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Abstract: Low-carbon cities have become a new trend in regional development around the world.
Whether they can improve the environment in China, especially the air quality, remains to be tested.
In this paper we take low-carbon city construction as a quasi-natural experiment and empirically test
the net effects, influencing factors, and dynamic effects of low-carbon city construction on air quality
by constructing a multistage propensity score matching and Difference-in-Differences model. After a
series of robustness tests, the following conclusions are drawn: first, low-carbon city construction
reduces the regional Air Quality Index, inhalable particulate matter, fine particulate matter, and NO2

concentrations. Among them, the construction effect in 2017 was the most significant. Therefore, it is
necessary to continue to promote low-carbon city policies and accurately identify different types of
air pollutants to improve the overall effectiveness of low-carbon city policies. Second, temperature,
humidity, wind level, and other meteorological factors, as well as gross domestic product for the
proportion of secondary industry, will affect air quality. Therefore, it is necessary to comprehensively
consider meteorological, economic, social, and other influencing factors in an early stage of the
construction of the next batch of low-carbon cities, so as to avoid falling into the trap of “building
first and managing later”. Third, the impact of secondary industry on air quality is significantly
greater than that of tertiary industry. Therefore, the upgrading of industrial structure promoted by
low-carbon city policy is effective in improving air quality. Fourth, the construction of low-carbon
cities in western China has the most significant impact on air quality improvement. Therefore, the
joint prevention and control mechanism of air pollution control in urban agglomeration should be
established.

Keywords: low-carbon city; air quality; Multi-period PSM-DID model

1. Introduction

As the world’s second largest economy and the largest developing country in the
world [1], China’s economic growth level and urbanization are advancing by leaps and
bounds [2], which is a double-edged sword and may be an important factor affecting urban
environmental pollution, especially air pollution [3]. As we know, air pollution not only
affects the objective health level of urban residents, causing them to suffer from respiratory
system, heat, and skin disease [4,5]; it also may reduce the subjective well-being of residents,
damage cognitive function, and produce negative emotions and behaviors [6]. In recent
years, not only to show a pragmatic image in the international community, but also to
achieve sustainable development at home, the Chinese government has attached great
importance to coordination between economic development and environmental protection.
China has formally put forward the new concept of ecological civilization development
and the “double carbon” strategic goal of “carbon peak in 2030 and carbon neutralization
in 2060”. Low-carbon pilot cities are an important environmental reform program launched
by China in 2010, although low-carbon technologies, as an important means to reduce air
pollution [7], improve residents’ well-being, and enhance the competitiveness of cities and
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even countries, have been used in European developed cities for many years [8,9]. China
has constructed low-carbon cities in three rounds, which include adjusting the industrial
structure, encouraging circular economy, using green energy, advocating building energy
conservation, and developing a low-carbon transportation system, which are also closely
related to ecological civilization, people’s well-being, and coping with the deterioration of
air quality. Therefore, what mechanism a low-carbon city uses to improve air quality and
the impact of such a city on pollution control in China has become an issue that attracts
global attention.

Academic circles have engaged in heated discussions on urban construction and air
quality, but the conclusions are inconsistent. Some scholars believe that urban development
will accelerate the deterioration of air quality [10–12]. With the improvement of cities’
economic level, energy consumption continues to increase, and the emission of urban,
industrial, and domestic pollution intensifies, resulting in the deterioration of air quality.
Some scholars believe that urban development contributes to improving air quality [13,14].
Because the development of urbanization brings industrial and population agglomera-
tion, it is conducive to the concentration of superior resources to deal with industrial and
domestic pollution and it realizes the benefits of low-cost centralized pollution control.
As an important link between urban economic development and environmental gover-
nance, building low-carbon cities may become a key factor in solving the contradiction
between urban energy consumption and environment [15]. To more accurately estimate
the effects of low-carbon city construction, some scholars use the differential difference
method to evaluate low-carbon pilot policies. Studies have shown that in the short term,
low-carbon city construction reduces carbon dioxide emissions by promoting industrial
structure upgrading in pilot cities [16], increasing green technology innovation activities
of enterprises [17–20], and improving the air pollution index [21]. The policy effect is
relatively ideal. However, from a long-term perspective, some scholars have questioned
the effect of “weak incentives and weak constraints” existing in low-carbon cities [22]. At
present, no scholar has adopted the multistage Difference-in-Differences (DID) method
to evaluate the net effects of low-carbon city construction on air quality and to identify
the dynamic effects of policies within the time interval covering the establishment of all
pilot cities.

In addition, the literature on air quality is mainly focused on the effects, causes,
mechanisms, paths, and prevention of air pollution [23,24]. Most scholars take Air Quality
Index (AQI) [25], fine particulate matter (PM2.5), or inhalable particulate matter (PM10)
and other single indicators as research objects [26,27], ignoring that each specific pollutant
represents different meanings in reality. It is worth pointing out that few researchers have
considered the impact of NO2 produced by manufacturing on air [28]. Further studies
show that among the three batches of low-carbon pilot cities, the time and mode of joining
the eastern, central, and western urban agglomerations have been different [29,30], but
no scholar has identified the effect of the policy from the perspective of the heterogeneity
of low-carbon urban agglomerations. It is worth emphasizing that although the low-
carbon city pilot policy has been implemented in China for twelve years since 2010, no
researcher has scientifically evaluated the effects of this program from the perspective of
economics [21]. In addition, it is obvious that low-carbon city pilot construction’s process in
different cities is not completely consistent. Using a standard model to estimate the result
of the double difference is likely to appear biased, while multiple-phase double difference
is able to capture the dynamic change of policy to more accurately measure the effects of
low-carbon city construction.

