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Abstract: In radar quantitative precipitation estimates (QPE), the progressive evolution of rainfall
algorithms has been guided by attempts to reduce the uncertainties in rainfall retrieval. However,
because most of the algorithms are based on the linear dependence between radar and rain variables
and designed for rain rates ranging from light to moderate rainfall, they result in misleading esti-
mations of intense or strong rainfall rates. In this paper, based on extensive data gathered during
the AMMA and Megha-Tropiques data campaigns, we provided a way to improve the estimation
of intense rainfall rates from radar measurements. To this end, we designed a formulation of the
QPE algorithm that accounts for the co-dependency between radar observables and rainfall rate
using copula simulation synthetic datasets and using the quantile regression features for a more
complete picture of covariate effects. The results show a clear improvement in heavy rainfall retrieval
from radar data using copula-based R(KDP) algorithms derived from a realistic simulated dataset.
For a better performance, Gaussian copula-derived algorithms require a 0.8 percentile distribution
to be considered. Conversely, lower percentiles are better for Student’s, Gumbel and HRT copula
estimators when retrieving heavy rainfall rates (R > 30). This highlights the need to investigate the
entire conditional distribution to determine the performance of radar rainfall estimators.

Keywords: modeling and simulations; copula; quantitative precipitation estimate; quantile regression
estimate; heavy rainfall

1. Introduction

Measurement by remote sensing stands as a unique tool for continuous coverage in
time and space. For instance, a weather radar provides real-time spatially continuous
measurements covering a large area within short time intervals. This is important for better
catching spatial rainfall variability and is useful when modeling the hydrological behavior
of watersheds. Because radar rainfall measurements are not direct, conventional modes
of radar rainfall estimation use a parametric relation (Z−R). This relationship is often
formulated based on measurements of radar reflectivity and ground rain gauge rainfall
or from raindrop size distributions (DSD). However, the conversion of Z in R presents
numerous errors, including the variability of a reflectivity vertical profile [1], the error in
measuring radar reflectivity [2,3], the variability of rainfall drop size distribution [4–10],
the nature of rainfall [11–14], the data analysis method [15] and the use of point rainfall
measurements on the ground as corresponding to radar pixel-averaged values [16–18]
(mismatch of sampling volume between radar and rain gauge observations). Because
the major source of error in the Z − R precipitation algorithm is the variability in the
drop size distribution, error reduction attempts in radar rainfall estimation have been
suggested by several authors with a distinction between the convective or stratiform nature
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of DSD-based algorithms. However, the results were disappointing as they barely differed
from those obtained by using a unique relationship Z− R [13,19]. Steiner et al. [4], using
simulations, and Ochou et al. [9] and Bamba et al. [10], based on DSD observations in
West Africa, emphasized that understanding the variability of the Z− R relation includes
taking into account the simultaneous variability of the size and number of raindrops.
Although the implementation of such approaches is difficult in an operational way, these
studies suggest, because of numerous combinations of size and the number of drops,
that additional radar parameters are necessary to better characterize the rain media by
describing the microstructure of clouds.

The most used approaches to overcome the problem of Z − R dependence on the
characteristics of the drop size distributions are related to the polarimetric radar technique,
and dual polarization capability is a standard for weather radars today. Indeed, based on
the anisotropy of the rain medium induced by the oblateness of raindrops, new polarimetric
radar variables such as the differential reflectivity ZDR and the specific differential phase
shift KDP are provided to design rainfall estimators that are less sensitive to variations
in precipitation parameters. Since ZDR is related to drop size median volume diameter
D0 [20,21], a combined two-parameter algorithm [R(ZH, ZDR)] was used to estimate rain-
fall [22,23] and was found to be less dependent on the DSD variability than Z− R. Many
other authors proposed the combination of KDP and ZDR [24–26], which means that the
effect of DSD variability on both variables compensate for one other [8], or the construction
of a three-parameter algorithm [27,28], which implicitly accounts for variability in drop
shape (thus in drop size). Combined rain estimators have an important advantage in that
each of the included radar polarimetric variables provide different information either on the
distribution of raindrops or the type of hydrometeors, or the shape of the drops. However,
enhancing the number of radar variables in algorithms increases the risk of uncertainties
because of noisy measurements due to fluctuations in the differential phase or differential
reflectivity, especially in the cases of light rain and the attenuation correction problem (for
X-band radar) affecting reflectivity without having the certainty of improving the rain-
fall estimation results. Recently, Koffi et al. [29], comparing four polarimetric algorithms,
found that the simple polarimetric one-parameter estimator R(KDP) outperformed all other
combined estimators for the highest rain rates (above 30 mm/h), probably because of the
quasi-linear nature of the relationship, which makes it less sensitive to fluctuations in DSD.
However, work from [8] revealed its sensitivity to range intensity and to event-to-event vari-
ability, even though this fact was more pronounced for multi-parameter algorithms. Efforts
are needed to optimize the algorithms by addressing some remaining important issues.

