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Abstract: Water vapor (WV) is a vital basis of water and energy cycles and varies with space and
time. When researching the variations of moisture in the atmosphere, it is intuitive to think about the
total WV of the atmosphere column, precipitable water (PW). It is an element that needs high-altitude
observations. A surface quantity, surface WV pressure (SVP), has a close relationship to PW because of
the internal physical linkage between them. The stability of their linkage at climatic scales is verified
using monthly mean data from 1979 to 2021, while studies before mainly focused on daily and annual
cycles in local areas. The consistency of their variations is checked with three reanalysis datasets from
three angles, the interannual variations, the long-term trends, and the empirical orthogonal function
(EOF) modes. Results show that the interannual correlation of SVP and PW can reach a level that is
quite high and are significant in most areas, and the weak correlation mainly exists over low-latitude
oceans. The long-term trends, as well as the first EOF modes of these two quantities, also show that
their variations are consistent, with spatial correlation coefficients between the long-term trends of
two variables that are generally over 0.6, but specific differences appearing in some regions including
the Tropical Indian Ocean and Middle Africa. With the correspondence of PW and SVP, the variations
of total column WV can be indicated by surface elements. The correspondence is also meaningful
for the analysis of the co-variation in total column vapor and temperature. For example, we could
research the relations between SVP and air temperature, and they can reflect the co-variance of total
column vapor and near-surface air temperature, which can avoid analyzing the relation between
column-integrated moisture content and surface air temperature directly.

Keywords: precipitable water; surface water vapor pressure; consistency; interannual and long-term trend

1. Introduction

As a component in the global water and energy cycles, atmospheric WV is also
an important part of climate variability and change [1–3]. WV is the material basis of
precipitation, and the latent heat released by precipitation is a part of the energy cycle and
can drive atmospheric circulation anomalies [4,5]. The circulation may, in turn, transport
WV, and change the spatiotemporal distribution of the WV [6]. As the most abundant
greenhouse gas in the atmosphere, WV also affects the atmospheric radiation processes [7].

PW, a conventional quantity of humidity, is the column-integrated WV amount in
the atmosphere [8]. In a regional air column, the WV evaporated from the surface, along
with the WV converged from the surroundings, is used to increase the PW. When the air
saturates, at least at certain levels, precipitation may be produced. In the past, acquirement
of PW data nearly always relied on radiosonde observations [9,10]. Because of the high costs
of radiosonde and the sparsity of observation stations, studies about empirical equations
between PW and surface elements appeared. A surface quantity, SVP, has been stressed
that has a close statistical linkage to PW [11–14]. This linkage can also be explained from a
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physical aspect. In essence, SVP can be regarded as the force exerted by the total moisture
in the air column [15], in analogy with the surface pressure to the total mass of the air
column. From another point of view, WV content is maximal at the near-surface level
and decreases with altitude because of the existence of gravity. Hence, the SVP can well
represent the column WV content [16,17]. Due to the lack of upper-air detections, the
empirical relations between PW and SVP were utilized to estimate the PW with surface
observations in local areas, especially during the early stage of this methodology when there
were just a few sounding observations [18–21]. Some advanced methods can currently be
used to obtain PW data, such as ground-based radar observations, satellite retrievals [22,23],
global position system (GPS) observations [24,25], model outputs, and the reanalysis [26,27].
Because of the high spatial and temporal resolution of remote sensing products, which
could be 1 h and 30 km, they can help to fill the gaps between radiosonde locations and
launch times. However, the retrieval effects except for microwave-based products are often
not very useful in cloudy areas [22,23]. The ground-based GPS data have a higher temporal
resolution, which is about 5 min [25], but the network is not so dense, and the duration
is relatively short. Except for a few elements such as precipitation, the reanalysis datasets
universally have decent accuracy in broad areas, with the support of the accumulations of
vast amounts of historical observations, advanced modeling, and data assimilation systems.
They have been applied in studies on the hydrological fields and their effects have been
verified [8].

Because of the appearance of these measuring methods, perhaps the demands of
calculating PW with surface elements are not as imperious as earlier. However, analyzing
the relationship between them is still meaningful. It is easy to understand that over areas
with few instructions, such as oceans, the SVP can be calculated with PW retrieved by
satellite remote sensing.

Numerous studies have proven the quasi-linear relation between SVP and PW from
the statistical aspect, and there are empirical equations in local areas [19,21,28,29]. Due to
the appearance of progressive observation methods such as satellite remote sensing, the
PW data can be used to estimate the values of SVP in reverse in the areas where it is hard to
establish observation stations [20]. Previous studies are mainly concentrated on daily and
annual cycles in local areas when analyzing the relationship between PW and SVP. Their
relationship at interannual scales was researched in a few studies, but most of them still
focused on the linkage in local areas. In daily or seasonal variations, the radiation processes
vary dramatically, so following the temperature, PW, and SVP both have obvious variations,
and it may be easy to vary consistently for them. When analyzing the interannual or long-
term variations, the amplitudes may be much smaller. The questions researched here are
whether the consistency is reliable at climatical scales, and where the consistency is not
good. Hence, the consistency of interannual and long-term variations of monthly mean PW
and SVP are examined globally.

Under global warming, atmospheric moisture is often linked to tropospheric tem-
perature or surface air temperature through Clausius–Clapeyron Equation [30–34]. Many
researchers studied the interannual and long-term variations of WV as well as its rela-
tionship with temperature, using PW or SVP [3,35–38]. Globally, the WV follows the
temperature closely in line with the Clausius–Clapeyron Equation. However, it is more
exhausted when researching the variation in local areas [39]. The PW in some areas has de-
creasing trends, such as in Australia from 1957–2016 [37]. As for the interannual variation in
WV, Hao and Lu [39] studied the response of SVP to surface air temperature and found that
the response of SVP to temperature is in close line with the Clausius–Clapeyron Equation at
high latitudes. Shi et al. [40] studied the relationship between upper troposphere humidity
and PW. Some studies also researched the linkage between PW and surface air tempera-
ture and re-established the PW during periods that lack high-altitude observations [41,42].
Wang et al. [8] found that there is a close linkage between the first EOF mode of PW and
the Niño-3.4 index. As introduced before, the surface quantity which can directly reflect
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the PW is SVP. Because of the physical relation between SVP and surface air temperature,
there is also a tight linkage between PW and the latter.