The purpose of this study is to examine the net effects, influencing factors, and dynamic
effects of low-carbon city construction on air quality and to find possible improvement
measures. To this end, we took low-carbon city construction as a quasi-natural experiment
and, based on atmospheric data and socioeconomic data for 109 cities from 2010–2020,
adopted the propensity score matching model (PSM) and a multistage DID model to
evaluate the effects of policies. This paper provides some important insights: First, we
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provide a quasi-natural experiment based on low-carbon city construction to estimate
the impact of non-low-carbon cities on air quality, thereby creating a control group. PSM
method is adopted to reduce sample bias. The use of multistage DID not only effectively
alleviates the endogenous problems such as the correlation between error terms and
explanatory variables caused by the absence of dependent variables but also accurately
captures the dynamic effects of different batches of low-carbon city construction. Second,
we analyze the heterogeneity of four pollutants and six socioeconomic factors affected by
low-carbon city construction, finding effective ways to improve air quality in low-carbon
city construction. Third, we evaluate the effectiveness of regional differences in low-carbon
cities to provide a reference for future policy improvement. These are also likely to be
general lessons which other countries may draw from the available evidence on China’s
atmospheric governance.

The main contributions of the paper include: (1) Under the condition of a quasi-natural
experiment, a Multi-period PSM-DID model was adopted to identify the impact of low-
carbon urban policies on air quality improvement, avoid potential endogenous problems,
and provide useful reference for the scientific evaluation of air pollution prevention and
control policies; (2) The dynamic effects of pilot policies for low-carbon cities are investi-
gated by stages and the differentiation of air pollutants, which breaks through the previous
evaluation of the effects of air pollution prevention and control policies from a simple static
and average sense, and the conclusions are richer and more refined; (3) The heterogeneity
effect of a low-carbon city pilot on air improvement from a regional perspective can provide
more targeted policy suggestions for air pollution work in different regions.

The rest of the paper presents the methodology and data in Section 2, empirical results
in Section 3, and robust test in Section 4. Finally, our conclusions are set out in Section 5.

2. Data and Methodology
2.1. Data and Variables

Considering the availability and completeness of air quality data, Air Quality Index
(AQI), Fine Particulate Matter (PM2.5), Inhalable Particles (PM10), and Nitrogen Dioxide
(NO2) were selected as the dependent variables, and the data came from China’s Online Air
Quality Monitoring and Analysis platform (https://www.aqistudy.cn/, accessed on 1 May
2022). AQI is a dimensionless comprehensive index developed by the State Environmental
Protection Administration to quantitatively describe air quality. It overcomes the defect
that a single pollution index cannot measure air pollution changes within the “system
scope” and it has been adopted by many scholars owing to its high authority and timely
updating [31]. The higher the value, the more serious the air pollution and the greater
the harm to human health. PM2.5, PM10, and NO2 were selected from the pollutants in
the evaluation system of Ambient Air Quality Standards. The higher the concentration in
the air, the more serious the air pollution. Because the pilot construction of low-carbon
cities spans a long time period, meteorological data for some years are missing, which are
supplemented using the interpolation method.

As for the control variables, existing studies on air quality have shown that meteoro-
logical factors will have an impact on air quality [32,33]. Therefore, to accurately identify
the net effect of low-carbon city construction on air quality, we chose average temperature
(Temp), humidity (Humi), and wind (Wind) as the control variables of meteorological factors.
In addition, it is worth noting that existing studies on urban air pollution have shown
that social and economic factors will also have a certain impact on urban air quality [34].
Therefore, to make this study more credible, the control variables were also selected on the
basis of the aforementioned economic development level, industrial structure adjustment,
population, energy-consuming industry, environmental pollution industry, and other social
and economic variables. Among them, economic development level is measured by the
gross domestic product (GDP) of the region; industrial structure adjustment is measured by
the proportion of the output value of secondary industry to GDP (Ind2), and the proportion
of the output value of tertiary industry in GDP (Ind3); population (Popu) is measured by

https://www.aqistudy.cn/
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the total population of a region; manufacturing is measured by industrial waste emissions
(Waste); and air pollution industry is measured by industrial smoke emission (Gas) [35]. The
demographic, economic, and industrial data are from the Statistical Yearbook of Chinese
Cities, and the meteorological data are from the Online Monitoring and Analysis Platform
of China’s Air Quality (https://www.aqiresearch.cn/, accessed on 1 May 2022). Finally,
the annual data of socioeconomic indicators and daily data of meteorological factors were
converted into monthly data suitable for this research model by the interpolation method.

2.2. Methodology

PSM is a statistical method that uses nonexperimental or observational data to analyze
the effects of interventions. In studies, there are many data biases and confounding
variables for various reasons, and the PSM model is used to find one or more individuals
with the same or similar background characteristics as each individual in the experimental
group as controls. This minimizes the interference of other confounding factors and reduces
the bias so as to make a more reasonable comparison between the experimental group and
the control group. The PSM method is particularly suitable for studies using non-random
data. Computing the average processing effect of the treatment group samples through
the common support hypothesis test and the balance hypothesis test can obtain basic
unbiased estimates, thus obtaining a natural experiment under the condition of using non-
random data. The influence of selective bias and confounding factors in the performance
evaluation process can be excluded as far as possible by the propensity score matching
method, ensuring that the final estimated performance results are an unbiased “net effect”.
In this manuscript, the PSM method is used to eliminate the problem that the treatment
group and the control group do not completely meet the common trend hypothesis under
the influence of other conditions, and to provide data conditions for estimating the effect of
the low-carbon city policy on air quality by using the DID method.

