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Abstract: As the world is changing, mainly due to climate change, extreme events such as floods and
droughts are becoming more frequent and severe. Considering this, the predictive modeling of flow
in small mountain catchments that are particularly vulnerable to flooding is critical. Rainfall data
sources such as rain gauges, meteorological radars, and satellites provide data to the hydrological
model with a lag. Only numerical weather predictions can achieve this in advance, but their estimates
are often subject to considerable uncertainty. This article aims to verify whether Global Environmental
Multiscale numerical precipitation prediction can be successfully applied for event-based rainfall–
runoff hydrological modeling. These data were verified for use in two aspects: the flow modeling
and determination of antecedent moisture conditions. The results indicate that GEM data can be
satisfactorily used for hydrological modeling, and particularly good simulation results are obtained
when significant rainfall occurs. In addition, these data can be used to correctly estimate the AMC
groups for each sub-catchment in advance, which is one of the key elements flowing into the amount
of projected outflow in the catchment. It is worth noting that, according to the literature review
conducted by the article’s author, this is the first published attempt to use GEM data directly in
applied hydrological applications.

Keywords: Global Environmental Multiscale model; HEC-HMS; mountainous catchment; numerical
weather prediction; rainfall–runoff modeling

1. Introduction

Understanding issues related to the functioning of the Earth’s climate system, includ-
ing the hydrological cycle, is an important challenge of the modern world. Increasingly
frequent natural disasters, such as floods and droughts, on the one hand, pose a direct
threat to human life, and, on the other hand, contribute to economic losses. Human activity
significantly impacts the observed changes in the hydrological cycle [1]. Extreme phenom-
ena in the form of floods particularly affect mountainous catchments, characterized by
a short hydrological response time, making the risk of floods exceptionally high in their
area [2].

Rainfall–runoff hydrological modeling is one of the basic cognitive methods for flood
risk analysis. It is a fundamental element of operational hydrology in the forecasting and
warning of extreme events. For this reason, hydrological models play an increasingly
important role in decision-making processes at local, national, and global levels. One of the
most important data sources necessary for reliable outflow simulations using hydrological
rainfall–runoff modeling is knowledge of the temporal–spatial structure of the precipi-
tation field over the analyzed area. Available sources of precipitation data (rain gauges,
meteorological radars, satellites, and numerical weather predictions) are characterized by
varying temporal–spatial resolution due to the technologies used to measure precipitation,
which makes it difficult to determine a priori which precipitation field data source provides
the most reliable information. In addition, precipitation is one of the main factors in the
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formation of floods, but its measurement in a mountainous area poses significant challenges
due to the varied relief of the terrain [3]. In hydrological rainfall–runoff modeling, the
predictive aspect of the model is crucial. All of the most commonly used precipitation data
sources, except numerical weather prediction, provide data with a lag.

The beginning of numerical precipitation forecasting dates back to the turn of the
20th century when Abbe [4] and Bjerkens [5] discovered that the laws of physics could be
used to create a numerical precipitation model that could be used for predictive purposes
using the current state of the atmosphere. In recent decades, significant progress has been
made in understanding and describing atmospheric processes. Initially simple models
are now reaching a very high level of complexity. This progress is so significant that it is
sometimes referred to as a “quiet revolution” [6], as it takes into account the most important
discoveries in atmospheric physics of the past decades.

Nowadays, numerical weather prediction models are systems of nonlinear differential
equations, with varying time steps (from minutes to months) and spatial distribution (from
regional to global models), taking into account dynamic, thermodynamic, radiative, and
chemical processes occurring in the atmosphere [6]. Forecasts can also be generated proba-
bilistically, allowing for an estimation of the confidence level of the generated forecasts.

The predictive nature of numerical precipitation forecasts means that they can be
used to forecast river runoff using hydrological models [7–9] or hurricanes [6]. This is
particularly useful for deciding on the projects needed in the event of an emergency (such
as flooding) [10]. Many of the numerical precipitation models that have been developed are
used for operational purposes, e.g., the European Center Medium-Range Weather Forecasts
(ECMWF) [11] or the numerical precipitation forecast model of the Japan Meteorological
Agency [12].

