with a special interest in the potential for weaker
regulation remote from city centers. Such work hopes to provide insight to tackling the
firework pollution problem.

2. Materials and Methods

In the current study, five Chinese cities were examined separately: Beijing, Tianjin,
Chongqing, Guangzhou, and Shenzhen (Figure 1). While the use of fireworks in China has
been regulated for some time, the stringency of the regulations and the level of enforcement
has varied [22,24]. Legislation in Beijing only banned private fireworks within the 5th Ring
Road from 2018; although, in more remote suburban areas, these could be used at New
Year. Thus, Beijing was considered in terms of the pollution within and outside the 5th
Ring Road.

2.1. Air Pollution and Meteorological Data

Hourly measurements of six pollutants (PM10, PM2.5, CO, NO2, O3, and SO2) have
been available from air quality monitoring stations in each of the cities for almost a decade.
This study focused on particulate matter (PM10 and PM2.5) as these concentrations illustrate
the clearest signature of the Chinese New Year firework events [17]. Beijing has data from
12 monitoring stations in the central urban area and 11 stations beyond the 5th Ring Road
(http://aqicn.org/city/ accessed on 29 August 2022), although there are gaps in some
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years. In Tianjin, Chongqing, Guangzhou, and Shenzhen, data was taken from 8, 12, 10, and
11 sites, respectively. On occasions, we referred to specific sites in Tianjin and Chongqing
and used their official site code in Tianjin: 1015A, 1017A, 1018A, 1019A, 1021A, 1023A,
1024A, and 1026A; and in Chongqing: 1416A, 1417A, 1418A, 1419A, 1420A, 1421A, 1422A,
1425A, 1426A, 1427A, 1428A, and 1429A. The average concentration over all stations was
used to represent the overall concentration in the cities.
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The meteorological observations used in this study were obtained from the website of
timeanddate (timeanddate.com accessed on 27 August 2022). All data came from the official
records at the local airport. The hourly averaged meteorological parameters included air
temperature, relative humidity, air pressure, wind speed, and wind direction.

2.2. Weather Effects

Grange and Carslaw [43] pointed out that a central issue in determining the changes in
pollutant concentration arises from variations in the meteorological conditions or emission
source strength. This problem is widespread and affects timescales from hours to years. It
is particularly important in before–after studies as the meteorological change can easily
dominate the variation in concentrations. Simply accounting for the average of concentra-
tions during a period cannot account for change due to weather differences. Both firework
activity and weather conditions vary over time, so the effect of reduced firework emissions
is hard to isolate. It means that considerable care is needed to quantify the effectiveness of
intervention measures such as firework regulation.

In this study, we trained a random forest (decision-tree) model as described by
Grange et al. [44] on meteorological and air pollution data using the rmweather R package
(more information on the model used can be found in Grange et al. [44]). All random
forest models used the same explanatory variables to predict the hourly PM10 and PM2.5
concentrations. The explanatory variables were wind speed, wind direction, atmospheric
temperature, relative humidity, atmospheric pressure, and a linear trend term, including the
Unix time of the observation (number of seconds since 1970-01-01) as the trend term, Julian
day (day of the year) as the seasonal term, and day of the week. All variables were used
within their response scale, with no transformations applied. The particulate concentration
was only modeled if valid meteorological data were available for that day. Training of the
models was conducted on 80% of the input data and the other 20% was withheld and used
to validate the models once they were grown. To determine the optimal values, this model
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performance statistics used the test set (data withheld from the training step) and run times
were evaluated to judge what hyperparameters grew the best-performing models. The
number of variables used to grow a tree was set to 3, the minimum node size or depth was
5, and the number of trees within a forest was set at 300 for all models.