The DID model is usually used to study policy effects. The natural experiment is
a necessary step in the differential method. For a natural experiment, all the sample
data were divided into two groups: one group was affected by intervention, that is the
experimental group; the other group was not affected by the same intervention, that is the
control group; the data before and after intervention were differentiated twice to obtain
the difference between the two groups, representing the relative relationship between
the experimental group and the control group before and after intervention. The second
difference between the two groups was made to eliminate the original difference between
the experimental group and the control group, and finally the net effect caused by the
intervention was obtained. PSM can solve the problem of sample selection bias, but it
cannot avoid the endogeneity problem caused by variable omission. Though DID can
solve the endogeneity problem through dual difference, it cannot adequately solve the
problem of sample selection bias [36,37]. Nonrandom distribution policy implementation
test called natural experiment group and control group (natural trials), there are significant
features of such test, the sample before the implementation of the policy may exist between
the different groups differences, only through the analysis of the contrast before and after
single or lateral comparison method will ignore these differences, which in turn lead to
biased estimates of the effect of policy implementation. The DID model is based on the data
obtained from natural experiments, which can effectively control the ex ante differences
among research objects through modeling and effectively separate the real results of policy
impact [38,39].

The Multi-period DID model is as follows: (1) The mean value of the treatment group
after the occurrence of policies is subtracted from the mean value before the occurrence
of policies to obtain the change situation (policy effect + time effect); (2) For the control
group, the mean value after the policy occurred was subtracted from the mean value before
the policy occurred to obtain the change (time effect); (3) The policy effect is obtained by
subtracting the two changes (excluding the time effect)

https://www.aqiresearch.cn/
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Based on this, in this paper we take the low-carbon city pilot construction policy
as a quasi-natural experiment and combine PSM and DID to estimate the net effect of
a low-carbon city pilot on air quality. It can be seen from the following analysis of the
policy implementation time that the pilot construction policies of low-carbon cities have
obvious characteristics from pilot to promotion, so the model in this paper is a multiperiod
DID model. First, to reduce sample bias, we used PSM to select 3880 samples from
meteorological indicators and socioeconomic indicators from 109 cities for DID analysis.
Then, the influences of low-carbon city construction on AQI and various types of pollution
were identified by multiperiod DID. Then, we analyzed the specific causes of air pollution;
finally, the difference in air quality for different regions and policy dynamics were studied
using the DID model.

2.2.1. Model Construction

At present, there are three methods to evaluate the effect of low-carbon city con-
struction and air pollution policy. One is the single difference method. The effect of the
policy was investigated by simply comparing air quality changes before and after the
implementation of the policy, but other factors affecting air quality were not controlled.
The second is the breakpoint regression method. The effect of the policy can be evaluated
by examining whether there is a sudden change in air quality at the implementation point
of the policy, but its conclusion is easily disturbed by the estimation method [37]. The
third is the PSM-DID method. The Propensity Score Model (PSM) was used to select other
non-low-carbon cities with characteristics as similar as possible to low-carbon cities for the
control group. Sample selection bias can be effectively eliminated. Control the common
air quality trend of the experimental group and the control group. Then, the difference
of air quality between the experimental group and the control group before and after the
implementation of the policy was investigated using the DID method. In this paper, the
multi-period PSM-DID method was used to evaluate the effect of low-carbon city pilot
establishment and air quality improvement, and the model was constructed as follows:

Yct = ∂ + βGroupc × Policyt + β1Xct + µc + δt + εct (1)

where Yct represents the air quality index and single pollutant concentration of low-carbon
city C on date T, which are dependent variables. Groupc indicates whether city C is the
experimental group or the control group. If it is the experimental group, the value is 1;
otherwise, the value is 0. Policyt represents the dummy variable of whether the policy is
implemented or not. The value is 0 before the policy is implemented and 1 after the policy
is implemented. The cross term Groupc × Policyt represents the change of air quality in
the experimental group after the implementation of the low-carbon city policy, and its
coefficient β can be used to measure the effect of implementing air pollution prevention
and control policy. Xct is a control variable, indicating other factors affecting air quality,
including weather factors (temperature, humidity, and wind level) and social and economic
factors (industrial smoke dust emission, Gross Domestic Product, the proportion of added
value of secondary industry in GDP, the proportion of added value of tertiary industry in
GDP, industrial wastewater discharged, population). µc represents the city-fixed effect,
representing the unobserved variable that does not vary with time but with cities. δt
represents time-fixed effects, unobserved variables that do not vary with cities but with
time. εct represents the random perturbation term.

The policy implementation time was determined. In order to reduce carbon emission
intensity and alleviate the negative problems caused by excessive consumption of urban
energy, the state has issued a series of policies to promote energy conservation and emission
reduction through promoting the construction of low-carbon city pilot projects. In 2010,
the National Development and Reform Commission (NDRC) issued the Circular on Pilot
Low-carbon Provinces and Low-carbon Cities, launching the first batch of low-carbon pilot
projects in Guangdong, Liaoning, Hubei, Shaanxi, and Yunnan provinces and in Tianjin,
Chongqing, Shenzhen, Xiamen, Hangzhou, Nanchang, Guiyang, and Baoding cities. In
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2013, 29 pilot low-carbon areas were identified in 26 prefecture-level cities, including
Beijing, Shanghai, Hainan province, and Shijiazhuang. In 2017, the list of the third batch of
low-carbon pilots was released. According to the document “Notice On the Third Batch of
National Low-carbon City Pilot Work”, 45 cities (districts and counties) including Wuhai
city of Inner Mongolia Autonomous Region were included in the list. Obviously, the multi-
period DID model is necessary, but the data before 2010 is seriously missing. Therefore,
this paper sets the second batch of 26 low-carbon cities as 1 after January 1, 2013. The third
batch of 35 low-carbon cities will be set to 1 after January 1, 2017.