The long-term and interannual variations of total WV in the atmosphere can be
reflected by SVP if the variations of the two quantities are consistent. When studying
the response of WV to temperature, it is more suitable to use SVP than PW because the
quantities that are all at the surface level can be used. It can avoid the problems brought
by linking the column-integrated moisture with surface-level temperature or integrating
the intensive quantities. With the linkage between PW and SVP, the response of SVP to the
temperature studied in [39] can be extended to that of PW to a certain degree, while the
response of SVP to surface temperature is studied in another part of our work.

Consulting the internal physical relation between PW and SVP, their linkage may be
stable when the atmosphere is in hydrostatic equilibrium because the vertical movements
can break the direct relationship between mass and pressure of the fluid. In the areas
where the convection is active, the monthly averages of vertical motions are strong and
precipitation amounts are large. The climatic value of PW and SVP are both larger than in
other areas, but the linear correlation between monthly mean PW and SVP are probably
weaker. Hence, in some areas, it could be hard to establish an efficient empirical equation
between PW and SVP, and these areas could be found in the study.

The linkage between PW and SVP is analyzed from three angles concurrently. The
interannual correlation and long-term trends of them are examined globally. Different from
the daily or annual cycles, the interannual and long-term variations of these two physical
variables may be much smaller. Hence, whether the linkage between them is still stable
and where their linkage is not so good when analyzing their interannual and long-term
variations are the questions that we tried to answer. To further verify the consistency of their
variations, the first EOF modes of PW and SVP are shown and compared as well. To further
verify the credibility of the results, three reanalysis datasets from different institutions are
used. Due achieve this, we may mainly focus on the common points among the three
datasets in the analysis.

The datasets together with the methods adopted are presented in Section 2. The
consistency of interannual variations and long-term trends of PW and SVP are shown in
Sections 3.1 and 3.2. The EOF leading modes and time series are compared in Section 3.3.
Section 4 shows the summary and discussion.

2. Data and Method
2.1. Data

Except for a few elements such as precipitation, the reanalysis datasets universally
own decent accuracy in broad areas, with the support of the accumulations of vast amounts
of historical observations, advanced modeling, and data assimilation systems. They have
been applied in studies on the hydrological fields and their effects have been verified [8].
With the aim of the global scale study and ensuring the credibility of the results, three
reanalysis datasets from different institutions are used, the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5), Japanese 55-year Reanalysis
(JRA55), and the National Centers for Environmental Prediction and the Department of
Energy (NCEP-DOE) Reanalysis-2 (NCEP2).

The ERA5 [43], provided by the ECMWF, is the fifth-generation ECMWF atmospheric
reanalysis of the global climate covering the period from January 1950 to the present. ERA5
is produced by the Copernicus Climate Change Service (C3S) at ECMWF. The data cover
the Earth on a 30 km grid and resolve the atmosphere using 137 levels from the surface up
to a height of 80 km. The NCEP2 project performs data assimilation using past data from
1979 through the previous year [44].

Spanning from 1958 to present, JRA-55 is the longest third-generation reanalysis that
uses the full observing system. Compared to the previous generation Japanese Meteoro-
logical Agency (JMA) reanalysis (JRA-25), JRA-55 uses a more advanced data assimilation
scheme, increased model resolution, a new variational bias correction for satellite data,
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and several additional observational data sources [45]. Horizontal resolutions of the three
datasets are all 2.5◦ × 2.5◦ in latitude and longitude.

The quantities used include the monthly mean PW, the 2 m temperature, and the
2 m dewpoint temperature from 1979 to 2021, which are directly downloaded from the
servers. The SVP and saturated SVP are calculated with the modified Tetens formula [46],
then the relative humidity can be obtained. As for the quantities at pressure levels, the
moisture-related quantity directly given by ERA5 and JRA55 is specific humidity and that
given by NCEP2 is relative humidity. Utilizing one of them with temperature which can be
downloaded from the server, the other one can be figured out. The specific processes are
illustrated below. With the temperature data, the saturated WV pressure can be calculated
firstly as mentioned before. Then, with the relative humidity, the WV pressure can be
archived. Finally, the specific humidity q can be obtained with the approximate empirical
equation q = ε(e/p), where e is WV pressure and p is the pressure. The ratio of dry and
wet gas constant ε is taken as 0.622 here. To analyze the profiles, the vertical velocity at
pressure levels is also used and directly downloaded. There are 12 isobaric levels from
1000 hPa to 100 hPa in all three datasets used in the paper. The specific levels can be seen
in the plots that show vertical profiles. Because the surface levels of the chosen land areas
are general over 1000 hPa, the lowest level shown in land areas is 925 hPa. To intuitively
show the variables downloaded and calculated, they are listed in Table 1.

Table 1. The variables directly downloaded from the servers. The variables that need calculation are
in brackets, and the variable in each pair of brackets is calculated with the corresponding variable out
of the brackets.

Datasets Single Level Variables Pressure Level Variables

ERA5 2 m temperature (saturated SVP)
2 m dewpoint temperature (SVP)

precipitable water

vertical velocity
temperature (saturated SVP)

specific humidity
JRA55

NCEP2 relative humidity (specific humidity)

2.2. Method
2.2.1. Mann–Kendall Test and Sen’s Slope Estimator

There are some ways to estimate the trends of hydrological and meteorological el-
ements, including parametric and non-parametric methods [47]. Analysis of long-term
trends includes the confirmation of increasing or decreasing slopes and significance test-
ing [48]. Mann–Kendall test was formulated by Mann [49] as a non-parametric test for
trend detection, and the test statistic distribution was given by Kendall [50] for testing
non-linear trends and turning points. It is an excellent non-parametric method and is
preferred by many researchers [51]. It is used for trend analysis, as it eliminates the effect
of serial dependence on auto-correlated data which modifies the variance of datasets [52].
The MK test is used to test the significance of long-term trends of PW and SVP.