The random forest models were trained to explain hourly mean particulate concen-
trations (mostly PM10 and PM2.5 in this study) using surface meteorology and time as
explanatory variables. The test set was used to run and select the best-performing models
and the training period covered hourly observations on days where no fireworks were used.
In examining the effect of fireworks, six hours (00:00/05:00) on the first day of Chinese New
Year in China were defined as the firework period. Thus, 12 h before and after the firework
period were used to grow the model, including the training and testing. We used this time
window as it captured other aspects of celebration such as increased vehicle traffic; how-
ever, it is noted that wider time windows might have provided different results. However,
a 24-h before-and-after window gave very similar results (Supplementary Figure S1). The
trained model was then used to predict the pollutant concentrations from 12 h before to
after the firework period in the cities and included measured meteorological data for these
periods in different years. The pollutant concentrations predicted by the model represent
business-as-usual (i.e., without fireworks) as they are based on observations made before
and after the firework use. Thus, the predicted concentrations can be compared to the
original data, which includes the firework peaks. This method for determining the counter-
factual is more robust than methods that use the average pollutant concentrations across
the firework period, as the approach adopted here uses available weather data during the
firework period, which is not part of the model training. This model adopted historical
data (training dataset) and predicted concentrations based on the observed meteorological
variables, which allowed us to compare the observation and expectation [45].

While the training–testing split was 80% and 20%, the random forest algorithm does
not directly offer the ability to determine error or estimates of uncertainty. Uncertainty
is important in many situations, so 50 random forest models were grown for each case,
with the hyperparameters described above but with randomly sampled (bootstrapped)
input sets. Bootstrapping observational data ensured the models were grown on different
training sets. The statistical performance of 50 models was evaluated using 4 indica-
tors: Pearson’s correlation coefficient (r), mean bias (MB; in µg m−3), normalized mean
bias (NMB), and normalized root-mean-square error (NRMSE) as summarized in the
Supplementary Materials (Table S2). All statistical indicators and input variables such as
the importance values (a measure of the variables’ strength or influence on prediction)
and predicted concentration were calculated in 50 models and the mean and the 2.5% and
97.5% quantiles from the 50 estimates, i.e., a range that spans the 95% confidence interval
in the mean, were further evaluated. All models performed well, with most values of r2

greater than 0.7 (Table S2), suggesting the model can predict the results effectively. Most
biases were negative, and the absolute value was less than unity in the training set for
the Beijing models, suggesting that it may have led to some models under-predicting the
concentrations at this time.

2.3. Statistics

As the data were not necessarily normally distributed, so we used non-parametric
techniques, notably the Mann–Whitney test (statistic U). The changes over time used the
Kendall τ test, as only eight years were available to express the trend and, again, the
distribution was uncertain.

3. Results and Discussion
3.1. Air Pollution from Fireworks

Figure 2 shows the average concentrations of PM10, PM2.5, NO2, and SO2 in both urban
Beijing and its surroundings (i.e., lying beyond the 5th Ring Road), Tianjin, Chongqing,
Guangzhou, and Shenzhen. The pollutant concentrations in Beijing (Figure 2a–d show
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characteristic increases across the eve of the New Year, which were described in some detail
in earlier work [17,21]). The peaks are often very sharp (e.g., [17]); however, here, they are
averaged so appear broader. The peaks are more noticeable for earlier years 2014/2017 but
are less distinct later, which is attributed to increasing restrictions on the use of fireworks
in Beijing (e.g., [22]). This pattern is also distinctive in the outer parts of Beijing beyond the
5th Ring Road (Figure 2e–h) and in Tianjin (Figure 2i–l), with rather narrow peaks for PM10,
PM2.5, and SO2 as these are very characteristic of fireworks. There is a weaker signal for
Chongqing (Figure 2m,n,p), but Guangzhou and Shenzhen show scant evidence of changes
in PM10, PM2.5, and SO2 from fireworks, typical of the lower impact of celebrations in the
cities of southern China [17].
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Figure 2. Concentrations of PM10, PM2.5, NO2, and SO2 for Beijing-u (a–d) and Beijing-s (e–h),
which are the more urban and suburban parts within and beyond the 5th Ring Road, Tianjin (i–l),
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middle of the first day of the new year from 2014 to 2021. Note: 2014 and 2021 absent from some sites.

Figure 2a–h shows the concentrations of PM10, PM2.5, NO2, and SO2 in both urban
Beijing and at the more remote locations beyond the 5th Ring Road. The nitrogen oxides
are not especially characteristic of fireworks, so the observed elevated NO2 might have
arisen from other sources, such as heavy traffic during the celebration of the Chinese New
Year. These NO2 concentrations appear as broad peaks and are similar across the sites,
suggesting dispersed sources, such as traffic. They contrast with the sharp changes in the
particulate concentration just after midnight. The early morning is also associated with
a slight increase in SO2 as observed in other studies (e.g., [17,46]), which are also clear in
the case of Beijing and Tianjin (Figure 2g,h,l).