Experimental and control groups were determined. Overall, more than half of the
cities selected for the low-carbon pilot list are in the eastern region. Through construction
over about 10 years, the development of clean energy, industrial structure adjustment, and
the transformation of high emission and high pollution enterprises’ development path
aimed to reduce greenhouse gas emissions and reduce the content of air pollutants. Since
the list of low-carbon pilot cities involves duplicate regions and county-level cities, and
considering the availability of data, we excluded county-level cities lacking social and
economic data from the complete list of low-carbon pilot cities published in three batches
at different times. The final experimental group included 69 prefecture-level cities such
as Beijing. The initial data of the control group (Figure 1) are 40 non-low-carbon cities in
our database that meet the data integrity requirements. On this basis, we selected PSM for
matching screening. The results obtained after PSM are the final control data of our paper.
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Figure 1. Geographical location map.

2.2.2. Descriptive Statistics

After data processing by the interpolation method in the early stage, the sample size
was 3880, and there was no missing value, indicating that interpolation filling processing
was effective. Data after interpolation filling processing may be overfilled. For example,
if the trend is always downward, negative values may appear, but this situation does not
conform to the reality. Therefore, we substituted 0 for samples less than 0, which is why
the minimum value of multiple indicators is 0 (Table 1).

From the four air indicators of the experimental group before and after the implemen-
tation of the low-carbon city pilot policy (Table 2), basically there was a significant decline.
For example, the AQI dropped from 97.868 to 75.616, a drop of about 22%. PM2.5 dropped
from 59.025 to 38.411, and so on.
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Table 1. Description of variables and data.

Variables Meaning Units Value N Mean Median SD Max Min

AQI Air Quality Index - 3880 93.60 79.20 70.50 481.00 0
PM2.5 Fine particulate matter ug/m3 3880 50.00 40.10 42.70 274.00 0
PM10 Inhalable particles ug/m3 3880 99.60 79.50 84.50 549.00 0
NO2 Carbon monoxide ug/m3 3880 38.00 32.20 31.40 251.00 0
Temp Daily mean temperature ◦C 3880 13.20 13.30 4.53 25.50 0.62
Wind Wind scale - 3880 1.68 1.66 0.57 3.81 0
Humi Daily mean humidity % 3880 59.90 59.40 11.60 106.00 23.40

Gas Industrial smoke dust
emission ton 3880 47,487.00 24,341.00 7840.00 603,059.0 0

GDP Gross Domestic Product a hundred
million 3880 2183.00 1271.00 2585.00 19,500.00 104.00

Ind2
The proportion of added

value of secondary
industry in GDP

% 3880 47.50 46.90 11.10 80.90 17.40

Ind3
The proportion of added
value of tertiary industry

in GDP
% 3880 40.80 39.90 10.20 72.70 15.30

Waste Industrial wastewater
discharged 10,000-ton 3880 5424.00 3632.00 5796.00 45,180.00 0

Popu Population ten thousand 3880 470.00 336.00 494.00 3392.00 44.00

Table 2. Changes in policy implementation.

Variables Before Implementation After Implementation

AQI 97.868 75.616
PM2.5 59.024 38.411
PM10 116.564 76.915
NO2 49.937 30.240

3. Results
3.1. PSM Model Results

The main purpose of PSM treatment is to reduce the deviation between the experimen-
tal group and the control group, which is reflected in the differences of control variables
and related factors in different cities in our study. When analyzing the impact of policies,
the characteristics of individuals—that is, cities themselves—also need to be considered. If
there are large differences among individuals, the different results after the implementation
of policies are more likely to be caused by differences between individuals rather than the
impact of policies. To match suitable samples more frequently, we adopted one-to-three
matching, put back sampling, and used Logit as the calculation model of PSM. The depen-
dent variable was AQI, and the control variables were Temp, Humi, GDP, Ind3, Water, and
Popu. Not all control variables were used because the deviation of some control variables
(such as Waste) was small, but as a covariable of PSM, the deviation would increase. More
strict matching methods, such as one-to-one matching and no-put sampling, were not
adopted because they would lead to too few available samples and too large sample loss,
which would be detrimental to subsequent analysis. The results of PSM were as follows
(Table 3).

First, we observed the results of the Logit model used to calculate PSM. The p values
representing the significance of the control variables we selected were all far less than 0.01,
almost all close to 0, indicating that they were extremely significant and that the influence
of control variables on AQI was highly obvious. In terms of the effect of specific indicators,
the deviations have been reduced to a certain extent, among which the deviations of the
Humi and Temp variables have been reduced by 91.1% and 89.2%, respectively, while the
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deviations of other variables were about 70%. This shows that PSM treatment achieved our
expected effect.

Table 3. PSM model results.

Variables
Unmatched Mean Reduce (%) t-Test

Matched Treated Control Bias (%) |Bias| T p > t

Temp
U 16.445 11.165 117.600 67.570 0.000
M 15.533 14.963 12.700 89.200 7.800 0.000

Humi
U 68.181 58.075 85.600 0.01
M 66.180 65.281 7.600 91.100 3.730 0.000

GDP
U 4891.00 1838.100 68.000 34.970 0.000
M 2799.100 3622.500 −18.300 73.000 −14.100 0.000

Ind3
U 46.245 41.541 43.500 24.480 0.000
M 43.258 42.128 10.500 76.000 6.290 0.000

Water
U 9346.500 3949.900 67.300 34.840 0.000
M 5964.100 7353.60 −17.300 74.300 −13.480 0.000

Popu
U 539.100 393.360 37.900 20.260 0.000
M 498.760 528.620 −7.800 79.500 −4.300 0.000