Sen’s slope estimation, also a non-parametric method, gives the magnitude of the
trend [53]. Another advantage of Sen’s slope is that it is not affected by outliers and single
data errors in the dataset [54].

The slopes of the long-term trends are calculated with the Theil–Sen slope estimator,
and it is also a non-parametric method [53]. In this model, the slope values reflect the
increasing and decreasing magnitudes of variables. The long-term trends of PW and SVP
at each grid are calculated with this method to examine their consistency.

2.2.2. Empirical Orthogonal Function (EOF) Analysis

In climate research, EOF analysis is often used to study possible spatial modes of
variability and how they change with time. In statistics, EOF analysis is known as Principal
Component Analysis (PCA) [55]. As such, EOF analysis is sometimes classified as a
multivariate statistical technique. A field is partitioned into mathematically orthogonal
modes which can be called EOF spatial modes, or patterns. Typically, the EOFs are found by
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computing the eigenvalues and eigenvectors of a spatially weighted anomaly co-variance
matrix of a field. The derived eigenvectors just vary with spatial modes. Each of the
eigenvectors is an EOF pattern. The derived eigenvalues provide a measure of the percent
variance explained by each mode. The time series (principal components) of each spatial
pattern are determined by projecting the derived eigenvectors onto the spatially weighted
anomalies. This will result in the amplitude of each mode over the period of record. Each
pair of spatial patterns and time series can represent the spatial-temporal varying features
of the variable.

By construction, the EOF patterns and the principal components are independent.
Two factors inhibit physical interpretation of EOFs. One is the orthogonality constraint and
the other is that the derived patterns may be domain-dependent. Physical systems are not
necessarily orthogonal and if the patterns depend on the region used, they may not exist if
the domain changes. Still, even with these shortcomings, classical EOF analysis has proved
to be useful.

To make sure the EOF modes of PW and SVP are distinguished from the noise signal,
the Monte Carlo technique [56] is used to test the significance of the first three modes.

2.2.3. The Theoretical Linkage between PW and SVP

PW is the total WV amount in the atmosphere column and can be expressed as
the integration of the WV from the surface to the tropopause. Under the condition of
hydrostatic equilibrium, the equation can be transferred to the isobaric coordinate form.
The σ-coordinate σ ≡ p/ps is employed and specific humidity is expressed with WV
pressure as q = ε(e/p). As shown by Lu [17], the PW can be written as

W =
ε

g

∫ 1

0
ed ln σ (1)

In equations, the PW is denoted as W. The vapor pressure e normally reaches its
maximum at surface level, then decreases with the altitude [57]. Vapor pressure can be
seen as a function of σ approximately and expressed as e = Eσm. In the formula, SVP is
denoted as E, and m is a constant in a specific area. Then, the relationship between PW and
SVP can be expressed as W = k·E, and k is expressed as k = ε/(gm) in the formula, where g
is gravitational acceleration and m is the constant described before. As a result, W has a
close linkage with surface vapor pressure E.

From another point of view, SVP is produced by the gravity of total WV in the air
column and their linkage is the same as the relationship between surface pressure and the
total quality of the column air mass. Hence, if the atmosphere is in hydrostatic equilibrium,
there will be a linear linkage between PW and SVP.

3. Results
3.1. The Consistency of Interannual Variations

Figure 1 shows the maps of interannual correlation coefficients of monthly mean PW
and SVP calculated with the ERA5 dataset. (The long-term trends are removed before
calculating the correlation coefficient. Results obtained with JRA55 and NCEP2 are shown
in Figures S1 and S2 in the Supplementary Materials). Three datasets all show that the
coefficients in most areas are positive and can pass the 0.05 significance level, except in
July. Just a few areas cannot pass the significance test and they are almost all in low-
latitude regions. As illustrated before, the stratification of the tropical atmosphere is less
stable, and the more frequent convection there probably breaks the linear relationship
between PW and SVP. The linear correlation is especially strong in some areas, such as the
Antarctic, Australia, Eurasian Continents, and the Southern Ocean. The distributions of
strong correlation areas (SCAs) are similar among the three datasets.



Atmosphere 2022, 13, 1350 6 of 20

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 19 
 

 

and the more frequent convection there probably breaks the linear relationship between 
PW and SVP. The linear correlation is especially strong in some areas, such as the Antarc-
tic, Australia, Eurasian Continents, and the Southern Ocean. The distributions of strong 
correlation areas (SCAs) are similar among the three datasets. 

 
Figure 1. Maps of correlation coefficients of PW and SVP (the dataset used is ERA5). The correlation 
coefficients in shaded areas cannot pass the 0.05 significance level. Blue and red squares are strong 
and weak correlation areas, respectively, selected to show the vertical profiles. 

Comparing the results calculated with different datasets, the weak correlation areas 
(WCAs) accordant among three datasets in all four months include the Maritime Conti-
nent, coasts of the Tropical Atlantic, the north coast of the Indian Ocean, and the east coast 
of the Southeast Pacific. There also exist differences among different datasets. Overall, 
insignificant correlation areas of NCEP2 and JRA55 are larger than those of ERA5. In 
JRA55, there are more WCAs in the Arctic in July. In NCEP2, there are more WCAs in the 
North Pacific in July and east Equatorial Pacific in July and October. 

As for temporal variations, insignificant correlation areas in July are much larger than 
those in other months. The correlation coefficients at high latitudes in January, April, and 
October are large and can reach the 0.05 significance level. Differently, there exist some 
WCAs at mid-to-high latitudes in the Northern Hemisphere in July. It is plausible that this 
pattern is also relevant to stronger convection in these areas in Boreal Summer. Syntheti-
cally, the distribution of weak correlation areas, to some degree, is similar to the position 
and shape of the Inter Tropical Convergence Zone (ITCZ), with relatively larger areas in 
the West Pacific and the Indian Ocean and integrally more northward locations. The nar-
row belt distribution over other tropical oceans of the weak correlations is also slightly 
similar to the features of ITCZ. 