This paper aims to use a Global Environmental Multiscale (GEM) numerical precipi-
tation prediction for a hydrological analysis in a small mountainous catchment, as these
data have not yet been used for this purpose. To date, GEM data have been mainly used in
hydrological modeling that focused on large catchments. Gaborit et al. [13] have applied
the GEM data coupled in the GEM-Hydro runoff modeling platform to the flat watershed of
Lake Ontario. There are research studies by Rokata et al. [14] and Abaza et al. [15] showing
the application of the GEM data for the big watershed to, among other things, perform
continuous modeling. GEM data have also been investigated for hydrological purposes but
were not strictly related to streamflow simulation. For example, Asong et al. [16] used these
data for the investigation of climate change impact. In this study, the potential of GEM data
was investigated for event-based modeling. This was carried out in two aspects: modeling
the flow in the catchment and determining moisture conditions through AMC classification.

2. Materials and Methods
2.1. Characteristics of Study Area

The upper part of the Skawa catchment was chosen as a study area. The main reason
for flooding in this area is excessive precipitation and precipitation accumulation around
neighboring regions, leading to significant surface runoff. The selected catchment is
relatively small (~240 km2), and its water network is characterized by a dense dominant
short stream with significant slopes, leading to quick response time (around 2.5 h). There are
four rain gauges in the catchment area, of which, one is directly located in the investigated
study area. The rain gauges are not well distributed over the entire study area, making the
areal estimation of precipitation more challenging. Radar data application over this area is
difficult due to radar shadow phenomena. Therefore, hydrological and hydraulic modeling
over that kind of area is extremely challenging while essential at the same time due to the
risk of flooding.

Figure 1 presents the major characteristics of the study area.
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Figure 1. Main characteristics of the study area (elevation, and locations of meteo stations and
gauging stations. Sub-catchments)—upper part of the Skawa catchment.

Historically, flash floods in this area were already noticed in the XV century. The most
recent flood events occurred in 2010, 2014, and 2019, leading to substantial material losses
in built-up parts of the catchment and significant changes to the topography in forested
areas. The logs transported in the streams have a considerable impact on the accumulation
of sediment transport, increasing the risk of flooding. Climate change impact will most
likely result in even more frequent and intense precipitation events. Considering that, we
can expect even more severe floods in the years to come.

The case study of the upper Skawa catchment, due to its characteristics (relatively
small area, mountainous character, quick response time, and a limited number of rain
gauges), is representative of similar study areas in Slovakia and the Czech Republic, as
well as other parts of Europe.

2.2. Data Acquisition and Processing
2.2.1. Global Environmental Multiscale Model

At Warsaw University of Technology in Poland, in cooperation with Ecoforecast
Foundation, an integrated system of numerical models was created based on the operational
model of the Canadian Meteorological Center, Global Environmental Multiscale Model
(GEM), along with its atmospheric chemistry extension-GEM-AQ [17,18].

The model operates in two configuration sets:

• Global—characterized by variable resolution numerical grid. This set covers the entire
globe and focuses on Europe with 0.135◦ (15 km) grid spacing;

• Mesoscale—located over Poland with 0.0625◦ (5 km) spacing.

Figure 2 presents the visualization of the GEM computational grid applied in two
different configuration sets.
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Figure 2. GEM computational grid: global model (left) with variable resolution (0.135◦ over Europe)
and nested grid over Poland (right) with a resolution of 0.0625◦ [19].

For the purpose of this study, a nested mesoscale model was used. Its characteristics
are presented in Table 1.

Table 1. Characteristics of the GEM model.

Component Solution References

Surface energy budget Force-restore equation [20]

Turbulence parametrization

Turbulence kinetic energy budget method
with statistical subgrid-scale cloudiness;
Bougeault–Lacarrere specification of the
length scale

[21,22]

Condensation processes Kain–Fritsch scheme for deep convection;
Sundqvist scheme for non-convective clouds [23,24]

Solar and infrared radiation

Schemes of Fouquart and Bonnel and
Garand, respectively, and a modified
McFarlane parameterization to include
gravity wave drag effects

[25–28]

Forecasts are generated in an integrated system of numerical dynamics and atmo-
spheric chemistry models. The forecast calculation begins daily at 18 according to UTC
time and is performed up to 72 h in advance. One of the operationally generated products
is hourly precipitation totals (at ground level)—this product was used in this study.