3.2. DID Model Baseline Analysis

In the baseline analysis, we made two sets of DID models, and each set contained four
regression models with different variables. The first set of models was a model with only
control variables. Models 1–4 were regression models constructed by using AQI, PM2.5,
PM10, and NO2 as dependent variables respectively. On the basis of the first set, the second
set of models is based on the addition of the independent variable DID. From the regression
results, Temp has a significant positive effect in all four models, indicating that the higher
the temperature, the greater the air index; that is, the worse the air quality. Humi has a
significant negative impact on the air index; that is, the lower the humidity, the higher the
air index, and the worse the air quality. Wind has a significant positive impact on the first
three air indicators (Table 4); that is, the larger the value, the worse the air quality. However,
it has no significant effect on NO2. Gas represents the discharge of industrial waste gas, and
Waste represents the discharge of industrial wastewater. The two have similar meanings
and functions, so they are analyzed together. Generally speaking, both emissions will cause
the decline of air quality, so both have a significant positive impact. Just because the unit
problem coefficient is small, it does not mean that its effect is small. GDP and Popu are
both economic and social indicators, and they have a direct impact on the economy, so they
are analyzed together. The effect of GDP is obvious. It has a significant negative impact;
that is, the higher the GDP level, the lower the air index, and the better the air quality.
However, the impact of population on air quality is not significant, and only in Model 4
does it have a significant negative impact on NO2. Ind2 and Ind3 represent the proportions
of secondary and tertiary industries. Although they have similar definitions and functions,
their impacts on air quality are quite different. The development of secondary industry
has a significant positive effect on the four models; that is, the higher the proportion of
secondary industry, the greater the air index and the worse the air quality. However, the
role of tertiary industry is not significant, and there is no significant influence on the four
models, indicating that the influence of secondary industry is significantly greater than that
of tertiary industry. From the model fitting effect, the R2 of each model is basically about
0.2, which is within the normal range. Except for model 4, the R2 of the other models is
above 0.2. The R2 of the second set of models is slightly higher than that of the first set,
indicating that the DID variable improves the model fitting effect, but by comparison, the
improvement is not significant.
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Table 4. Variable regression results table.

Model 1 Model 2 Model 3 Model 4

Variables AQI PM2.5 PM10 NO2

Temp 8.362 *** 4.325 *** 8.392 *** 3.091 ***
(30.31) (25.87) (25.25) (23.22)

Humi
−1.079 *** −0.302 *** −0.766 *** −0.432 ***
(−10.56) (−4.87) (−6.22) (−8.75)

Wind
14.293 *** 3.288 *** 7.019 *** −0.317

(7.35) (2.79) (3.00) (−0.34)

Gas
0.001 *** 0.001 *** 0.001 *** 0.001 ***

(9.24) (11.72) (11.63) (8.23)

GDP
−0.006 *** −0.004 *** −0.008 *** −0.001 **

(−7.71) (−8.30) (−8.34) (−1.97)

Ind2
0.942 *** 0.651 *** 1.235 *** 0.325 ***

(6.07) (6.92) (6.60) (4.33)

Ind3
0.016 0.055 0.016 −0.017
(0.09) (0.53) (0.08) (−0.21)

Water
0.003 *** 0.001 *** 0.002 *** 0.001 ***

(8.28) (4.75) (5.32) (3.00)

Popu −0.002 0.002 0.002 −0.004 *
(−0.41) (0.61) (0.36) (−1.68)

Constant
63.437 *** 31.920 *** 76.093 *** 39.393 ***

(3.66) (3.04) (3.64) (4.71)
Observations 3880 3880 3880 3880

R2 0.276 0.226 0.221 0.181
Adj-R2 0.274 0.224 0.219 0.179

F 163.7 125.4 121.8 94.99
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

In Table 5, we can see that the DID variable has a significant negative impact on the
four dependent variables, and the negative indicates a downward trend; that is, air quality
is improved. Model 3 has the largest coefficient of −7.170, which means it has the greatest
influence on the PM10 index. But for other indexes, the difference of coefficients is not
obvious. On the whole, through the role of the DID variable and the comparison with the
first set of models with only control variables, it can be seen that the influence of the policy
is highly effective. However, the degree of impact of the policy is still slightly less than
that of the environmental and socioeconomic conditions of the city. Therefore, policies
must be based on the city’s own conditions, and it is impossible to solve all problems only
through policies.

3.3. Dynamic Effect of Multistage Low-Carbon City Construction

The pilot construction of low-carbon cities was divided into three stages, which are
2010, 2013, and 2017. However, owing to the small number of cities involved in the first
batch, the policy implementation variable Policy1 is set in this paper for the first stage,
and the policy implementation interval is from 2013–2017 [40]. The policy implementation
variable Policy2 is set for the second stage (Policy1 represents the second batch of samples,
the 2013 sample, while Policy2 is the third batch of samples, the 2017 sample), and the
policy implementation interval is from 2017–2020. As can be seen from Table 6, Policy1
has an insignificant positive effect in all four models, so it can be concluded that the
implementation effect of the second batch of policies is worse than that of the third batch.
The dummy variable Policy2 of the third batch of policies has a significant negative effect on
all dependent variables, with not only a large coefficient but also to an extremely significant
degree. The results show that Policy2 is much more effective and powerful. This indicates
that the third batch of low-carbon city construction policies had the most significant effect;
that is, the expansion of policy scope was conducive to better and faster collective action.
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Table 5. DID model results.

