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Abstract: With the development of industrialization and the increase in the number of motor vehicles
in megacities in China, ozone pollution has become a prominent problem. Although different models
have been used on ozone concentration simulation, the accuracy of different models still varies. In
this study, the performance of two models including a linear stepwise regression (SR) model and
a non-linear artificial neural network (ANN) model on the simulation of ozone concentration were
analyzed in the Jing-Jin-Ji region, which is one of the most polluted areas in China. Results showed
that the performance of the ANN model (adjusted R2 = 0.8299, RMSE = 22.87, MAE = 16.92) was
better than the SR model (adjusted R2 = 0.7324, RMSE = 28.61, MAE = 22.30). The performance
of the ANN on simulating an ozone pollution event was better than the SR model since a higher
probability of detection (POD) and threat score (TS) values were obtained by the ANN model. The
model performance for spring, autumn and winter was generally higher than that for summer, which
may because the weights of factors on simulating high and low ozone concentrations were different.
The method proposed by this study can be used in ozone concentration estimation.

Keywords: ozone; artificial neural network; stepwise regression model

1. Introduction

With the development of industrialization in megacities in China and the increase
in the number of motor vehicles, ozone pollution has become a growing prominent prob-
lem [1]. Ozone in the troposphere is mainly produced by photochemical reactions of
gaseous pollutants such as volatile organic compounds (VOCs), NO2 and CO, which are
emitted by motor vehicle exhaust and factories [2,3]. In addition, vegetation is also one
of the most important sources of VOCs in urban environments [2]. VOCs react photo-
chemically with nitrogen oxides (NOx) and generate ozone in the presence of ultraviolet
radiation [4,5]. Studies show that the increase in ozone concentration is harmful to human
health, such as by means of inflammation of the respiratory system and dysfunction of the
cardiovascular system [6]. However, the spatial resolution of air quality monitoring sites is
relatively low in China. Thus, it is important to forecast ozone concentration accurately to
protect human health.

Plenty of studies have shown that ozone precursors and meteorological conditions
were important factors affecting ozone concentration [7–10]. The photochemical reaction
rate of precursors will be strengthened under the condition of strong solar radiation and
high temperature, thus increasing the ozone concentration [8–10]. On the contrary, rainfall
and higher relative humidity always leads to a decrease in ozone concentration due to
a decrease in photochemical production efficiency and an increase in wet deposition [7].
In addition, wind speed is another factor that affects ozone concentration. Normally, the
increase in wind speed reduces O3 concentration because high wind speeds are generally
not conductive to local ozone concentration accumulation.
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Due to the relatively low spatial accuracy of the ozone concentration monitoring
network in China, researchers have explored different models to simulate ozone concen-
tration. In previous studies, multiple linear regression model has been used to analyze
the relationship between ozone and its affecting factors, including precursors and mete-
orological factors [11,12]. However, the simulation accuracy of this method is relatively
low because the linear regression cannot fully explain the nonlinear reactions process of
ozone formation in the air. Researchers have introduced the technique of machine learning
into the ozone concentration prediction. Machine learning is one of the most commonly
used artificial intelligence (AI) technologies to solve air pollution problems [13–16]. As
one of the commonly used models of machine leaning, the artificial neural network (ANN)
model solves complex nonlinear problems by imitating the structure and function of the
human brain [17]. ANNs have good approximation performance and fast convergence
speed, and can approximate any multivariable nonlinear function [18]. Compared with
the linear regression model, ANNs have better simulation effects on the relationship of
nonlinearity between air pollution concentration and different influencing factors [19,20].
Bandyopadhyay et al. used single hidden layer ANN models and multiple linear regression
(MLR) models, respectively, to predict the average monthly total ozone concentration in
Arosa, Switzerland. They found the ANN model overperformed the MLR model by using
the method of error estimation and least squares to evaluate [21]. AlOmar et al. applied the
wavelet transform (WT) approach to the ANN model; they compared the hybrid model
(W-ANN) with classical ANN in predicting 1 h ahead ozone concentrations and found
the W-ANN performed better than the ANN model [22]. ANN modeling combined with
principal component analysis (PCA) was used to forecast ozone concentration by Al-Alawi
et al. in the lower atmosphere [15]. They found that the R2 between the real and predicted
ozone values for the ANN, PCA, and the combined model were 0.986, 0.965, and 0.995,
respectively. The combined model improves the prediction of ozone concentration. Gao
et al. estimated O3_8h in Hebei province, China, by ANN using factors of NO2, CO, SO2,
wind speed, temperature, pressure, visibility, precipitation, sunlight duration and bound-
ary layer height. Results showed that ANN has good ozone estimation performance with
R2 of 0.80 [16].