When analyzing the monthly mean values, the areas with stronger convection could 
have stronger upward motion and a larger amount of precipitation. As mentioned, the 
linear relation between PW and SVP will be strong in hydrostatic equilibrium. In areas 
with strong and frequent convection, the interannual variation in vertical motion may also 
be stronger compared to the stable areas. The fluctuation of vertical movements will break 
the physical relation between quality and pressure. Hence, the weaker correlation areas 
in Figure 1 over oceans are probably associated with strong convection, and this is simply 
checked in the next section. 

Figure 1. Maps of correlation coefficients of PW and SVP (the dataset used is ERA5). The correlation
coefficients in shaded areas cannot pass the 0.05 significance level. Blue and red squares are strong
and weak correlation areas, respectively, selected to show the vertical profiles.

Comparing the results calculated with different datasets, the weak correlation areas
(WCAs) accordant among three datasets in all four months include the Maritime Continent,
coasts of the Tropical Atlantic, the north coast of the Indian Ocean, and the east coast
of the Southeast Pacific. There also exist differences among different datasets. Overall,
insignificant correlation areas of NCEP2 and JRA55 are larger than those of ERA5. In JRA55,
there are more WCAs in the Arctic in July. In NCEP2, there are more WCAs in the North
Pacific in July and east Equatorial Pacific in July and October.

As for temporal variations, insignificant correlation areas in July are much larger
than those in other months. The correlation coefficients at high latitudes in January, April,
and October are large and can reach the 0.05 significance level. Differently, there exist
some WCAs at mid-to-high latitudes in the Northern Hemisphere in July. It is plausible
that this pattern is also relevant to stronger convection in these areas in Boreal Summer.
Synthetically, the distribution of weak correlation areas, to some degree, is similar to the
position and shape of the Inter Tropical Convergence Zone (ITCZ), with relatively larger
areas in the West Pacific and the Indian Ocean and integrally more northward locations.
The narrow belt distribution over other tropical oceans of the weak correlations is also
slightly similar to the features of ITCZ.

When analyzing the monthly mean values, the areas with stronger convection could
have stronger upward motion and a larger amount of precipitation. As mentioned, the
linear relation between PW and SVP will be strong in hydrostatic equilibrium. In areas
with strong and frequent convection, the interannual variation in vertical motion may also
be stronger compared to the stable areas. The fluctuation of vertical movements will break
the physical relation between quality and pressure. Hence, the weaker correlation areas
in Figure 1 over oceans are probably associated with strong convection, and this is simply
checked in the next section.

Results of the three datasets uniformly show that PW and SVP are strongly correlated
in most extratropical areas and prove their strong linear relationship. The spatial patterns of
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correlation coefficients in extratropical areas are also concurrent among the three datasets,
except for the weaker correlation in the Arctic in July obtained with JRA55.

The curves of normalized PW and SVP in red and blue squares in Figure 1,
Figures S1 and S2 are also examined, but not shown in the main text (results are shown
in Figures S3–S6 in the Supplementary Material). The variations of PW and SVP in SCAs
can be quite consistent both on land and over the ocean. As for those in WCAs, on land, it
seems that the variations of two variables are relatively more consistent before 1997, but
this phenomenon cannot be seen over the oceans. Whether it is due to the data quality or
other signals of the atmosphere variability needs further analysis.

To preliminarily analyze the reasons for the weak correlation in some areas, the
vertical profiles of specific humidity and vertical velocity are exhibited. On land, the weak
correlation area is in North Africa in places such as the Sahara. The vertical lapse rates are
larger and more like exponential curves in SCAs (Figure 2). Due to the extreme drought
in the WCAs, the WV differences between middle and low levels are relatively small
compared with the SCAs. Hence, the influence of humidity at middle levels is relatively
larger. Additionally, the standard deviation at middle levels is larger than that at low levels
in WCAs, while the condition is reversed in the SCAs. The large ratio of fluctuations at
middle levels to those at low levels can break the linear relation between PW and SVP
because a large part of PW variation is at middle levels.
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Figure 2. The vertical profiles of specific humidity in strong and weak correlation continental areas.
(unit: g·kg−1). The shaded areas are the range of one standard deviation. (a) ERA5 datasets, (b) JRA55
datasets, and (c) NCEP2 datasets. The specific areas chosen are squared in Figure 1, Figures S1 and S2,
correspondingly (Figures S1 and S2 are in the Supplementary Materials). Because the land surface
pressure is around 940 hPa, the lowest level shown is 925 hPa).

Over the oceans, the specific humidity in the WCAs is more than that in the SCAs
from the lower to upper troposphere (Figure 3). However, the lapse rate seems larger in
the SCAs below 700 hPa. The standard deviation at middle levels is larger than that at low
levels both in strong and correlation areas. The fluctuations at low levels in the WCAs are
nearly zero, and it is hard for SVP, with almost no variation, to reflect the variation in PW.
The small fluctuations there may be caused by the frequent convection, and the surface air
is nearly saturated all the time. The convection also makes the air at middle levels own
more WV.
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To further verify the convection conditions, Figures 4 and 5 exhibit the profiles of
vertical velocity in the WCAs and SCAs. There are weak upward motions in the continental
SCAs and relatively strong downward motions in the continental WCAs. There is not a
consensus on the ratios of fluctuations in SCAs to that in WCAs among the three datasets.
The stronger vertical movement is more likely to break the linear relation between PW and
SVP under a drought environment over land. Because the differences between fluctuations
of vertical movements in WCAs and SCAs are not so large, the fluctuations of vertical
movements seem to play a less important role there.
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As for the oceanic areas, there are weak downward movements in the SCAs and
relatively stronger upward movements in the WCAs. The fluctuations in the WCAs are
also larger than that in the SCAs. The convection with strong upward motion is probably
one of the main reasons for the weaker correlation in some oceanic areas. The unstable
upward movements with large interannual variability may also have some effects.