The change in particulate matter is evident in the temporal plots, so the concentrations
of PM10 and PM2.5 were used here as a marker of pollution derived from fireworks. Thus,
we largely restricted our study to particulate matter. Other markers, such as perchlorate
and trace metals, though distinctive, were measured at few sites [17]. Peaks of PM10 and
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PM2.5, in urban Beijing (Figure 2a,b) were clearly observed from 2014 to 2017 at around
01:00 or 02:00 of the first day of the Chinese New Year but were less distinct after 2018. This
is largely due to Beijing government’s publication of new restrictions banning residents
from discharging fireworks in urban areas (within the 5th Ring Road) at the end of 2017.
Figure 2e–h illustrates the changes in the concentration of air pollutants in outer areas of
Beijing over the same years. The changes show a similar pattern to those in urban areas, but
high concentrations of PM10 and PM2.5 were observed in all years. Nevertheless, the peak
values after 2018 were lower than previously. Beijing residents were still allowed to set
off fireworks in these suburban areas beyond the 5th Ring Road, so some people travelled
to those locations to celebrate the important festival. However, the restrictive policy
seems to have gradually changed public opinion such that the private use of fireworks
has declined, resulting in lower particulate concentrations after 2018 [22]. The year 2022
revealed extremely low concentrations, as a result of not only increasing restrictions but
also efforts aiming for clearer air related to preparations for the winter games that ran
4 February 2022/20 February [47,48]. There was much concern about air pollution and
the interface of the games with the period of New Year celebrations [47] while COVID-19
imposed restrictions that also reduced the air pollution concentrations [48]. There were
expectations of blue skies for the Winter Olympics; a concept termed “Beijing Blue” [48] has
emerged to describe improved pollution during important events ever since the Olympic
Games of 2008 and the APEC (Asia-Pacific Economic Cooperation) meeting of 2015 [49].

After the early years with substantial firework use, most notably in Beijing, the par-
ticulate concentrations declined from the high concentrations in the early morning and
after 06:00, levels returned to that of the previous evening (before 00:00), as shown in
Figure 2a,b,e,f. The early morning hours of the New Year (00:00/05:00) were taken in this
study as the firework period and were compared with concentrations on New Year’s Eve at
all Beijing monitoring sites (12:00/23:00), as in earlier work [17], using the Mann–Whitney
test to test the differences between mornings and evenings (Table S1 for details). This
showed that the concentrations of particulate matter were larger (p < 0.0025) for all years.
Perhaps because of improvements in emissions, the year 2019 was an exception, with dif-
ferences less significant (p < 0.05). There were differences in NO2 and SO2, but these were
both less convincing and inconsistent, although NO2 can derive from increased vehicle
use during New Year celebrations. However, SO2 is emitted as an air pollutant because of
the large concentrations of sulfur present in fireworks [17]. The differences in particulate
matter persisted into 2020, a time when Beijing was under restrictions due to COVID-19.
On social media in China, some people in Beijing hoped to use fireworks to drive away
the epidemic. The government focused more on the battle against the disease, so some
firecrackers might have been used privately [22] even in urban areas, causing an increase
in the particulate concentrations that year.

Similar overall patterns were found in Tianjin, although SO2 (Figure 2i–l) was more
dominant than in Beijing. The changes due to fireworks were smaller in Chongqing
(Figure 2m–p). They were hardly apparent in Guangzhou (Figure 2q–t) and Shenzhen
(Figure 2u–x), where pollutant concentrations from this source were typically lower
(Tables S3–S6).

3.2. Pollutant Simulation and Weather Effects

We used a machine learning model to simulate the particulate concentration without
fireworks under changing meteorological conditions. This technique allows comparison
between the observed particulate concentrations and estimates from the model that simulate
the situation without firework emissions.