Model 1 Model 2 Model 3 Model 4

VARIABLES AQI PM2.5 PM10 NO2
DID −4.750 * −3.734 ** −7.170 ** −2.465 **

(−1.87) (−2.36) (−2.28) (−2.06)
Temp 8.032 *** 4.281 *** 8.308 *** 2.893 ***

(29.83) (25.47) (24.86) (22.70)
Humi −1.037 *** −0.301 *** −0.763 *** −0.400 ***

(−10.46) (−4.85) (−6.20) (−8.51)
Wind 14.487 *** 3.656 *** 7.725 *** −0.028

(7.62) (3.08) (3.27) (−0.03)
Gas 0.001 *** 0.001 *** 0.001 *** 0.001 ***

(8.92) (11.44) (11.36) (7.84)
GDP −0.006 *** −0.004 *** −0.008 *** −0.001 **

(−7.76) (−8.35) (−8.39) (−2.02)
Ind2 0.876 *** 0.637 *** 1.207 *** 0.283 ***

(5.80) (6.76) (6.44) (3.96)
Ind3 0.090 0.089 0.081 0.032

(0.53) (0.84) (0.38) (0.40)
Water 0.002 *** 0.001 *** 0.002 *** 0.001 ***

(8.27) (4.77) (5.34) (2.94)
Popu −0.002 0.002 0.002 −0.004 *

(−0.45) (0.57) (0.33) (−1.74)
Constant 58.029 *** 30.694 *** 73.740 *** 34.901 ***

(3.44) (2.92) (3.53) (4.38)
Observations 3880 3880 3880 3880

R2 0.274 0.227 0.222 0.178
Adj-R2 0.272 0.225 0.220 0.176

F 146.0 113.6 110.2 83.71
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 6. Dynamic effect results.

Model 1 Model 2 Model 3 Model 4

Variables AQI PM2.5 PM10 NO2
Policy1 0.614 0.867 0.567 0.289

(0.20) (0.45) (0.15) (0.20)
Policy2 −12.989 *** −10.800 *** −19.052 *** −6.696 ***

(3.54) (−4.71) (−4.18) (−3.85)
Temp 8.131 *** 4.366 *** 8.450 *** 2.944 ***

(30.02) (25.84) (25.15) (22.97)
Humi −1.071 *** −0.330 *** −0.812 *** −0.417 ***

(−10.74) (−5.30) (−6.57) (−8.84)
Wind 14.359 *** 3.546 *** 7.540 *** −0.094

(7.55) (2.99) (3.20) (−0.10)
Gas 0.001 *** 0.001 *** 0.001 *** 0.001 ***

(8.93) (11.47) (11.38) (7.85)
GDP −0.006 *** −0.004 *** −0.008 *** −0.001 **

(−7.75) (−8.34) (−8.38) (−2.00)
Ind2 0.877 *** 0.638 *** 1.208 *** 0.284 ***

(5.82) (6.78) (6.46) (3.98)
Ind3 0.120 0.114 0.124 0.047

(0.71) (1.08) (0.59) (0.59)
Water 0.002 *** 0.001 *** 0.002 *** 0.001 ***

(8.12) (4.58) (5.17) (2.79)
Popu −0.002 0.002 0.002 −0.004 *

(−0.42) (0.63) (0.37) (−1.70)
Constant 57.929 *** 30.608 *** 73.595 *** 34.850 ***

(3.44) (2.92) (3.53) (4.38)
Observations 3880 3880 3880 3880

R2 0.276 0.231 0.224 0.180
Adj-R2 0.274 0.228 0.222 0.178

F 133.8 105.4 101.7 77.33
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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4. Robust Test
4.1. Parallel Trend Test

The important premise for the effectiveness of the DID model is to satisfy the parallel
trend hypothesis; that is, if there is no low-carbon city construction policy, the air quality
change trend of pilot cities and other cities should be parallel. To test this point, in this
paper we use the regression method to test the parallel trend [41]. Four time dummy
variables are set: before2, which is 1 in the two months before the implementation of the
policy, or 0 otherwise, and before1, for which the value is 1 one month before the policy is
implemented. Month_before3 and Month_before2 are dummy variables in the parallel trend
test, representing 2 and 3 months before the event, respectively. Otherwise, the value is 0.
It can be seen (Table 7) that dummy variables before2 and before3 are not significant in all
dependent variables, which indicates that there is no obvious and sufficiently significant
trend change in the four air indicators we choose before the event occurs, indicating that
the parallel trend test has been passed.

Table 7. Parallel trend test results.

Model 1 Model 2 Model 3 Model 4

VARIABLES AQI PM2.5 PM10 NO2
Month_before3 11.123 13.427 23.141 5.880

(0.63) (1.23) (1.06) (0.71)
Month_before2 10.502 10.400 18.799 5.118

(0.65) (1.03) (0.93) (0.67)
DID −5.104 ** −4.121 ** −7.853 ** −2.645 **

(−1.99) (−2.57) (−2.47) (−2.18)
Temp 8.034 *** 4.283 *** 8.311 *** 2.894 ***

(29.83) (25.48) (24.87) (22.70)
Humi −1.040 *** −0.305 *** −0.770 *** −0.401 ***

(−10.48) (−4.91) (−6.25) (−8.55)
Wind 14.450 *** 3.616 *** 7.654 *** −0.047

(7.59) (3.04) (3.24) (−0.05)
Gas 0.001 *** 0.001 *** 0.001 *** 0.001 ***

(8.92) (11.45) (11.36) (7.84)
GDP −0.006 *** −0.004 *** −0.008 *** −0.001 **

(−7.76) (−8.35) (−8.39) (−2.02)
Ind2 0.879 *** 0.640 *** 1.213 *** 0.285 ***

(5.82) (6.80) (6.48) (3.99)
Ind3 0.091 0.089 0.081 0.032

(0.54) (0.85) (0.39) (0.40)
Water 0.002 *** 0.001 *** 0.002 *** 0.001 ***

(8.26) (4.76) (5.33) (2.94)
Popu −0.002 0.002 0.002 −0.004 *

(−0.45) (0.58) (0.33) (−1.73)
Constant 58.417 *** 31.123 *** 74.494 *** 35.099 ***