3.2. Consistency of Long-Term Trends

Figure 6 shows the maps of long-term trends of PW and SVP for four months calculated
with the ERA5 dataset (results of JRA55 and NCEP2 are shown in Figures S7 and S8 in the
Supplementary Materials). In ERA5, focusing on the regions with significant trends, SVP
and PW have concurrent distributions, such as the negative trends in the Southeast Pacific
and the positive trends in the Northwest and Southwest Pacific. However, the trends of
SVP in some oceanic areas are stronger than those of PW, including the South Pacific and
North Atlantic, where the areas with significant trends of SVP are larger. In North Asia, the
areas with significant trends of SVP are also larger than those of PW in April and October,
while the situation is inverse in North Africa and the Northwest Pacific in July.

In the result calculated with JRA5, the trends of SVP and PW are a little less consistent
than those in the result of ERA5. The phenomenon in Asia is similar, with SVP having
significant trends in larger areas, and the differences between the trends of SVP and PW are
larger than those of ERA5. However, in the Indian Ocean and Tropical Pacific, the trends of
PW are stronger than those of SVP. The trend directions in most areas are consistent, except
in some areas of Australia in January and the middle Tropical Pacific in July and October.

In NCEP2, the trends of SVP are weaker than those of PW on oceans, such as the
Southeast Pacific in all four months and the Northwest Pacific in July. In North Eurasia
and the Arctic, the trends of SVP are stronger. Trends of the two quantities in the North
Atlantic and North America are relatively consistent, but the decreases in SVP on the east
coast of South America are not so obvious as that of PW. In Africa and the middle Indian
Ocean, there are contradictions between the trends of the two variables.
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The ERA5 and JRA55 datasets both show that in most areas, the trend directions of
PW and SVP are identical. The NCEP2 has more areas with contradictory trends of these
two variables, including Middle Africa, the Indian Ocean, and the Tropical Atlantic. In
all, the trend directions of PW and SVP are consistent in most areas, except in Middle
Africa, the Indian Ocean, and the Tropical Atlantic. However, the trend intensities of these
two variables are not so consistent.

Similar features can be seen among the three datasets. The areas with large slopes
mainly exist at mid-to-low latitudes. There are also some areas with biggish discrepancies
among the three datasets, such as some parts of Africa. There appears a positive-negative-
positive pattern in the meridional direction. The result obtained with ERA5 exhibits a
nearly reverse distribution in these areas in spring.

The distributions of trends also have temporal variations. In Australia, for example,
the trends there in summer and other seasons are disparate. In some regions with the same
year-round signs of slopes, the absolute values are larger in summer and weaker in winter.
The absolute values of the slopes in polar areas are not large, but trends in most parts of



Atmosphere 2022, 13, 1350 11 of 20

these places can reach the 0.05 significance level, due to the climate of low air temperature
and little vapor there.

To exhibit the consistency of long-term trends of PW and SVP intuitively, the scatter
plots are shown in Figure 7. Every other grid is selected in meridional and zonal directions
to draw the scatter plot and create the linear regression, because too many points will affect
the exhibition effect if all the grids are used. The trends of the two variables are strongly
correlated, with the correlation coefficients over 0.6 in all four months in ERA5. The lowest
correlation coefficient is 0.49, which is in January calculated with JRA55. From the slope
values of the linear regression, it can be seen that the trends of PW are generally weaker
than those of SVP, but there are also some grids where the trends of PW are stronger.

The curves of global areal-weighted averaged PW, SVP, and surface air tempera-
ture are shown in Figure 8 (results calculated with JRA55 and NCEP2 datasets are in
Figures S9 and S10 in the Supplementary Materials). The trends of three quantities can
pass the 0.01 significance level using the MK test in all four months. It can be seen that the
normalized PW and SVP overlap in quite a few parts of 43 years. Even in the rest periods,
the two curves are almost parallel, and the only relatively large difference exists in October
in the result of NCEP2. Hence, the global mean PW and SVP have consistent long-term
trends and interannual variations, which is to say, the interannual and long-term variations
of global mean SVP can well reflect those of PW.

Under greenhouse warming, the global mean SVP and PW both have significant
increasing trends. From this point, results calculated with three sets of data can reach an
agreement, and the trends of SVP and PW both amplify in July and October. However,
when comparing the slope values of SVP and PW, there are still some differences among
different datasets. Their trends are not so consistent as temperature.

Overall, from the angle of spatial distributions, three datasets all exhibit a feature
that the trends of SVP are stronger than those of PW in North Eurasia. The increasing
(decreasing) trends of PW can be decomposed into two parts. The first one is the increasing
(decreasing) evaporation, and the other is the column-integrated vapor convergence (di-
vergence). With the comparison of PW and SVP trends in North Asia, it can be concluded
that the upward motions may be weakened there. It is plausible that the increasing trends
of SVP there are mainly contributed by the increased water capacity of air and surface
evaporation, but the vapor transport at higher levels may be weakened along with the
weakened circulation. Eventually, the trends of PW are not so obvious as SVP in these areas.

In the Oceanic Continents and Tropical West Pacific, JRA55 and NCEP2 both show
that the trends of PW are stronger than those of SVP. It can be concluded that the upward
movements may be reinforced there. The stronger upward motion transports more vapor
to the middle layers and the atmosphere is not in hydrostatic equilibrium. The global
mean SVP and PW have consistent interannual variations and increasing trends in all
three datasets.