The provided precipitation data were recorded in the form of point precipitation
height information for the coordinates of the center of the computational grid. These data
were processed into a numerical grid (Figure 3).

For the purposes of the hydrological model, individual rainfall hyethograms were
created for each sub-catchment representing the weighted average rainfall from the GEM
model pixels covering each sub-catchment.
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Figure 3. One-hour rainfall accumulations from the GEM forecasting model over the upper
Skawa catchment.

2.2.2. Rain Gauge, Discharge, and Other Data

For the purposes of this study, precipitation data from the meteorological network
managed by the Institute of Meteorology and Water Management–National Research
Institute in Poland were used. This network consists of 491 telemetry stations, and measure-
ments are made with a time step of 10 min. All measurements are automatically subjected
to quality control, taking into account the spatio-temporal consistency and a range check
using climatological values [29]. There are 4 stations in and around the catchment area.
Their characteristics are presented in Table 2.

Table 2. Rainfall stations located nearby the study area.

Rainfall Station Acronym Latitude Longitude Elevation
[m a.s.l.]

Maków Podhalański RS-1 49◦43′ 19◦40′ 367
Markowe Szczawiny RS-2 49◦35′ 19◦30′ 1194

Spytkowice Górne RS-3 49◦34′ 19◦50′ 525
Zawoja RS-4 49◦40′ 19◦34′ 604

The acquired data were aggregated to a time step of 1 h before being used in further
analyses. The rain gauge data were used to determine AMC groups for sub-catchments,
which were then compared with the AMC classification calculated using GEM data.

The discharge data were acquired at the gauging station located in Osielec (Figure 1).
The obtained data were available at hourly time-steps. Similarly, like for the precipitation
data, the discharge data came from a network managed by the Institute of Meteorology
and Water Management–National Research Institute in Poland.
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Precipitation data for rain gauge and GEM, as well as discharge data, were obtained
between 2014 and 2016. During this interval, there were six flood events. Three of them
were used for the calibration of the model, while the other three were used for its calibration.

Other data used in the study were the Digital Elevation Model (DEM) of 100 m
resolution that was provided by the Head Office of Geodesy and Cartography in Poland
and land-use data from the CORINE Land Cover Project 2018. Statistical analysis and data
processing were performed using R software version 4.2.1 developed at Bell Laboratories
(downloaded from the website of Imperial College London, United Kingdom).

2.3. Rainfall-Runoff Modeling and Assessment

Rainfall–runoff hydrological modeling was performed using Hydrologic Engineering
Center-Hydrologic Modelling System (HEC-HMS) version 4.9. It is a freeware software
developed by the US Army Corps of Engineers that enables continuous and event-based
hydrological modeling. Depending on the selected parameters, the model can be used in a
lumped or semi-distributed mode and is widely used for flood simulations in various sci-
entific applications [30–32]. The HEC-HMS model was linked with HEC-DSSVue software
version 2.0.1 developed by the US Army Corps of Engineers to provide precipitation and
discharge data. Both softwares. HEC-HMS and HEC-DSSVue, were downloaded from the
website of US Army Corps of Engineers.

For the purpose of this work the model was adopted in a semi-distributed scheme
using the following parameters for the catchment model:

• Rainfall losses—Soil Conservation Service (SCS) Curve Number (CN);
• Transformation of effective precipitation—Snyder unit hydrograph;
• Baseflow—Recession baseflow;
• Routing—Musingum–Cunge.

As for the meteorological model, the specified hyetographs were applied for every
sub-catchment for each data source of precipitation (rain gauge and GEM). During the
calibration phase, the following parameters were calibrated:

• Initial abstraction and curve number (for the rainfall loss method);
• Standard lag and peaking coefficient (for the transformation of effective precipitation).

The peak-weighted RMSE metric was applied as an objective function during the
calibration of the model. The simulated discharge was compared to the observed flow reg-
istered at the gauging station in Osielec. Simulations were performed at hourly time-steps.