In order to establish a model that simulates ozone concentration more accurately, the
performance of two models including a linear stepwise regression (SR) model and nonlinear
ANN model on simulating the daily average of the maximum 8 h moving average of O3
concentration (O3_8h) in Jing-Jin-Ji region were compared using the concentrations of
ozone precursors and meteorological factors. The result can provide a reference for making
ozone pollution prevention and control measures, and is beneficial to the environment and
public health.

2. Methods
2.1. Study Area

As shown in Figure 1, the research area of Jing-Jin-Ji region is located in the North
China Plain and bordered by the Bohai Sea. The topography of Jing-Jin-Ji region is high
in the northwest and low in the southeast. The region belongs to temperate monsoon
climate. Summer is hot and humid, and winter is cold and dry. Rainfall is concentrated
in the summer. The Jing-Jin-Ji region has an area of approximately 21,800 km2, which
contains 13 major cities including Beijing, Tianjin, Shijiazhuang, Tangshan, Qinhuangdao,
Handan, Baoding, Zhangjiakou, Chengde, Langfang, Cangzhou, Hengshui and Xingtai.
Eleven cities expect Beijing and Tianjin belong to Hebei Province. As one of the world’s
fastest-developing economic zones, Jing-Jin-Ji region is mainly engaged in heavy industry
and manufacturing. Along with economic development, air pollution has increased mainly
due to emissions from automobile exhausts and industry.



Atmosphere 2022, 13, 1371 3 of 16Atmosphere 2022, 13, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. Geographical location of study area and distribution of air quality monitoring sites. 

2.2. Data Collection 
The concentrations of air pollutants including the maximum 8 h moving average of 

O3 concentration (O3_8h), NO2, CO, PM10 and PM2.5 were collected from China National 
Environmental Monitoring Centre [23]. The data were collected from a total of 76 moni-
toring sites in the cities in Jing-Jin-Ji region (see Figure 1). The study period was from 1 
January 2018 to 31 December 2020. In order to evaluate the effects of meteorological fac-
tors on ozone variance, factors including 2 m temperature (T2m, K), surface net solar ra-
diation (SSR, J/m2), total precipitation (TP, m), surface pressure (SP, Pa), boundary layer 
height (BLH, m), 10 m u-component of wind (U10, m/s) and 10 m v-component of wind 
(U10, m/s) were downloaded from European Centre for Medium-Range Weather Fore-
casts (ECMWF) [24]. The spatial resolution of the hourly meteorological data was 0.25° × 
0.25°. When the monitoring site of air pollutants was located in a specific grid cell, we 
assigned the air pollution data to the cell and matched them with the corresponding me-
teorological data. Wind direction (WD, m/s) and wind speed (WS, m/s) were not provided 
by ECMWF and they were calculated by the Formulas (1) and (2): 

WD = 180 + atan2(U10, V10) ×
180
Π

 (1) 

WS = �U102 + V102 (2) 

where, U10 and V10 are the u-component and v-component of wind at 10 m height. 

2.3. Models 
2.3.1. Stepwise Regression Model 

The model of SR is a type of multiple linear regression model, which can select the 
most appropriate combination of independent variables for dependent variable 
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2.2. Data Collection