3.3. The Consistency of the First Leading EOF Modes

To further confirm the reliability of the relationship between SVP and PW, the first
EOF patterns (EOF 1) of PW and SVP are shown and compared. Figure 9 shows EOF 1 of
PW and SVP obtained with the ERA5 dataset (results obtained with JRA55 and NCEP2
are shown in Figures S11 and S12 in the Supplementary Materials). With the Monte Carlo
technique, the first three EOFs can be significantly distinguished from the noise. The
0.05 significance level needs the explained variances of the first three modes beyond 2.70%,
2.66%, and 2.65% respectively, with the spatial-temporal resolution (73 × 144 grids and
43 years) used here. There exist ENSO-like patterns, the inverse deviations in Northwest
and Mid-to-East Pacific, in all four months, accordant with the result in [8,37]. However,
what is mostly important is the similarity of patterns and time series of the two quantities.
The result of ERA5 shows that the spatial patterns of the two quantities are quite similar.
Relatively more differences exist in the negative value parts of the Tropical Pacific and the



Atmosphere 2022, 13, 1350 12 of 20

Indian Ocean in April. The pattern of SVP in the Pacific is more eastern compared with
those of PW in July and October.
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Figure 7. Scatter plots of PW and SVP trends at grids in four months. Each dot is a grid. The columns
from left to right correspond to ERA5, JRA55, and NCEP2. The rows from top to bottom correspond
to four months. The black line is the linear regression line of PW and SVP. The grey line is the y = x
line. R is the spatial correlation coefficient of PW and SVP. The equation in the right bottom corner is
the regression equation.
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Figure 8. The time series of normalized global areal-weighted averages of 2 m temperature (T), PW
(W), and SVP (E) in January (a), April (b), July (c), and October (d) calculated with ERA5 datasets.
The four numbers at the top-right of subgraphs are the correlation coefficient between PW and SVP
and Sen’s slope value of three elements (T, W, and E in sequence; units: K/10 yr, kg·m−2/10 yr, and
hPa/10 yr), separately.

Atmosphere 2022, 13, x FOR PEER REVIEW 13 of 19 
 

 

PW and SVP obtained with the ERA5 dataset (results obtained with JRA55 and NCEP2 
are shown in Figures S11 and S12 in the Supplementary Materials). With the Monte Carlo 
technique, the first three EOFs can be significantly distinguished from the noise. The 0.05 
significance level needs the explained variances of the first three modes beyond 2.70%, 
2.66%, and 2.65% respectively, with the spatial-temporal resolution (73 × 144 grids and 43 
years) used here. There exist ENSO-like patterns, the inverse deviations in Northwest and 
Mid-to-East Pacific, in all four months, accordant with the result in [8,37]. However, what 
is mostly important is the similarity of patterns and time series of the two quantities. The 
result of ERA5 shows that the spatial patterns of the two quantities are quite similar. Rel-
atively more differences exist in the negative value parts of the Tropical Pacific and the 
Indian Ocean in April. The pattern of SVP in the Pacific is more eastern compared with 
those of PW in July and October. 

 
Figure 9. The first EOF (EOF1) modes of PW (left) and SVP (right) calculated with ERA5. The rows 
from top to bottom correspond to January, April, July, and October, respectively. The percentages 
at the top-right of subgraphs are fractional mode variances corresponding to PW and SVP. The 
numbers at the upper-left corners of graphs in the right column are spatial correlation coefficients 
of the first modes of PW and SVP. 

The result calculated with JRA55 is similar, while the little divergences between PW 
and SVP are also over the Tropical Pacific in April and July. What needs attention is that 
there is a great distinction between the first modes of these two variables in April. After 
verification, it is confirmed that EOF 1 of PW corresponds well with EOF 2 of SVP. Hence, 
EOF 1 of SVP in April is replaced by EOF 2 in the result of JRA55. 

Figure 9. The first EOF (EOF1) modes of PW (left) and SVP (right) calculated with ERA5. The rows
from top to bottom correspond to January, April, July, and October, respectively. The percentages at
the top-right of subgraphs are fractional mode variances corresponding to PW and SVP. The numbers
at the upper-left corners of graphs in the right column are spatial correlation coefficients of the first
modes of PW and SVP.
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The result calculated with JRA55 is similar, while the little divergences between PW
and SVP are also over the Tropical Pacific in April and July. What needs attention is that
there is a great distinction between the first modes of these two variables in April. After
verification, it is confirmed that EOF 1 of PW corresponds well with EOF 2 of SVP. Hence,
EOF 1 of SVP in April is replaced by EOF 2 in the result of JRA55.

The differences between spatial patterns of PW and SVP are relatively larger in the
result of NCEP2. The distinctions of patterns are obvious in April, July, and October. The
negative values of SVP on oceans are visibly weak. Especially in October, not only the is
the intensity of the negative center in the Tropical Pacific not so coherent, but there are
also some contradictions in the Middle East and Southeast Africa. The spatial correlation
coefficient in October is just 0.37, which is much lower than those in other months.

EOF 2 and EOF 3 of the two variables are also compared, and they also correspond
well (results are shown in Figures S13–S18 in the Supplementary Materials). The spatial
correlation coefficients of the patterns are generally over 0.5 for EOF 2 except in October
calculated with NCEP2 (the correlation coefficient is −0.34 and can pass the 0.01 significance
level), and those for EOF 3 are generally over 0.4. EOF 3 of PW and SVP calculated with
ERA5 is relatively less coherent in January and April, with the spatial correlation coefficient
of the patterns being −0.32 and −0.29, respectively. However, because of the long sequence
(73 × 144), the correlation coefficients can still pass the 0.01 significance level. Similar to the
condition in April in the result of JRA55, EOF 3 of PW is more consistent with EOF 4 of SVP
in January in ERA55. Hence, the subgraph of SVP in January in Figure S16 is EOF 4 of it.

As a whole, EOF 1 of PW and SVP obtained with ERA5 and JRA55 datasets is more
coherent than that obtained with NCEP2. Even in NCEP2, spatial correlation coefficients of
PW and SVP can pass the 0.01 significance level and are larger than 0.66 in January, April,
and July. The first three leading modes all show good coherences between PW and SVP.
Even the lowest spatial correlation coefficient between the EOF patterns of two variables
can still pass the 0.01 significance level.