Several possible reasons exist to explain the variable performance and related sig-
nificant uncertainties of rainfall estimators. One reflects the difficulty in modeling the
dependence between radar variables and radar-rain variable relationships in a Gaussian
framework generally used for this purpose. Indeed, the dependence parameter used for
assessing these relations is the linear Pearson correlation. This linear correlation indicator
is efficient when the dependency relationship is linear and the universe is considered
Gaussian. The linear correlation coefficient, which is the most used measure to test de-
pendence between variables, is only a measure of linear dependence. This means that
it is a meaningful measure of dependence if variables are well represented by elliptical
distribution. Outside the world of elliptical distributions, however, using the linear cor-
relation coefficient as a measure of dependence may lead to misleading conclusions. For
example, when it comes to integrating the whole rain rate range or only extreme values in
an algorithm’s calibration, the assumption of linear dependence is not reliable. Further-
more, when choosing the full rain rate range, the linear-dependent structure could not be
adequately captured in a Gaussian framework. Hence, alternative methods for capturing
co-dependency should be considered; unfortunately, this setting is rarely included when
modelling the link between the extreme values of two or more variables.

The second plausible reason for the inadequate performance of rainfall algorithms is
the limitation of datasets used to derive statistical radar rainfall estimators. Regression-
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based relationships often derive from (i) an analysis of datasets of limited observed drop
size distributions (DSD) [8,27,29,30], (ii) unrealistic simulated DSD [22,23,31,32] for the
numerical simulation of useful radar variables or (iii) a comparison of radar data and rain
gauges rain rates [29], both with a different sampling volume. Such estimators are thus
determined to have significant uncertainties due to limited datasets (I, iii), an unrealistic
nature (ii), difference in sampling between radar and rain gauge (iii) and fluctuation with
data variation (i, iii). Therefore, algorithms that are determined based on such limited
databases do not perform well in most cases where they are applied. For instance, in most
algorithm calibrating data samples, weak to moderate rain rates are significant, numerous
and govern the algorithms’ coefficients. This could reduce the performance of the related
algorithms to retrieve the highest rain rates that can contribute significantly to the total
accumulated rainfall.

Finally, the regression method used to determine estimators is based on logarithm
transformation of variables with the risk of changing the nature of addiction between them
since the Pearson linear correlation coefficient is dependent on the monotonic function
applied to the variables. For all these reasons, it appears that another setup for realistic
synthetic datasets based on advanced statistical models could be useful. The aim of this
statistical approach is to increase the weighting of the high (or extreme) values in the fitting
processing steps and thus to assess how successful the method is in improving quantitative
precipitation estimates.

In this context, to overcome the above-mentioned limits, the approach of the copula
theory is an innovative tool for both modeling the dependence structure between several
random variables without necessarily making the assumption of a Gaussian framework
or a linear dependence between them and generating realistic synthetic data, including
a sufficient sample of extreme values useful for determining rainfall estimators based on
the incorporation of a broad range of variables of interest. Copula tools have long drawn
interest in quantitative financial applications, e.g., in the measurement of multiple credit or
market risks [33,34], the replication of hedge fund performance and actuarial science [35]
and portfolio management using Monte Carlo simulations. Given the promising results of
copula functions to investigate multivariate issues, in the past 10 years, there have been
fast-growing applications in hydrology for flood frequency analyses [36–38], multivariate
hydrological event frequency analyses [39,40] and hydrologic and hydraulic studies for
dam breach analyses or for the adequacy of dam spillways [41,42]. In meteorology and
related domains, the use of copula is relatively new and has been applied to dependence
studies between drought duration and severity [43,44], drought frequency analysis [45], de-
pendence structure between storm characteristics [46], the temporal structure of storms [47]
and in introductive work from Scholzel and Friederichs [48] using the copula approach
to model dependence between bivariate random variables such as daily precipitation
and temperature.