The concentrations of air pollutants including the maximum 8 h moving average of
O3 concentration (O3_8h), NO2, CO, PM10 and PM2.5 were collected from China National
Environmental Monitoring Centre [23]. The data were collected from a total of 76 mon-
itoring sites in the cities in Jing-Jin-Ji region (see Figure 1). The study period was from
1 January 2018 to 31 December 2020. In order to evaluate the effects of meteorological
factors on ozone variance, factors including 2 m temperature (T2m, K), surface net solar
radiation (SSR, J/m2), total precipitation (TP, m), surface pressure (SP, Pa), boundary layer
height (BLH, m), 10 m u-component of wind (U10, m/s) and 10 m v-component of wind
(U10, m/s) were downloaded from European Centre for Medium-Range Weather Forecasts
(ECMWF) [24]. The spatial resolution of the hourly meteorological data was 0.25◦ × 0.25◦.
When the monitoring site of air pollutants was located in a specific grid cell, we assigned
the air pollution data to the cell and matched them with the corresponding meteorological
data. Wind direction (WD, m/s) and wind speed (WS, m/s) were not provided by ECMWF
and they were calculated by the Formulas (1) and (2):

WD = 180 + atan2(U10, V10)× 180
Π

(1)

WS =
√

U102 + V102 (2)

where, U10 and V10 are the u-component and v-component of wind at 10 m height.

2.3. Models
2.3.1. Stepwise Regression Model

The model of SR is a type of multiple linear regression model, which can select the most
appropriate combination of independent variables for dependent variable prediction. In this
study, we established a SR model with the O3_8h concentration as the dependent variable
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and the factors of NO2 concentration, CO concentration, PM10 and PM2.5 concentrations,
T2m, TP, SP, SSR, WS, WD and BLH as the independent variables. The equation of SR
model is as follows:

Yi = β0 + β1X1i + β2X2i + . . . + β11X11i + µi, i = 1, 2, . . . , 11. (3)

where, Yi is O3_8h concentration, β0, β1, . . . , β10 are regression coefficients, X1i, X2i, . . . ,
X10i are the independent variable discussed above, µi is random variable.

The software of SPSS (version 22.0.0.0, IBM Corp, Armonk, NY, USA) was used for
SR analysis.

2.3.2. Artificial Neural Network Model

An ANN is a computing system that consists of multiple interconnected processing
elements. The flexibility and validity of the model are desirable. Additionally, this model
is less demanding for input dataset [25]. The structure of the ANN model is shown in
Figure 2. The output layer is O3_8h concentration. Following the principle of parsimony,
hidden layers should be as few as possible [26], thus, we selected different numbers of
nodes including 3, 4 and 5 to find the model that works best. 70% of the data were selected
as training samples to complete the self-learning process and to construct an optimal
ANN structure, and the remaining 30% of the data were the test samples to evaluate the
performance of the established model. The activation function of the hidden layer is selected
as hyperbolic tangent (tanh) and S-shaped growth curve (sigmoid), which are commonly
used in ozone prediction using an ANN model [27–30]; the formulas are as follows:

Tanh(x) =
ex − e−x

ex + e−x (4)

S(x) =
1

1 + e−x (5)

Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 17 
 

 

prediction. In this study, we established a SR model with the O3_8h concentration as the 
dependent variable and the factors of NO2 concentration, CO concentration, PM10 and 
PM2.5 concentrations, T2m, TP, SP, SSR, WS, WD and BLH as the independent variables. 
The equation of SR model is as follows: 

Yi = β0  + β1X1i  + β2X2i  + ⋯+ β11X11i  +  μi, i = 1, 2, … , 11. (3) 

where, Yi is O3_8h concentration, β0, β1,…, β10 are regression coefficients, X1i, X2i,…, X10i are 
the independent variable discussed above, μi is random variable. 

The software of SPSS (version 22.0.0.0, IBM Corp, Armonk, NY, USA) was used for 
SR analysis. 

2.3.2. Artificial Neural Network Model 
An ANN is a computing system that consists of multiple interconnected processing 

elements. The flexibility and validity of the model are desirable. Additionally, this model 
is less demanding for input dataset [25]. The structure of the ANN model is shown in 
Figure 2. The output layer is O3_8h concentration. Following the principle of parsimony, 
hidden layers should be as few as possible [26], thus, we selected different numbers of 
nodes including 3, 4 and 5 to find the model that works best. 70% of the data were selected 
as training samples to complete the self-learning process and to construct an optimal ANN 
structure, and the remaining 30% of the data were the test samples to evaluate the perfor-
mance of the established model. The activation function of the hidden layer is selected as 
hyperbolic tangent (tanh) and S-shaped growth curve (sigmoid), which are commonly 
used in ozone prediction using an ANN model [27–30]; the formulas are as follows: 

Tanh(x) =
ex − e−x

ex + e−x
 (4) 

S(x) =
1

1 + e−x 
 (5) 

 
Figure 2. Schematic diagram of artificial neural network. 