Corresponding to the consistency of spatial patterns, the time series of SVP and PW
obtained with ERA5 almost overlaps in many periods (Figure 10; results calculated with
JRA55 and NCEP2 are shown in Figures S19 and S20 in the Supplementary Materials; The
time series of EOF 2 and EOF 3 calculated with three dataset are shown in Figures S21–S26
in the Supplementary Materials). The correlation coefficients of the SVP and PW time series
are generally over 0.8. As for the NCEP2, the time series with the largest discrepancies exist
in October, with a 0.52 correlation coefficient. In October, the time series of SVP is stable
with an increasing trend, while the PW is fluctuating.

The time series of EOF 2 and EOF 3 are also examined. The absolute values of
correlation coefficients of the corresponding time series are generally over 0.7, and the
lowest value is 0.44, which is obtained with the time series of EOF 3 in January calculated
with the ERA5 dataset. Corresponding to the relative less consistency of EOF 3 in January
and April calculated with ERA5, the time series of EOF 3 in these two months is also
less coherent.

Combining the spatial patterns and time series synthetically, the first three EOF leading
modes and time series of PW and SVP can correspond well in ERA5 and JRA55. Most
contractors exist in the Tropical Indian Ocean and the Tropical Atlantic. Most of the
differences in the Pacific are intensity differences. The consistency of the EOF modes of PW
and SVP in results further proves the close relationship between them in interannual and
long-term variations. It is a complement to the statistical basis of using the variations of
SVP to represent those of PW, or the reverse.
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4. Summary and Discussion

Because of the deficiency of high-altitude observations and the internal physical
relation of PW and SVP, the linkage between them has been researched for some decades.
The time scales mainly researched are the daily and annual cycles. Whether the linkage
is reliable everywhere at interannual and long-term variations is examined in this paper.
With the examination, we can reveal the areas where it is difficult to obtain an efficient
empirical equation between PW and SVP and the regions where the variations of SVP and
PW can well reflect each other.

Results show that the interannual variations of monthly mean PW and SVP are strongly
correlated in most areas, with correlation coefficients generally over 0.8. Correlations at
high latitudes are stronger than those at low latitudes, and correlations in winter are
stronger than those in summer. The insignificant correlations just exist over tropical oceans
and some high-altitude areas in the Northern Hemisphere in Boreal Summer.

The vertical profiles of specific humidity and vertical velocity in weak and strong
correlation regions are compared to figure out the reasons for the weaker correlations. Over
the ocean, the weak correlation could be mainly due to the unstable and strong convection.
On land, the weak correlation is associated with the extreme drought near the surface.
Under the drought conditions, the downward motions in these areas probably break the
linear relationship. There is only a little moisture, so the effects of vertical movements are
relatively more destructive.

The long-term trends of SVP and PW are also analyzed. In a large number of areas
besides some areas of the Tropical Indian Ocean and Middle Africa, the long-term trends
of SVP can well reflect those of PW. Three datasets exhibit a common characteristic that
the trends of SVP in North Eurasia are stronger than those of PW. The trends of SVP in
high-latitude areas of Eurasia are stronger than those of PW, indicating that the upward
movements are attenuated, and evaporation is enhanced along with warming. The vapor
convergence at high levels may be weaker along with the weakening of circulations.
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As a whole, the variations of SVP and PW are consistent in vast areas, especially in
ERA5. At the interannual scale, the variation in PW can be reflected by that of SVP in
most extratropical areas except in July. It is feasible to use the interannual variation in SVP
to reflect that of PW in extratropical areas except in July, but researchers must be careful
when performing this in the Tropical West Pacific and the Tropical Atlantic. In these areas,
it should be relatively hard to establish an effective empirical equation between PW and
SVP. On the long-term scale, the trend direction of PW can be well reflected by that of SVP,
except in the Tropical Indian Ocean east to Africa and the Tropical Atlantic east to South
America. The weaker correlations are mainly caused by the vertical movements which can
cause the large fluctuation of specific humidity at middle levels and adjust the profiles of
specific humidity, while it also means that the atmosphere is not in hydrostatic equilibrium.