(3.47) (2.96) (3.56) (4.40)
Observations 3880 3880 3880 3880

R2 0.274 0.227 0.222 0.178
Adj-R2 0.272 0.225 0.220 0.176

F 121.7 94.88 92.01 69.82
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

4.2. Placebo Test

We reperformed the regression analysis after advancing the event date by one year to
test the effect of DID2 (DID2 is the interaction term in the placebo test, which can also be
considered as the DID variable for the placebo test.). In the four models (Table 8), DID2
variables had no significant effect and only an insignificant negative effect. This indicates
that the influence of the events selected by us is effective. After the occurrence of the change
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event, the variable of DID is no longer significant, indicating that its effect is directly related
to the occurrence of the event, namely, the policy.

Table 8. Placebo test results.

Model 1 Model 2 Model 3 Model 4

VARIABLES AQI PM2.5 PM10 NO2
DID2 −3.682 −1.275 −4.573 −1.207

(−1.55) (−0.86) (−1.55) (−1.07)
Temp 8.048 *** 4.311 *** 8.342 *** 2.909 ***

(29.92) (25.66) (24.98) (22.85)
Humi −1.027 *** −0.298 *** −0.752 *** −0.397 ***

(−10.33) (−4.80) (−6.09) (−8.43)
Wind 14.381 *** 3.413 *** 7.468 *** −0.152

(7.57) (2.88) (3.17) (−0.17)
Gas 0.001 *** 0.001 *** 0.001 *** 0.001 ***

(8.93) (11.57) (11.41) (7.92)
GDP −0.006 *** −0.004 *** −0.008 *** −0.001 **

(−7.75) (−8.32) (−8.37) (−2.00)
Ind2 0.868 *** 0.642 *** 1.203 *** 0.284 ***

(5.73) (6.79) (6.39) (3.96)
Ind3 0.088 0.069 0.067 0.023

(0.52) (0.66) (0.32) (0.29)
Water 0.002 *** 0.001 *** 0.002 *** 0.001 ***

(8.22) (4.73) (5.28) (2.91)
Popu −0.002 0.002 0.002 −0.004 *

(−0.45) (0.59) (0.33) (−1.72)
Constant 57.136 *** 31.071 *** 73.048 *** 34.906 ***

(3.38) (2.94) (3.48) (4.36)
Observations 3880 3880 3880 3880

R2 0.274 0.226 0.221 0.177
Adj-R2 0.272 0.224 0.219 0.175

F 145.8 113.0 109.9 83.34
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

4.3. Robustness Test

In the robustness test, two variables that did not pass the parallel trend or placebo test,
O3 and NO2, were used as dependent variables to replace the original dependent variables,
and then regression was performed. It is worth noting (Table 9) that O3 is positive; that
is, the larger the value, the better. So was our result. NO2 is still a significant negative
influence, indicating that the influence of policy is significant, so it was consistent with the
main analysis.

4.4. Urban Heterogeneity Test

In this part, the cities were grouped according to their location in the west, middle,
and east, and then regression was conducted respectively. Owing to the large number of
dependent variables, it was impossible to perform grouping regression for all dependent
variables, so only the first two dependent variables were analyzed for heterogeneity. As
can be seen from Table 10, urban agglomerations in different regions have different impacts
on urban AQI and PM2.5 concentrations within each sample range. Compared with the
eastern and central regions, low-carbon city construction significantly reduced the AQI and
PM2.5 of urban agglomeration in western China.
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Table 9. Robustness test results.

Model 1 Model 2

VARIABLES O3 SO2
DID 22.415 *** −29.082 ***

(14.11) (−10.71)
Temp2 −0.004 3.356 ***

(−0.02) (11.63)
Humi2 −0.083 −0.883 ***

(−1.33) (−8.31)
Wind2 −2.659 ** −6.737 ***

(−2.23) (−3.30)
Gas2 −0.001 *** 0.001 ***

(−2.76) (16.53)
GDP2 0.004 *** −0.008 ***

(8.09) (−10.32)
Ind2 0.110 0.724 ***

(1.17) (4.48)
Ind3 0.710 *** 0.986 ***

(6.71) (5.45)
Water2 −0.002 *** 0.001 ***

(−11.62) (4.53)
Popu2 0.007 ** 0.006

(2.38) (1.33)
Constant 44.245 *** 3.484

(4.19) (0.19)
Observations 3880 3880

R2 0.205 0.228
Adj-R2 0.203 0.226

F 99.73 114.6
t-statistics in parentheses. *** p < 0.01, ** p < 0.05.

Table 10. Urban heterogeneity test results.

West Area Middle
Region

Eastern
Region West Area Middle

Region
Eastern
Region

VARIABLES AQI AQI AQI PM2.5 PM2.5 PM2.5
DID −24.966 *** −4.847 34.867 *** −23.032 *** 2.685 22.268 ***

(−8.05) (−0.92) (4.82) (−10.55) (1.03) (4.90)
Temp 6.983 *** 8.664 *** 13.735 *** 5.086 *** 3.630 *** 8.802 ***

(16.26) (20.33) (15.92) (16.83) (17.21) (16.25)
Humi 0.246 −1.004 *** −1.763 *** 0.796 *** −0.108 −1.093 ***

(1.61) (−6.85) (−5.80) (7.39) (−1.49) (−5.73)
Wind 30.386 *** 38.193 *** 13.802 *** 19.942 *** 16.227 *** 0.110