In the area of radar quantitative precipitation estimation, studies based on the copula
approach are few. Maity et al. [49] investigated a nonparametric approach by using a copula-
based method to develop three models for the probabilistic estimation of rainfall. Therefore,
the aim of this paper is twofold. First, we used copulas to model the dependence between
radar and rainfall variables (specifically KDP and R) useful to design optimal rain estimators.
To this end, we used other addictive indicators based on discrepancies and concordances
between the two variables of interest derived from an ‘observed’ sample in a framework
not necessarily Gaussian-based and described by Pearson’s correlation coefficient. An
essential practical interest in the use of copula is the ability to model the dependence
between extreme values of the variables not always accounted for in radar rain estimation.
We also implemented efficient algorithms for simulating bivariate joint distribution in a
realistic way. Thus, the copula method allows for the generation of a synthetic dataset for
differential specific phase shifts and rainfall rates, including extreme values which lack the
estimator’s calibrating data that could affect its performance. From such a resulting dataset,
a proper statistical method should be applied to determine optimized R(KDP) rainfall
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algorithms. So far, most of the studies on the issue have determined algorithms based on
conventional least squares mean regression methods. However, it has been recognized
that the resulting estimates for a higher rain rate are not satisfactory, probably because the
estimators could not adequately catch the effect of the upper tail of data. A more complete
picture of covariate effects should be designed. We accomplished this in this research with
the use of the quantile regression features to analyze performances of the R(KDP) rainfall
estimator based on simulated copula data.

In this scope, we exploited one advantage in using copulas, that is, its flexibility in
choosing arbitrary marginals (the same family is not needed for each marginal distribution
of variables as needed in multivariate normal distributions). The next section (Section 2)
briefly reviews the concept of copula used to model the dependence structure between R
and KDP. Section 3 describes the data and the methodology employed in the study. The
concepts of quantile regression and copula quantile regression are also presented, and
we define formally associated rainfall retrieval algorithms. Section 4 evaluates several
rain estimation models by conducting a comparison with rain gauge data used to val-
idate the methods. Specific observed cases based on areal X-band radar data gathered
during the AMMA program in Northern Benin (2006–2007) [29] and the Megha-Tropiques
experiments in Niamey (Niger, West Africa) (2010) are also shown as validations of the
quantile regression method by examining if better estimations of rain rates are possible.
The final section (Section 5) presents a discussion of the results and offers some conclusions
and perspectives.

2. Methodological Background: Basics of Copulas Theory

As this work is based on the copula approach, which is not commonly used in the
radar meteorology field, an effort to resume all the related theory is made in this section.
To this end, some general copula theory is provided, but many facts and definitions in the
bivariate case are emphasized for the sake of simplicity.

2.1. Definitions and Properties

A copula is a distribution function of uniform marginal distribution. Specifically, a
copula couples the distribution function of multivariate probability distribution to the
marginal distribution functions of their coordinates [39]. Thus, if we focus our attention on
the bivariate case for the sake of simplicity, copula may be written in the following form

C : [0; 1]2 → [0; 1]
(u1, u2)→ Pr(U1 ≤ u1 , U2 ≤ u2)

(1)

where U1 and U2 are uniformly distributed dependent random variables for the unit in-
terval from 0 to 1. In other words, a copula is defined as the joint cumulative distribution
function (CDF) of both these uniform random variables. To provide a comprehensive defi-
nition and thus understand the importance of copula, Sklar’s theorem [50] provides a link
between a multivariate distribution, its marginal distribution and a copula by establishing
the inverse of the first definition. Still assuming a pair of random variables (X1, X2) of
dimension n with the jointed cumulated distribution functions F and marginal continuous
distribution functions F2, then there is an unique copula C, represented as follows:

F(x1, x2) = C(F1(x1), F2(x2)) = F
(

F−1
1 (u1), F−1

2 (u2)
)

(2)

where x1 and x2 stand for the values where variables X1 and X2 are evaluated, respectively,
and F−1

1 (u1) and F−1
2 (u2) are the percentiles of two distribution functions F1(x1) and F2(x2).