In this study, neural network multilayer perceptron in IBM SPSS Statistics 22.0 (ver-
sion 22.0.0.0, IBM Corp, Armonk, NY, USA) was used for ANN analysis. 

  

Figure 2. Schematic diagram of artificial neural network.

In this study, neural network multilayer perceptron in IBM SPSS Statistics 22.0 (version
22.0.0.0, IBM Corp, Armonk, NY, USA) was used for ANN analysis.
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2.3.3. Model Validation

The root mean square error (RMSE), mean absolute error (MAE) and coefficient of
determination (R2) were used to evaluate the model performance. The formulas are
as follows:

RMSE =

√
1
n

Σn
i=1(ti − yi)

2 (6)

MAE =
1
n
(Σn

i=1|ti − yi|) (7)

R2 = 1−
Σn

i=1(ti − yi)
2

Σn
i=1

(
yi − yi−average

)2 (8)

where, n is the number of measurements; ti is the simulated value; yi is the true value;
yi-average is the average of the true values.

The value of R2 gives an estimate of the relationship between movements of a depen-
dent variable based on an independent variable’s movements. It is between 0 and 1, and
the closer it is to 1, the better the model fitting degree is. The MAE and the RMSE can be
used to diagnose the variation in the errors in a set of forecasts. The greater difference
between them, the greater the variance in the individual errors in the sample. The closer
the values of the RMSE and MAE are to 0, the lower the error is and the better the model
performance is.

In order to evaluate the performance of the model in predicting ozone pollution event
when the concentration exceeds the limit value of 160 µg/m3, we calculated the probability
of detection (POD), threat score (TS) and false alarm rate (FAR) of the two models. The
higher the value of the POD and TS, the better the simulation is. The closer the FAR is to
zero, the better the simulation is. The calculation formulas are as follows:

POD =
A

A + B
(9)

TS =
A

A + B + C
(10)

FAR =
C

A + C
(11)

where, A represents the days when both the monitored and simulated O3 concentration
are greater than 160 µg/m3; B represents the number of days when the monitored O3
concentration is greater than 160 µg/m3 and the simulated value is less than 160 µg/m3; C
represents the number of days when the monitored O3 concentration is less than 160 µg/m3

and the simulated O3 concentration is greater than 160 µg/m3.

3. Results and Discussion
3.1. Ozone Concentration in Jing-Jin-Ji Region

Figure 3 shows the variation trend of the daily maximum O3_8h concentrations in
Beijing, Tianjin and Hebei province from 2018 to 2020. It can be seen that the annual distri-
bution of ozone concentration presents a shape of a single peak. The ozone concentration
reaches the maximum in summer, which is mainly due to the acceleration of photochemical
reaction process by high temperature and intense solar radiation in summer [10]. A slight
downward trend of ozone concentration was observed from 2018 to 2020 (the annual
averaged ozone concentrations are shown in Table 1). This may be related to that the strict
plan named “The 2017 work plan for air pollution prevention and control in Beijing, Tianjin,
Hebei, and surrounding areas” issued by China in 2017 [31]. The areas were urged to
promote the use of new energy sources and restructure industry structure, which reduced
emissions of industrial pollutants and controlled NOx emissions.
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Table 1. Annual averaged and standard deviation of ozone concentration from 2018 to 2020 in
Jing-Jin-Ji region (µg/m3).

City/Province
O3_8h Concentration

2018 2019 2020

Beijing 101.20 ± 58.09 99.77 ± 62.05 95.79 ± 81.52
Tianjin 106.83 ± 58.26 106.17 ± 62.23 101.16 ± 81.41
Hebei 98.64 ± 48.46 95.14 ± 50.19 95.57 ± 66.51

Figure 4 shows the distribution of ozone concentration in Jing-Jin-Ji region. Ozone con-
centrations in the southwestern Jing-Jin-Ji region were higher than those in the northeastern
region. The reason is that the main industries in the southwestern area are steel, chemicals
and coal, which are highly polluting industries [32]. The top ten value of O3_8h throughout
the year are all observed in June with all values exceeded the standard of 160 µg/m3 in
Ambient Air Quality Standard II (GB3095-2012). The number of days that exceeded the
160 µg/m3 limited value in Jing-Jin-Ji region are shown in Table 2.
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Table 2. Number of days exceeding the ozone limited value of 160 µg/m3 from 2018 to 2020 in
Jing-Jin-Ji region in China.