To provide multi-aspect analysis during the calibration and validation phase, the
following evaluation metrics were chosen (Table 3).

Table 3. Evaluation metrics adopted in the study.

Metric Aim Criteria Reference

Nash–Sutcliffe Efficiency
coefficient (NSE)

To assess the predictive power of
the model

Values range from −∞ to 1. NSE = 1 means that the
simulated flow matches perfectly to the observed one,

whereas NSE = 0 means that the accuracy of
predictions from the model corresponds to the mean of
the observations. In case NSE < 0, it indicates that the
mean of observed flow would be a better prediction

than the model

[33]

Root Mean Square
Error (RMSE)

To provide information on the
standard deviation of the model

prediction error

The smaller the value, the better the model
performance. RMSE equal to 0 means a perfect match.

Percent Bias (PBias)
To assess the model performance

regarding the tendency to over- or
underestimate the simulated flow

Values > 20% are considered as unacceptable [34]

Pearson’s correlation
coefficient (r)

To measure the degree of linear
association between observed and

simulated discharge

Values range from −1 to 1. Absolute values ≤ 0.4 are
considered unsatisfactory.
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2.4. Calculation of Antecedent Moisture Conditions

Moisture conditions for each sub-catchment were defined by assigning a so-called
Antecedent Moisture Condition (AMC) group. A distinction was made between three AMC
groups depending on the amount of antecedent precipitation:

• AMC I—the lowest probability of surface runoff;
• AMC II—a moderate probability of surface runoff occurrence;
• AMC III—the highest probability of surface runoff.

The methodology for assigning an AMC group for a given sub-catchment is to calcu-
late the sum of precipitation from the 5 days preceding the flood event and then attribute
an AMC group in accordance with Table 4. A distinction was made between the growing
season and the non-growing season, which were characterized by different precipita-
tion thresholds.

Table 4. AMC groups according to precipitation totals [35].

AMC Group
Total Precipitation [mm]

Non-Growing Season Growing Season

I <13 <35
II 13–28 35–53
III >28 >53

Moisture conditions must be determined for each flood period before running the
simulation. The AMC factor does not have tolerance ranges, but rigid limits that cause a
change in group assignment. Therefore, it can be assumed that it does not reflect the actual
dynamics of changes in effective precipitation. In order to increase the precision of the
estimation of moisture conditions, it would be necessary to take into account, among other
things, temperature or insolation, which can significantly affect wetness. For this reason, in
order to simplify the subsequent calibration process of the CN coefficient and to minimize
the spatial variability of moisture content, a common solution is to calculate the antecedent
precipitation totals for sub-catchments by assigning to them the precipitation sums from
the nearest meteorological station.

AMC conditions were determined for sub-catchments using two data sources of
precipitation–rain-gauge data and GEM. It was decided to carry that out due to the fact that
precipitation data from meteorological stations are mostly used for this purpose and will
serve as a valuable reference to the AMC classification obtained from GEM data. Using the
precipitation fields created by the Inverse Distance Weighting (IDW) interpolation, the area
average precipitation total for each sub-catchment was calculated, and the corresponding
AMC group number was assigned. It was decided to carry that out in order to account
for the greater spatial variability of precipitation. The IDW method was chosen for the
calculations due to the fact that it is the primary method of interpolating precipitation
built into the HEC-HMS hydrological model and because of the very good flow simulation
results obtained using this interpolation method [36,37]. When using data from the GEM
model, a weighted average proportional to the area of the GEM pixel covering a given
sub-basin was calculated. For both data sources, 5-day precipitation totals were calculated
based on 1 h accumulations. All investigated flood events during the calibration and
validation phases corresponded to the growing season.

3. Results
3.1. Discharge Simulations for Calibration Events

Figure 4 shows the comparison of the simulated and observed discharge for calibration
events. All simulations were performed at hourly time steps. In Table 5, the results of
evaluation criteria are provided. To directly investigate the impact of precipitation data on
the hydrological model, only parameters for SCS curve number method (rainfall losses)
were calibrated.
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(b) Event 2: 3–7 October 2014, (c) Event 3: 3–9 October 2016.