(7.98) (13.07) (3.23) (7.44) (11.22) (0.04)
Gas −0.001 * −0.001 0.001 *** 0.001 0.001 *** 0.001 ***

(−1.77) (−0.78) (8.67) (0.53) (4.01) (6.81)
GDP −0.013 *** 0.006 *** −0.018 *** −0.007 *** 0.004 *** −0.010 ***

(−9.42) (5.29) (−6.89) (−6.85) (6.40) (−5.83)
Ind2 0.206 −1.297 *** 2.744 ** −0.196 −0.630 *** 1.117 *

(0.80) (−6.11) (2.55) (−1.09) (−6.00) (1.65)
Ind3 1.447 *** −0.927 *** 2.039 ** 0.722 *** −0.410 *** 0.481

(5.46) (−3.87) (2.08) (3.87) (−3.46) (0.78)
Water 0.002 *** 0.001 *** 0.001 0.001 ** −0.001 *** 0.001

(3.72) (2.76) (1.58) (2.57) (−3.11) (1.47)
Popu 0.024 ** −0.097 *** 0.097 *** −0.002 −0.043 *** 0.051 ***

(2.50) (−10.63) (11.26) (−0.34) (−9.56) (9.55)
Constant −109.279 *** 85.497 *** −245.260 *** −90.484 *** 27.447 ** −86.838 *

(−3.57) (3.94) (−3.03) (−4.20) (2.56) (−1.71)
Observations 1403 1758 719 1403 1758 719

R2 0.285 0.252 0.645 0.324 0.184 0.669
Adj-R2 0.280 0.248 0.640 0.319 0.180 0.665

F 55.50 58.99 128.7 66.68 39.47 143.3
t-statistics in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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5. Conclusions

In this study we took the low-carbon pilot city construction policy as a quasi-natural
experiment, aiming to explore the net effect, influencing factors, and policy dynamics of
three batches of low-carbon pilot city construction on air quality since 2010 and to find
possible improvement measures. The results show that, first, overall, low-carbon city
construction can improve the air quality of the city. From the perspective of the dynamic
effect of policies, low-carbon city construction in 2017 (the third batch) had the most
significant effect. Second, from the perspective of meteorological factors, the city’s average
temperature and wind level will increase the concentration of pollutant particles, leading
to the deterioration of air quality; humidity can significantly reduce AQI and improve air
quality. Among these, it is worth noting that the wind direction in the city is not significant
to NO2. This shows that, in reality, for the control of air pollution in thermal power and iron
and steel industries, which mainly discharge NO2 gas, we should rely not only on natural
physical conditions but also on advanced acquired technological means to forcibly control
pollution. Third, from the perspective of social and economic factors, GDP negatively affects
the air index, indicating that low-carbon cities will improve air quality during economic
development. This is because, with the promotion of a low-carbon urban policy, the original
rapid growth of the extensive economic development mode at the cost of destroying the
ecological environment has begun to change. Through a series of measures, such as
encouraging the use of low-carbon and environment-friendly development technologies,
and supporting the development of low-carbon and environment-friendly industries, the
economic growth mode linking GDP with high pollution has gradually disappeared, and
the development path of harmonious coexistence between economy and environment
has been replaced. Fourth, the proportion of the output value of secondary industry in
GDP worsens the air quality. More notably, we find that the impact of secondary industry
on air quality is significantly greater than that of tertiary industry. It indicates that low-
carbon city policy is effective in improving air quality in the test area through industrial
structure upgrading. Fifth, the construction of low-carbon urban agglomerations has
different impacts on air quality in different regions, with the greatest impacts in the western
region. This is because most coal and steel manufacturing enterprises with high energy
consumption and emissions are distributed in the western region, which requires more
accurate identification of urban characteristics and basic conditions of different regions in
the policy.

Therefore, according to the research conclusions of this paper, we put forward the
following suggestions for the construction of low-carbon cities in China to help solve air
pollution. First, tests have proved that the construction of low-carbon cities is beneficial for
reducing the level of air pollution, and China should continue to adhere to the construction
of low-carbon cities; however, the reduction of air pollutants is still hindered by natural
factors such as wind speed and temperature. Therefore, it is necessary to strengthen the
development concept of ecological and economic integration at the initial stage of urban
agglomeration construction, according to the urban characteristics and actual conditions of
different regions, formulating plans conducive to long-term development to avoid falling
into the old trap of “pollution first, then treatment,” so as to realize ecological industrial-
ization and industrial ecology, balancing the dual needs of economic development and
environmental protection. Second, the upgrading of capital and industrial structure are
key elements for the transformation and development of low-carbon cities. The Chinese
government needs to continue increasing financial subsidies, participating in and guiding
enterprises to innovate green technologies and use green energy. In particular, according
to specific pollutants, it is necessary to accurately develop low-carbon construction tech-
nologies and quickly change to the development track of improving energy efficiency and
the proportion of clean energy and reducing pollutant emissions. Moreover, China should
speed up the elimination of industries that significantly waste resources and pollute the
environment in secondary industry and promote the transformation and upgrading of the
industrial structure, promoting the transformation of urban agglomeration development
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to an intensive economic growth model. Third, from the third round of the pilot effect,
it can be confirmed that the establishment of joint prevention and control mechanisms
for air pollution in urban agglomerations is an effective channel to control air pollution.
Thus, a coordination mechanism across urban agglomerations and administrative regions
should be established to promote the emergency linkage among urban agglomerations
and departments within urban agglomerations, and a strict supervision and accountability
mechanism should be established to reduce the free-riding behavior of members in joint
prevention and control. In view of this, because this issue is extremely important in reality,
being related to the sustainable development of society and its people, we will continue to
track the corresponding development and changes in our research.
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