City/Province 2018 2019 2020

Beijing 64 72 54
Tianjin 83 81 58
Hebei 48 51 31

As shown in Figure 5 and Table 3, the ozone concentration in Jing-Jin-Ji region showed
a seasonal variation trend. Ozone concentration was the highest in summer, followed
by spring and autumn, the concentration of ozone was the lowest in winter. The results
were similar with the results reported by Cui et al., who analyzed ozone concentration
in Beijing from 2013 to 2017 [33]. However, different seasonal variation characteristics
of ozone concentration in Shanghai were reported by Li et al., with the highest ozone
concentration in spring, followed by summer, autumn and winter [34]. The main reason is
that Shanghai enters the “plum rain” season in July and August in summer, the overcast
and rainy days lead to the decrease in solar radiation. Other changes in meteorological
factors such as air humidity and temperature will affect the photochemical reaction of
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ozone, resulting in low ozone concentration in the corresponding month. In addition, ozone
deposited in urban parks and greenery in rainy days was also influenced O3 variance in
Shanghai [35]. Therefore, the rule of the highest ozone concentration in summer is not
universally applicable in different areas. The influence of climate characteristics should
also be considered.
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region in China.

Table 3. Averaged ozone concentrations and the standard deviation in different seasons from 2018 to
2020 in Jing-Jin-Ji region in China (µg/m3).

City/Province Spring Summer Autumn Winter

Beijing 114.45 ± 44.21 150.65 ± 53.72 72.54 ± 48.35 53.43 ± 21.39
Tianjin 119.63 ± 40.41 161.56 ± 48.58 83.27 ± 46.93 52.23 ± 21.78
Hebei 113.07 ± 32.22 142.08 ± 35.48 75.83 ± 37.86 50.23 ± 19.42

3.2. Ozone Concentration Simulated by Stepwise Regression Model

The performance of the SR model in Beijing, Tianjin and Hebei province is shown in
Table 4. The averaged adjusted R2, RMSE and MAE values were 0.7564, 26.82 and 20.72,
respectively. The performance of the SR model for the 11 cities in Hebei province is shown
in Table S1 in the Supplementary Materials.
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Table 4. Performance of O3 concentration simulation using SR and ANN models.

City/Province Model Adjusted R2 RMSE MAE

Beijing SR 0.7123 30.89 23.92
ANN 0.8476 22.47 16.24

Tianjin SR 0.7490 28.84 22.57
ANN 0.8363 23.28 17.00

Hebei
SR 0.8080 20.72 15.68

ANN 0.8789 16.46 11.56

Figure 6 shows the correlation between the simulated O3_8h concentrations by the SR
model and the real monitoring value of O3_8h. Liu evaluated the performance of the SR method
on the simulation of ozone concentration using input factors including solar radiation, NO2 and
CO concentrations in Luwan district of Shanghai from May to August in 2017. Their results
showed relatively higher errors (RMSE = 31.5 and MAE = 35.1) compared with the values
obtained in this study, which is probably related to their smaller sample size and less input
factors [36]. Zhang estimated the error and fitting degree between the simulated and the real
O3 value in Hong Kong in different seasons by using the method of multiple linear regression.
The mean value of R2 was 0.59 and the averaged RMSE was 25.9 [37]. In general, linear models
such as the SR model perform poorly in predicting the nonlinear process of O3 formation, and
the performance of the linear model on ozone concentration estimation is highly related to the
selected input parameters.
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3.3. Ozone Concentration Simulated by ANN Model

The parameters used in the input layer are the parameters adopted in the SR discussed
above the selected input parameters for Beijing, Tianjin and Hebei are shown in Table 5.

Table 5. Input parameters for ANN in Beijing, Tianjin and Hebei province.