The close linkage between SVP and PW is an extension of another study by us [39].
The response of SVP to surface temperature is studied in another part of our work. With
the linkage between PW and SVP, the response characteristics of column WV content can
be reflected by those of SVP. In addition, it provides a brief description of where the PW
can be well regressed with SVP, or the other way around. Because the specific values of
trends, interannual correlation coefficients, and EOF modes differ among different datasets,
some areas with large discrepancies need more accurate observations to be verified, such as
the Indian Ocean and the east coast of South America. Perhaps using SVP at several grids
to estimate PW (or in reverse order) or using several surface variables to estimate PW will
achieve a better effect. It is worth trying, and it may be suitable to combine some neural
network methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13091350/s1, Figure S1: Maps of correlation coefficients of
PW and SVP (The dataset used is JRA55). The correlation coefficients in shaded areas cannot pass
the 0.05 significance level. Blue and red squares are strong and weak correlation areas respectively
selected to show the vertical profiles, Figure S2: Maps of correlation coefficients of PW and SVP (The
dataset used is NCEP2). The correlation coefficients in shaded areas cannot pass the 0.05 significance
level. Blue and red squares are strong and weak correlation areas respectively selected to show
the vertical profiles, Figure S3: The curves of normalized PW and SVP in strong correlation areas
on land (blue squares in January in Figure 1, Figure S1, and Figure S2), Figure S4: The curves of
normalized PW and SVP in weak correlation areas on land (red squares in January in Figure 1,
Figure S1, and Figure S2), Figure S5: The curves of normalized PW and SVP in strong correlation
areas over the oceans (blue squares in July in Figure 1, Figure S1, and Figure S2), Figure S6: The
curves of normalized PW and SVP in weak correlation areas (red squares in July in Figures 1–3)
over the oceans, Figure S7: The long-term trends of PW (the left column, unit: kg·m−2/10 yr) and
SVP (the right column, unit: hPa/10 yr) in four months calculated with the JRA55 dataset. The
rows from top to bottom respond to January, April, July, and October respectively. Trends in the
shaded areas can reach the 0.05 significance level, Figure S8: The long-term trends of PW (the left
column, unit: kg·m−2/10 yr) and SVP (the right column, unit: hPa/10 yr) in four months calculated
with the NCEP2 dataset. The rows from top to bottom respond to January, April, July, and October
respectively. Trends in the shaded areas can reach the 0.05 significance level, Figure S9: The time
series of normalized global areal-weighted averages of 2 m temperature (T), PW (W), and SVP (E) in
January (a), April (b), July (c), and October (d) calculated with JRA55 datasets. The four numbers at
the top-right of subgraphs are the correlation coefficient between PW and SVP and Sen’s slope value
of three elements (T, W, and E in sequence; units: K/10 yr, kg·m−2/10 yr, and hPa/10 yr), separately,
Figure S10: The time series of normalized global areal-weighted averages of 2 m temperature (T), PW
(W), and SVP (E) in January (a), April (b), July (c), and October (d) calculated with NCEP2 datasets.
The four numbers at the top-right of subgraphs are the correlation coefficient between PW and SVP
and Sen’s slope value of three elements (T, W, and E in sequence; units: K/10 yr, kg·m−2/10 yr, and
hPa/10 yr), separately, Figure S11: The first EOF modes of PW (left) and SVP (right) calculated with
JRA55. (The rows from top to bottom correspond to January, April, July, and October respectively.
The percentages at the top-right of subgraphs are fractional mode variances corresponding to PW
and SVP. The numbers at the upper-left corners of graphs in the right column are spatial correlation
coefficients of the first modes of PW and SVP), Figure S12: The first EOF modes of PW (left) and SVP
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(right) calculated with NCEP2. (The rows from top to bottom correspond to January, April, July, and
October respectively. The percentages at the top-right of subgraphs are fractional mode variances
corresponding to PW and SVP. The numbers at the upper-left corners of graphs in the right column
are spatial correlation coefficients of the first modes of PW and SVP), Figure S13: The second EOF
modes of PW (left) and SVP (right) calculated with ERA5. (The rows from top to bottom correspond
to January, April, July, and October respectively. The percentages at the top-right of subgraphs are
fractional mode variances corresponding to PW and SVP. The numbers at the upper-left corners of
graphs in the right column are spatial correlation coefficients of the first modes of PW and SVP.),
Figure S14: The second EOF modes of PW (left) and SVP (right) calculated with JRA55. (The rows
from top to bottom correspond to January, April, July, and October respectively. The percentages at
the top-right of subgraphs are fractional mode variances corresponding to PW and SVP. The numbers
at the upper-left corners of graphs in the right column are spatial correlation coefficients of the first
modes of PW and SVP.), Figure S15: The second EOF modes of PW (left) and SVP (right) calculated
with ncep2. (The rows from top to bottom correspond to January, April, July, and October respectively.
The percentages at the top-right of subgraphs are fractional mode variances corresponding to PW
and SVP. The numbers at the upper-left corners of graphs in the right column are spatial correlation
coefficients of the first modes of PW and SVP.), Figure S16: The third EOF modes of PW (left) and
SVP (right) calculated with ERA5. (The rows from top to bottom correspond to January, April, July,
and October respectively. The percentages at the top-right of subgraphs are fractional mode variances
corresponding to PW and SVP. The numbers at the upper-left corners of graphs in the right column
are spatial correlation coefficients of the first modes of PW and SVP.), Figure S17: The third EOF
modes of PW (left) and SVP (right) calculated with JRA55. (The rows from top to bottom correspond
to January, April, July, and October respectively. The percentages at the top-right of subgraphs are
fractional mode variances corresponding to PW and SVP. The numbers at the upper-left corners of
graphs in the right column are spatial correlation coefficients of the first modes of PW and SVP.).,
Figure S18: The third EOF modes of PW (left) and SVP (right) calculated with NCEP2. (The rows
from top to bottom correspond to January, April, July, and October respectively. The percentages
at the top-right of subgraphs are fractional mode variances corresponding to PW and SVP. The
numbers at the upper-left corners of graphs in the right column are spatial correlation coefficients
of the first modes of PW and SVP.), Figure S19: The principal components of EOF 1 of PW and SVP
were calculated with the JRA55 dataset (scaled to unit variance). The numbers at the top-right of
subgraphs are correlation coefficients of two curves, Figure S20: The principal components of EOF
1 of PW and SVP were calculated with the NCEP2 dataset (scaled to unit variance). The numbers
at the top-right of subgraphs are correlation coefficients of two curves, Figure S21: The principal
components of EOF 2 of PW and SVP were calculated with the ERA5 dataset (scaled to unit variance).
The numbers at the top-right of subgraphs are correlation coefficients of two curves, Figure S22: The
principal components of EOF 2 of PW and SVP were calculated with the JRA55 dataset (scaled to unit
variance). The numbers at the top-right of subgraphs are correlation coefficients of two curves, Figure
S23: The principal components of EOF 2 of PW and SVP were calculated with the NCEP2 dataset
(scaled to unit variance). The numbers at the top-right of subgraphs are correlation coefficients of
two curves, Figure S24: The principal components of EOF 3 of PW and SVP were calculated with the
ERA5 dataset (scaled to unit variance). The numbers at the top-right of subgraphs are correlation
coefficients of two curves, Figure S25: The principal components of EOF 3 of PW and SVP were
calculated with the JRA55 dataset (scaled to unit variance). The numbers at the top-right of subgraphs
are correlation coefficients of two curves, Figure S26: The principal components of EOF 3 of PW and
SVP were calculated with the NCEP2 dataset (scaled to unit variance). The numbers at the top-right
of subgraphs are correlation coefficients of two curves.
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