The model was built for both PM10 and PM2.5 for the Beijing areas within the 5th
Ring Road during the period when the fireworks were more widely used and had r2

values of 0.84–0.85 (see Table S2 for some of the statistics). Therefore, the models had
good explanatory ability for the particulate concentrations. Figure 3a,b show the PM10
and PM2.5 concentrations in urban Beijing that were fitted using a random forest method.
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In the early years, before 2018, a large difference is observed between the measured and
modeled particulate concentrations. There were significant reductions in illegal sales after
2017, especially in the outer parts of Beijing [26]. In areas beyond the 5th Ring Road,
the models (Figure 3c,d) show predicted particulate concentrations that are less than the
observed values and illustrate the firework contributions from 2014 to 2021. By 2019, the
agreement between the model and observation was better, even beyond the 5th Ring Road.
This improved agreement occurred despite the less stringent restrictions on fireworks and
tardier application in areas distant from the center of Beijing.
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Figure 3. Mean modeled (light blue line) and observed (dark blue points) concentrations for more
urban and central Beijing (a) PM10 and (b) PM2.5; suburban Beijing beyond the 5th Ring Road
(c) PM10, (d) PM2.5, (e) NO2 and (f) SO2; Tianjin (g) PM10 and (h) PM2.5; Chongqing (i) PM10 and
(j) PM2.5; Guangzhou (k) PM10 and (l) PM2.5; and Shenzhen (m) PM10 and (n) PM2.5. Note: in the
case of NO2 the modeled output is as a yellow line with observed values as red points and in the case
of SO2 the observed values are ochre.

Figure 3e,f compare the observed concentrations of NO2 and SO2 using the trained
model for Beijing beyond the 5th Ring Road. These show modest differences in concentra-
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tions related to firework use in the earlier years, which have largely disappeared in recent
years, particularly for SO2, which decreased to very low concentrations.

Some peaks cannot be explained by the random forest model for particulate concen-
trations in Tianjin (Figure 3g–h), which again suggests that fireworks made important
contributions to particulate matter in this city. At the end of 2018, authorities in Tianjin
placed restrictions on the private use of fireworks. A questionnaire was posted in a spe-
cial column “Tianjin ban fireworks” and asked whether respondents supported a ban on
fireworks during Spring Festival [50]. The results suggested that most people did not
favor such restrictions as they argued that without fireworks, there can be no Chinese New
Year. Additionally, respondents thought that poor air quality was largely associated with
emissions from industries and factories, an argument that is similar those found in Beijing
during attempts to reduce firework use there [26]. Posts to personal accounts showed that
most people were unhappy as the new regulations were to be enforced in the New Year
holidays of 2019. However, the ban became a reality; although, after this, some people
said that they could still hear the sound of firecrackers during the holiday celebrations in
Tianjin. Official government media sites continued to remind people that fireworks and
firecrackers were not allowed during the holiday period, and such activities could lead to
punishment for violation of the regulations.

The local government in Chongqing also banned fireworks starting in 2019. Particulate
concentrations around the city have become much lower in recent years (Figure 3i,j), and the
difference between the random forest estimates made from meteorological conditions and
particulate observations decreased. The random forest model agrees with the observations
for Guangzhou (Figure 3k,l) and Shenzhen (Figure 3m,n) as fireworks were not allowed
in these cities over many years. While significant differences were found between the
observation and simulation during the firework period in central Beijing, Chongqing, and
Tianjin prior to 2018, after they were less marked. This suggests that bans on firework use
may have been effective in reducing particulate matter (Table S7). As restrictions have been
in place for some time in Guangzhou and Shenzhen, the differences between observation
and simulation were small.

3.3. Controlling Variables

The random forest model provides estimates of the contributions from various pa-
rameters to pollutant concentrations. Figure 4a compares the importance of variables and
highlights the significance of relative humidity (rh) in predicting both PM10 and PM2.5
concentrations via the random forest model for the more central Beijing urban area from
2014/2017 (allow), when fireworks were less well regulated, and the better regulated pe-
riod 2018/2021 (ban). Beyond the 5th Ring Road, fireworks have typically been allowed
from 2014/2021. It may seem odd that the particulate concentration was most strongly
related to humidity and not wind-related parameters, but this was also found in previous
studies [51–53]. This suggests that humidity is an important factor that influences particle
loading. The presence of water vapor might also accelerate particle growth and encourage
the accumulation of airborne firework particles.