City/Province Input Parameters

Beijing T2M, SSR, WD, PM2.5, NO2, CO, BLH
Tianjin T2M, SSR, WD, PM2.5, NO2, CO, BLH, WS
Hebei T2M, SSR, WD, PM2.5, NO2, CO, WS, BLH, SP

The input parameters for 11 cities in Hebei province are shown in Table S2 in the
Supplementary Materials. Different network structures including number of nodes in
hidden layer (3, 4 and 5 nodes) and activation function type (tanh or sigmoid) were applied
to obtain the optimal structure. After evaluation, the performance of the ANN was best
when the hidden layer contained 5 nodes and the activation function was tanh (see Table 6
and Table S3 in the Supplementary Materials). Table 7 shows the performance of the ANN
model in Beijing, Tianjin and Hebei province. The results also showed that the performance
of the ANN model can be improved by increasing the number of nodes in the hidden layer
regardless of the activation function used.

Table 6. Performance of the ANN on O3 concentration simulation with different network structures.

City/Province Activation
Function

Number of Hidden
Layer Nodes Adjusted R2 RMSE MAE

Beijing

tanh
3 0.8380 23.18 16.46
4 0.8519 22.16 15.75
5 0.8476 22.48 16.24

sigmoid
3 0.8294 23.78 16.95
4 0.8437 22.76 16.06
5 0.8439 22.75 16.14

Tianjin

tanh
3 0.8308 23.68 17.29
4 0.8188 24.50 17.92
5 0.8363 23.28 17.00

sigmoid
3 0.8186 24.51 17.83
4 0.8174 24.60 18.18
5 0.8332 23.51 17.27

Hebei

tanh
3 0.8789 16.46 11.56
4 0.8817 16.26 11.17
5 0.8881 15.82 10.90

sigmoid
3 0.8752 16.70 11.76
4 0.8761 16.65 11.63
5 0.8921 15.53 10.61

Table 7. Performance of the ANN on O3 concentration simulation in different seasons using the
optimal network structure.

City/Province Season Adjusted R2 RMSE MAE

Beijing

spring 0.8388 17.53 12.80
summer 0.7150 28.31 22.07
autumn 0.8239 20.03 14.10
winter 0.8260 8.80 6.78

Tianjin

spring 0.7371 20.42 14.07
summer 0.5873 30.75 24.22
autumn 0.7933 21.02 14.28
winter 0.7385 10.97 8.15

Hebei

spring 0.7794 14.88 9.187
summer 0.6669 20.14 13.94
autumn 0.8964 11.99 8.66
winter 0.8168 8.17 6.24
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In addition, the activation function of tanh (averaged RMSE = 23.16, averaged
MAE = 17.12 and averaged adjusted R2 = 0.8306) can provide better results than those ob-
tained by sigmoid function (averaged RMSE = 23.59, averaged MAE = 17.49 and averaged
adjusted R2 = 0.8244). The correlation between the real and simulated ozone value by the
optimal ANN structure is shown in Figure 7.
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The ANN model with 5 hidden nodes and activation function of tanh was thus used to
predict ozone concentrations in different seasons. The performance of the ANN in different
seasons for Beijing, Tianjin and Hebei province is shown in Table 7 and Figure 8. The
corresponding results for 11 cities in Hebei province are shown in Table S4 and Figure S1
in the Supplementary Materials. Results indicated that the model performance in spring,
autumn and winter is better, with lower simulating errors (averaged RMSE = 17.61, 17.68
and 9.31, averaged MAE = 12.02, 12.34 and 7.06, respectively, for spring, autumn and
winter) and higher R2 (averaged adjusted R2 = 0.7851, 0.8379 and 0.7938, respectively, for
spring, autumn and winter). The performance of the ANN model in summer (averaged
RMSE = 26.40, averaged MAE = 20.08, averaged adjusted R2 = 0.6564) was relatively poorer
than the other seasons. Our results indicated that the ANN model had limitations in
estimating O3 concentration peaks, which mainly appeared in summer. This is probably
due to the fact that the weights of input factors in the ANN model in the situations of
high and low ozone levels are different [16]. Zhang et al. also found that the performance
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of the ANN model on ozone prediction in summer was worse than the results in other
seasons [38]. Xue et al. predicted ozone concentration through BP neural network model in
Tianjin, China using input factors of PM2.5, PM10, CO, temperature and wind direction [39].
The R2 was 0.597, which was lower than the R2 of 0.695 in this study [39]. This is probably
due to the small amount of data used in their study. Hoshyaripour et al. simulated O3
concentration in Sao Paulo, Brazil using the method of the preceding selection-neural
network (FS-ANN). The results showed that the R2 between real and simulated O3 values
at two sampling points was 0.70 and 0.56, respectively. The corresponding RMSE values
were 8.12 and 7.76 [40].
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3.4. Model Contrast