Table 5. The results of the evaluation criteria for calibration events.

Event
Metric

NSE RMSE PBias [%] r

Event 1 0.79 37.79 1.7 0.90
Event 2 −0.76 6.28 63.4 0.79
Event 3 0.54 6.68 −3.2 0.54

Considering the calibration events, it can be noted that, for Event 1 and Event 3, the
results are acceptable or good. What is notable about these two events is that the results
from the hydrological model tend to overestimate the second peak occurring in the river.
However, when it comes to the peak flow values, the difference between the simulated
and observed flow is not very significant and can be used as a reliable predictive value.
For Event 2, which represents the smallest flood event, the GEM model tends to provide
such low precipitation values, which are insufficient in representing the flood event. It is
worth noting that the best flow simulation results were obtained for flood Event 1, which is
characterized by a very high maximum flow. This shows the great potential of using GEM
data in simulating large floods. For that event, the RMSE value is significantly higher than
for other events due to a much higher discharge.

3.1.1. AMC Conditions and Rainfall Losses Calibration

Moisture conditions in the catchment are one of the key elements during the formation
of surface runoff, which can lead to flooding. Therefore, prior to the calibration of the CN
method parameters, the AMC classification for every sub-catchment was made (Table 6).



Atmosphere 2022, 13, 1348 9 of 14

Table 6. AMC classification for sub-catchment according to Table 4.

Sub-Catchment

Event 1 Event 2 Event 3

Rain Gauge GEM Rain Gauge GEM Rain Gauge GEM

P [mm] AMC P [mm] AMC P [mm] AMC P [mm] AMC P [mm] AMC P [mm] AMC

SC-1 23.6 I 23.3 I 32.6 I 8.9 I 29.7 I 4.6 I
SC-2 21.8 I 34.8 I 16.6 I 16.2 I 29.6 I 6.0 I
SC-3 22.8 I 28.6 I 18.8 I 14.5 I 37.3 II 5.8 I
SC-4 23.1 I 44.0 II 18.4 I 15.6 I 36.6 II 6.5 I
SC-5 24.1 I 29.0 I 17.9 I 9.6 I 36.1 II 5.8 I
SC-6 30.2 I 24.4 I 15.9 I 5.7 I 36.9 II 7.6 I

According to the table above, we can notice that, in most of the cases, both data
sources of precipitation indicate the same AMC classification for the sub-catchment. Most
differences occur for Event 3, but we must keep in mind that sub-catchments 3–6 were
classified as AMC II, exceeding the precipitation value for AMC I by less than 2 mm of
precipitation. For the big precipitation events, such as Event 1, the GEM model tends to
provide higher precipitation values than rain gauge data, whereas, for the smaller ones
(events 2 and 3), the rain gauge data provide significantly higher values.

The classification of a sub-catchment into a given AMC group has direct implications
for parameter estimation in the SCS-CN method. The concept of this method is based on
the curve number methodology. The excess of precipitation is assessed as a function of
land-use, soil cover, and moisture content prior to the flood event. For each sub-catchment
on the basis of land-use and fraction of impervious areas, a weighted value of CN was
estimated. Values of curve numbers were taken from standard tables [38]. In Table 7, the
values of the curve number parameter (CN) and initial abstraction (Ia) for all AMC groups
are provided.

Table 7. Estimated parameters for the SCS-CN method (CN—curve number; Ia—initial abstraction).

Sub-Catchment
AMC I AMC II AMC III

CN [-] Ia [mm] CN [-] Ia [mm] CN [-] Ia [mm]

SC-1 41.18 27.21 61.46 11.95 79.90 6.39
SC-2 43.02 25.23 64.21 10.62 83.47 7.55
SC-3 50.88 18.39 69.70 8.28 84.33 7.08
SC-4 52.82 17.01 72.36 9.70 87.56 5.41
SC-5 51.51 17.39 70.56 10.60 85.38 6.52
SC-6 51.73 17.77 70.87 10.44 85.75 6.33

Given that most of the sub-catchments were classified as AMC I, the initial values of the
curve number and initial losses were assumed to be those calculated for AMC I. Initially, a
calibration process was carried out for these two parameters without setting an upper limit
on the values. It turned out that, for four of the six catchments, the optimized parameter
values corresponded with those for AMC III conditions. Based on the specified moisture
conditions, we can conclude with a fairly high degree of certainty that the optimized
parameter values should not exceed the AMC II group. Therefore, in the next iteration of
model calibration, the upper limits of the parameter values were set as those corresponding
to AMC II. The final results of the optimized parameter values are shown in Table 8.
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Table 8. Comparison of the initial and optimized values of parameters of the CSC-CN method.