It is also possible for humidity to be a surrogate parameter for other important control
variables, so, for example, low humidity may occur when the conditions are very cold,
which is likely to occur when the air is stable and pollutants accumulate [22,54]. It seems
that factors such as the inversion height might be more critical in controlling Beijing’s
firework particulate concentrations as celebratory fireworks come from a very large area
source [22]. After fireworks were banned in 2018, the relative humidity continued to be the
most important variable that influences both PM10 and PM2.5 (Figure 4). The parameter
date_unix suggests a longer-term variation. Figure 4b shows that the contributions of
relative humidity and temperature are related. The story is not so different at other locations,
which showed similar plots of variable importance with weather data (not displayed here).
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3.4. Changes over Space and Time

The development of restrictions on firework use in Beijing has evolved over many
years [22,41], with increasing pressure to impose these beyond the 5th Ring Road. This
has left its mark on particulate concentrations, as noted in Section 3.1, with a change in the
firework pollution peaks, which differ between the inner city compared with more remote
regions, places where firework pollution may be more apparent. Since 2011, firework sales
have been declining, so vendors have often conducted business in outlying areas around
Beijing [22]. The outer parts of Shenzhen have shown ineffective bans in the past as the
highest particulate loads observed at Chinese New Year were in localities far from the city
center (e.g., Kuiyong, Nanyou, and Nan’au) [17].

Thus far, our analysis has looked at average pollutant concentrations for a city, with
the exception of Beijing, which was split into the values obtained from within and outside
the 5th Ring Road. Figure 5a shows the maximum hourly PM2.5 concentrations for each
site collected at 00:00/05:00 at each of the sites on the first morning of the New Year.
Naturally, maximum values can be highly variable, but the picture is one of decreasing
peak particulate concentrations over the years 2016/2019. However, the outer areas of
Beijing became more polluted at the New Year as discussed in Section 3.1. Concentrations
were low in 2020 when the COVID-19 pandemic resulted in many limitations on public
activities. There was a rebound in 2021, but in 2022, New Year particulate concentrations
fell to single digits, as noted on social media [55].

The inset of Figure 5a shows the difference between the maximum concentrations
00:00/05:00 on the first day of the New Year across the central sites of Beijing compared
with the estimates for the maximum from the random forest method. This shows that the
excess concentrations of PM2.5 have declined over the years (Kendall τ = −0.5; p2~0.1). It
suggests that the increasing regulation of fireworks within the 5th Ring Road has led to the
observed concentrations being in line with those predicted. It supports the notion that the
firework bans in the city have led to a notable decline in firework-derived pollutants.

In Tianjin, the increasing regulation of fireworks resulted in a decline in the peak
concentrations across the city after 2019 (Figure 5b). The concentrations in the urban areas
(sites: 1015A, 1017A, 1018A, 1019A, and 1021A) showed a more notable decline compared
with the more distant sites to the east (1023A, 1024A, and 1026A). There is little evidence of
any increase in firework use at these more remote sites over time. The local government in
Chongqing banned fireworks starting in 2019 [56]. The effectiveness of these regulations is
very clear, as shown by a notable decline overall at the sites in 2019. The three sites in the
more central urban areas that lie within the city Ring Expressway initially showed higher
peak concentrations but decreased in 2019. Interestingly, the more remote sites, which were
not necessarily covered by the regulations, also benefitted from the increasing restrictions
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placed on the use of fireworks. It reminds us that patterns of social behavior may have
improvements well beyond the immediate area where regulations are directly applied
(e.g., [57]).
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4. Summary Discussion

Over the most recent decade, the use of fireworks to celebrate the New Year in China
has gradually decreased. Such declines have a lengthier history in cities of southern
China, such as Guangzhou and Hong Kong, and regulations in Nanjing were effective
at reducing fireworks after 2013 [17]. Beijing has also increasingly enforced restrictions
that have reduced firework use and the resultant pollution. Cities such as Hong Kong
have long encouraged public rather than private displays of fireworks, which has kept the
pollutants from celebrations low in this city and environmental impacts to a minimum [58].
Beijing has also promoted public displays, such as the pyrotechnic spectacle in Tiananmen
Square to commemorate the 70th anniversary of the People’s Republic of China (20:00 on
1 October 2019). During these celebrations, nearby monitoring sites in Dongsi and Tiantan
showed no peak because of the fireworks, and other researchers observed little effect from
local emissions [59].