Based on the R2, the RMSE and MAE values obtained by the two models, the ANN
was more suitable for ozone concentration estimation due to its excellent ability of learning
the nonlinear relationship between input and output variables [41]. In addition, with the
help of SR model by selecting the most influenced factors that affect ozone concentration,
the running time of the ANN was reduced and the over fitting phenomenon caused by
high dimensional parameter sets was also avoided [25,42,43]. The performance of the
ANN in each season was better than those obtained by the SR model. To compare the
performance of the two models on simulating O3 concentration that exceeds the limited
value of 160 µg/m3, the POD, TS and FAR values were calculated (see Table 8).

Table 8. Prediction performance using SR and ANN models.

City/Province Model POD TS FAR

Beijing SR 0.5368 0.4880 0.1570
ANN 0.7684 0.6697 0.1609

Tianjin SR 0.6804 0.5709 0.2199
ANN 0.8037 0.6692 0.2000

Hebei
SR 0.3923 0.3566 0.2031

ANN 0.6846 0.5779 0.2124

The POD and TS values in Beijing, Tianjin and Hebei province for the ANN were higher
than those for the SR model, indicated that the ANN model had a stronger performance
in predicting ozone exceedance. The FAR values for ANN and SR are similar. Among the
13 major cities in Jing-Jin-Ji region, only 3 cities’ FAR values of ANN model are slightly
higher than those of the SR model. Comparison of prediction performance using SR and
ANN models for 11 cities in Hebei province was shown in Table S5 in the Supplementary
Materials. To sum up, the overall performance of the ANN is better than the SR model in
simulating exceedance of ozone, thus the performance of the ANN on predicting ozone
pollution events is better.
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4. Conclusions

A downward trend of ozone concentration was found in the Jing-Jin-Ji region during
2018–2020. The seasonal variation trend of ozone concentration was obvious with the
concentration peaks all obtained in summers. Air pollutants concentrations including NO2,
CO, PM10, and PM2.5, and meteorological factors including T2m, SSR, TP, SP, BLH, WD,
and WS were used as input parameters for SR and the ANN model for O3_8h concentration
simulation. The correlation analysis between the real and simulated ozone concentration
showed that values of R2, RMSE and MAE were 0.7324, 28.61, and 22.30, respectively, by
the SR model. The hybrid model of SR and ANN models can significantly improve the
simulation level of ozone estimation with R2 increased to 0.8299 and RMSE and MAE
decreased to 22.87 and 16.92, respectively. The results show that the nonlinear ANN model
is better than the linear model on simulating ozone concentration. The model performance
in spring, autumn and winter was generally higher than that in summer, which indicated
that the ANN has limitation in estimating high concentration of O3 that often occur in
summer. The POD and TS values obtained by the ANN model were higher than those
obtained by the SR model, indicating that the ANN model is better in forecasting ozone
pollution events. The results of this study can provide a technical reference for using an
ANN on predicting ozone concentration in other regions in China.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos13091371/s1, Figure S1: Relationship between the simulated value of
O3_8h and the actual monitored concentration of O3_8h in each season based on the neural network model
with activation function of tanh; Table S1: Performance of O3 concentration simulation using SR and ANN
models; Table S2: Input parameters for ANN in Shijiazhuang, Baoding, Cangzhou, Chengde, Handan,
Hengshui, Langfang, Qinhuangdao, Tangshan, Xingtai and Zhangjiakou; Table S3: Performance of ANN
on O3 concentration simulation with different network structures; Table S4: Performance of ANN on O3
concentration simulation in different seasons using the optimal network structure; Table S5: Prediction
performance using SR and ANN models.
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