Sub-Catchment

SC-1 SC-2 SC-3 SC-4 SC-5 SC-6

Initial Value/Optimized Value

Initial abstraction [mm]
25.23/20.09 27.21/25.02 17.77/15.37 17.39/14.83 17.01/13.88 18.39/17.46

CN value [-]
43.02/39.97 41.18/53.59 51.73/56.34 51.51/56.29 52.82/54.22 50.88/59.92

During calibration, the model for sub-catchments 2–6 indicates higher CN values than
the initial ones. On average, these values are 10–30% higher. Only for sub-catchment SC-1
is the optimized value lower. For all sub-catchments, the optimized initial abstraction
values are lower than the initial ones.

3.1.2. Discharge Simulations for Validation Events

Another three events were chosen for the validation of the model. The hydrological
model was run with optimized values of curve numbers and initial abstractions for the
sub-catchments. Other parameters were not changed.

Figure 5 shows the comparison of simulated and observed discharge for validation
events. Simulations by the model were performed at hourly time steps. In Table 9, the
results of the evaluation criteria are provided.

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 14 
 

 

moisture conditions, we can conclude with a fairly high degree of certainty that the 

optimized parameter values should not exceed the AMC II group. Therefore, in the next 

iteration of model calibration, the upper limits of the parameter values were set as those 

corresponding to AMC II. The final results of the optimized parameter values are shown 

in Table 8.  

Table 8. Comparison of the initial and optimized values of parameters of the CSC-CN method. 

Sub-Catchment 

SC-1 SC-2 SC-3 SC-4 SC-5 SC-6 

Initial Value/Optimized Value 

Initial abstraction [mm] 

25.23/20.09 27.21/25.02 17.77/15.37 17.39/14.83 17.01/13.88 18.39/17.46 

CN value [-] 

43.02/39.97 41.18/53.59 51.73/56.34 51.51/56.29 52.82/54.22 50.88/59.92 

During calibration, the model for sub-catchments 2–6 indicates higher CN values 

than the initial ones. On average, these values are 10–30% higher. Only for sub-catchment 

SC-1 is the optimized value lower. For all sub-catchments, the optimized initial abstraction 

values are lower than the initial ones. 

3.1.2. Discharge Simulations for Validation Events 

Another three events were chosen for the validation of the model. The hydrological 

model was run with optimized values of curve numbers and initial abstractions for the 

sub-catchments. Other parameters were not changed.  

Figure 5 shows the comparison of simulated and observed discharge for validation 

events. Simulations by the model were performed at hourly time steps. In Table 9, the 

results of the evaluation criteria are provided.  

 

Figure 5. Simulated and observed discharge for validation events (a) Event 4: 21–30 May 2015, (b) 

Event 5: 14–17 May 2016, (c) Event 6: 17–19 July 2016. 

Figure 5. Simulated and observed discharge for validation events (a) Event 4: 21–30 May 2015,
(b) Event 5: 14–17 May 2016, (c) Event 6: 17–19 July 2016.



Atmosphere 2022, 13, 1348 11 of 14

Table 9. The results of the evaluation criteria for validation events.

Event
Metric

NSE RMSE PBias [%] r

Event 4 0.67 6.34 −5.6 0.83
Event 5 0.58 3.21 −13.9 0.83
Event 6 0.15 0.54 −46.1 0.57

The level of agreement between modeled and observed flow validation results are
very similar to the model calibration phase. Good results have been obtained for Event 4,
acceptable for Event 5, and unsatisfactory for Event 6. An interesting observation occurs
in Event 4. The first peak is not mapped at all, whereas the second is simulated almost
perfectly. This shows that GEM data perform worse in mapping precipitation for small
values, which are then transformed through surface-runoff into small flood events.