Our random forest analysis suggests that relative humidity dominates the variations in
the particulate concentration in Beijing, before and after the six-hour fireworks periods. The
model is effective in the absence of fireworks as variation arises from meteorological factors
and broader trends in pollutant emissions within the city. The predicted concentrations
during the firework period (in the early morning) were much lower than those observed
concentrations at times when fireworks were heavily used. This supports the belief that
on the first day of Chinese New Year, high concentrations can be attributed to fireworks
rather than any special meteorological condition. When fireworks were banned in the
central parts of Beijing in 2018, the modeled particulate concentrations were similar to
those observed, suggesting a great reduction in emissions from the New Year celebrations.

Reduction in the private use of fireworks and the promotion of public pyrotechnic
displays has led to low concentrations of particulate matter (e.g., in Hong Kong). The
adoption of public displays has brought additional advantages, which include high-quality
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fireworks, large and spectacular displays, controlled times of emission, and the use of
pyrotechnic experts who contribute to safe use of the explosives.

5. Conclusions

The private use of fireworks leads to a sharp peak in particulate concentrations across
cities where there are no well-enforced restrictions in place. The random forest model is
a useful predictor of the trend of particulate concentrations, allowing for contemporaneous
weather conditions. Relative humidity was found to be an important predictor of particu-
late concentrations when firework sources were not dominant. The modeling supported
the idea that the firework peak was the result of high pollutant emissions during New
Year celebrations. In Beijing, large concentrations during the early part of the previous
decade suggested that the widespread private use of fireworks led to peaks in particulate
concentrations but increasing restrictions on fireworks have resulted in decreased concen-
trations at New Year. This pattern was repeated slightly later at Tianjin and Chongqing, as
they imposed effective regulations. There are some hints that regulations may have been
less stringently enforced in the outer parts of cities. Nevertheless, it is likely that social
change caused a decline in firework use even beyond the areas where regulations were
enforced. This study suggests that the replacement of private use of fireworks with public
displays, light shows, and lanterns can reduce the concentration of particulate matter dur-
ing Chinese New Year while maintaining the special character of these culturally significant
celebrations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos13091388/s1, Figure S1: Comparison of observed and pre-
dicted PM2.5 concentrations using the random forest model trained using a window that covered
12 h before and after the firework period (00.00/05:00) and a window covering a 24 h before and
after; Table S1: Statistical results of Mann-Whitney test for PM10, PM2.5, NO2 and SO2 between New
Year’s Eve (before) [12:00/23:00] and fireworks period [00:00/05:00] in Beijing urban and suburban
areas from 2014 to 2021; Table S2: Mean random forest model performance statistics for five sets of
50 models grown for the analysis; Table S3: Statistical results of Mann–Whitney test for PM10, PM2.5,
NO2, and SO2 between New Year’s Eve (before) [12:00/23:00] and fireworks period [00:00/05:00]
in Tianjin from 2015 to 2021; Table S4: Statistical results of Mann–Whitney test for PM10, PM2.5,
NO2, and SO2 between New Year’s Eve (before) [12:00/23:00] and fireworks period [00:00/05:00]
in Chongqing from 2015 to 2021; Table S5: Statistical results of Mann–Whitney test for PM10, PM2.5,
NO2, and SO2 between New Year’s Eve (before) [12:00/23:00] and fireworks period [00:00/05:00] in
Guangzhou from 2015 to 2021; Table S6: Statistical results of Mann–Whitney test for PM10, PM2.5,
NO2, and SO2 between New Year’s Eve (before) [12:00/23:00] and fireworks period [00:00/05:00] in
Shenzhen from 2015 to 2021; Table S7: Statistical results of Mann–Whitney test for PM10 and PM2.5
comparing observations and simulation [00:00/05:00].
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