4. Summary and Conclusions

The purpose of this paper was to present the potential of using numerical weather
prediction data from a Global Environmental Multiscale model for rainfall–runoff hydro-
logical modeling in a small mountain catchment. The analysis explored the feasibility of
using GEM data to simulate discharge and determine antecedent moisture conditions in
the catchment.

It is worth noting that, according to the literature review conducted by the article’s
author, this is the first published attempt to use GEM data directly in applied hydrological
applications, such as event-based modeling, for a small mountainous catchment. Previous
works using GEM data have focused only on strictly meteorological aspects (e.g., [39–41])
or continuous hydrological modeling on large catchments.

Based on the analysis, the following conclusions can be drawn:

1. GEM data can be used for rainfall–runoff modeling with satisfactory results. Since
these data are available in advance, they can be used to conduct a preliminary forecast
of discharge.

2. Better results of the projected outflow were obtained for heavy rainfall events (Events
1, 3 and 4). For relatively small rainfall events, the GEM data appear to underesti-
mate the amount of precipitation, resulting in a consequent underestimation of the
simulated flow rate.

3. Overall, the best simulation results were obtained for Event 1, which has the highest
value of maximum flow. This may indicate a significant potential for the use of GEM
data to forecast large floods.

4. GEM data can be useful for determining moisture conditions in the catchment area.
Assigned AMC groups for sub-catchments were very close to those determined from
the rain gauge data. This is a very important advantage of these data, especially if
they would allow us to determine in advance that we may be dealing with AMC
Group III, where the consequences of which could be very large floods.

5. Moisture conditions are often a neglected aspect during hydrological modeling, but, as
shown during the calibration process, they play a vital role. The correct identification
of AMC groups allows us to determine the range of values of the parameters of the
rainfall losses model closer to reality. In particular, it is a matter of limiting unrealistic
calibration results, which can give parameter values for a higher AMC group.

6. A significant disadvantage of the SCS-CN model in determining its parameters is the
rigid limits in the classification adopted (Table 4). Another aspect is the uncertainty
associated with the correct determination of conditions in the catchment from the
point of view of vegetation and land use, which affects the estimated parameters.
Therefore, the determined values of the model parameters should be approached not
deterministically but with a significant amount of tolerance at the calibration phase.
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7. Despite the fact that GEM data do not perform the best in forecasting small-scale flood
events, they can still be successfully used to determine the AMC in such cases.

It should be noted that the presented discharge simulation results were unsatisfactory
in several cases. Given that only parameters related to precipitation losses were calibrated
in the hydrological model, it seems that the main reason for such results is the inaccuracy
of the GEM data. In particular, this is an underestimation of rainfall for small events, which
leads to better-projected discharge for heavy rainfall events and worse for small rainfall
events. Due to dynamic processes in the atmosphere, forecasting precipitation is complex,
and, as shown in Table 6, there are often underestimations for small events. For significant
rainfall events, forecast values can often be higher than those that occur in reality. On the
other hand, if the hydrological model is properly calibrated, this does not necessarily lead
to an overestimation of the predicted discharge.

In order to accurately analyze the sources of errors that lead to the obtained results, it
is necessary to consider the errors directly related to the GEM data separately, as well as
the errors resulting from the specifics of the hydrological model. For example, it would be
interesting to validate the GEM data using the rain gauge data or to adjust the bias using
high-resolution satellite data. As for the hydrological model, the current version used for
validation could be recalibrated using other model parameters that were not calibrated. In
such an approach, however, it should be kept in mind that there could be a situation of
model over-calibration, which could lead to unrealistic results.

In future work, it would be interesting to compare the determination of AMC condi-
tions for the catchment area using other precipitation data, such as satellites and meteo-
rological radars. It would also be necessary to verify what the effect of the interpolation
method for rain gauge data on AMC classification is. Another interesting aspect from a
hydrological point of view is a separate analysis of errors from GEM’s outputs and the
HEC-HMS hydrological model.
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