This result is important in practice for applications since it indicates that an analysis of
a multivariate problem can be realized in two independent stages: the identification of
marginal distributions and analysis of the dependence structure between components. In
other words, this representation shows the manner in which the copula function associates
the joint distribution law to univariate marginal distributions. This is a prime asset for
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statistical investigations, since copulas allow for a wider selection of joint distribution
functions regardless of the different marginal distributions considered. Furthermore,
copulas can summarize the dependence of the internal structure of a random vector. The
most conventional measures of dependence, such as Kendall and Spearman’s correlation,
which represent the rank correlation between two random vectors, X1 and X2, can be
expressed explicitly as a functions of the copula. With this flexibility, copula theory has
applications in many fields. For details, we refer the reader to the works of Frees and
Valdez [35] applied to actuarial science and finance, or those of Poulin et al. [37], Genest
and Favre [51] and Favre et al. [39] for applications in hydrology. We want to extend this
copula approach to the establishment of radar rainfall estimation algorithms based so far
on linear correlations between radar and rain variables.

2.2. Measure of Dependence

A dependence measure regularly used for the determination of radar rainfall estima-
tors is Pearson’s linear correlation. It measures the linear relationship between two random
variables, X and Y, and can take any value in the interval from −1 to 1. This indicator is
effective if the dependency relationship is linear and the universe is considered Gaussian.
It is helpful for families of elliptical distributions (since for these families, non-correlation
indicates independence). This dependence measure, however, has several limitations,
which are as follows: (i) the correlation coefficient is not defined if the moments of order
two variables are not finite; (ii) it is not an appropriate measure of dependence for heavy tail
distributions where the variances can be infinite; (iii) the Pearson coefficient between two
variables is not invariant to strictly increasing transformations such as logarithm functions
generally used to estimate the coefficients of radar rainfall estimators (data transformations
could affect the correlation and thus provide an erroneous indication of the direct relation-
ship between these variables); and (iv) the correlation is only a scalar measure of addiction
and cannot tell us everything we want to know about the structure. For extreme rainfall,
we note that the Gaussian universe of radar and rain variables is not obvious, and we need
to use other dependency indicators based on the similarities and discrepancies observed in
a sample.

To overcome the limitations of Pearson’s linear coefficient, one can use rank-based
correlation coefficients, such as Kendall’s tau and Spearman’s rho. Genest and Favre [51]
explained that statistics associated with dependency structure issues between variables
should be based on the ranks associated with a sample of concerned variables. These rank-
based parameters are found to exhibit the invariance property (i.e., they are not affected by
nonlinear changes in scale or monotonic transformations of original data) as is the case for
copula [39,51], so that Schweizer and Wolff [52] suggested the expression of solely these
correlation measures in terms of the copula function.

For this purpose, it may be necessary to define the concepts of concordance and discor-
dance. Let (x1, x2) and

(
x∗1 , x∗2

)
be two realizations of continuous random two-dimensional

vector (X1, X2). (x1, x2) and
(
x∗1 , x∗2

)
are considered concordant if

(
x1 − x∗1

)
(x2 − x∗2) > 0

and considered discordant if
(
x1 − x∗1

)
(x2 − x∗2) < 0. Based on this definition and consid-

ering a random vector (X1, X2), with X1 and X2 having a jointly continuous distribution
function and

(
X∗1 , X∗2

)
an independent copy of (X1, X2), Kendall’s correlation coefficient is

defined as the difference between the probability of concordance and discordance probabil-
ity [35,39,52]:

τ = Pr
{(

X1 − X∗1
)
(X2 − X∗2 ) > 0

}
− Pr

{(
X1 − X∗1

)
(X2 − X∗2 ) < 0

}
= 2 Pr

{(
X1 − X∗1

)
(X2 − X∗2 )

}
− 1

= 4
∫

CdC− 1
(3)
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Spearman’s correlation coefficient is defined by [35,39,51]:

ρS = 3
[
Pr
{(

X1 − X∗1
)
(X2 − X∗2 ) > 0

}
− Pr

{(
X1 − X∗1

)
(X2 − X∗2 ) < 0

}]
= 12

s
uvdC(u, v)− 3

= 12
s

C(u, v)dvdu− 3
(4)

where C is a copula function joining X1 and X2.
In practice, Kendall’s tau and Spearman’s rho reflecting the dependence between

variables are empirically determined from Equations (5) and (6), which are only functions
of the observations ranks of size n [51].

τemp =
Pn −Qn(

n
2

) =
4

n(n− 1)
Pn − 1 (5)

ρemp =
12

n(n + 1)(n− 1)

n

∑
i=1

RiSi − 3
n + 1
n− 1

(6)

In these relations, (Ri, Si) denotes pairs of ranks associated with the sample of the
(X1, X2) vector, and Pn and Qn are numbers of concordant and discordant (X1[i], X2[i]) pairs,
respectively. These dependence coefficients are also used to determine an estimate of the
parameters of some selected copula through nonparametric methods [51]. For those cop-
ulas, their determination can assess the choice of the copula whose parameter has been
obtained by other estimation methods discussed in the next section. For information about
copulas, the reader is referred to Nelsen [53] or Genest and Favre [51].

2.3. Types and Criteria Choice of Copula

Measuring the dependence from statistical indicators such as Kendall’s tau and Spear-
man’s rho is different from determining the model dependence function. Copulas pursue
the latter objective; as we mentioned above, these dependency indicators can be defined
in this framework from the parameters of the parametric copula. In the literature, there
are several families of copulas, but for this study, only a few were used. The well-known
elliptical copula associated with elliptical multivariate distributions are Gaussian and Stu-
dent’s copulas widely described in the work of Fang et al. [54]. These elliptical copulas
are useful in practical applications due to their simplicity. Furthermore, Gaussian and
Student’s copulas are derived from the multivariate normal distribution. More specifically,
the Student’s copula is characterized by non-null tail-dependent coefficients, so it is suitable
to connect extreme radar variables to extreme rainfall parameters. The copula expressions
for both are based on ρ, the symmetric, positive definite correlation matrix with diagρ = 1,
and the standardized multivariate normal φρ (for normal copula) distribution and the
standardized multivariate Student’s Tρ,υ (for Student’s copula) distribution with υ degrees
of freedom [39]. For a bivariate case, these elliptical copulas are defined as follows:

C(u1, u2, ρ) = φρ(φ
−1(u1), φ−1(u2)) (7)

C(u1, u2, ρ, υ) = Tρ,υ(t−1
υ (u1), t−1

υ (u2)) (8)

where φ−1 is the inverse univariate cumulative normal distribution and t−1
υ is the inverse

of the univariate Student’s distribution.
Archimedean copulas are primarily associated with the works of Genest and MacKay [55],

Genest and Rivest [56] and Genest et al. [57]. The Archimedean representation reduces the
study of a multivariate copula to a single univariate function. The Archimedean copulas
are generated by a function ϕ called the generator of the copula with continuous function
properties, strictly decreasing in intervals (0, 1) to (0, ∞), such as ϕ(1) = 0 and convex.
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For simplicity, we considered the bivariate copula to involute the form of the Archimedean
copula proposed by Genest and Mackay (1986) for u, v ∈ (0, 1):

Cϕ(u, v) = ϕ−1(ϕ(u) + ϕ(v)) (9)

Archimedean copulas present several desired properties, namely, symmetry, associa-
tivity and being easy to build based on the knowledge of the generating function. Moreover,
for this copula type, the determination of measures of dependence is simplified. From
Equation (3), Kendall’s tau is calculated as follows:

τ = 1 + 4
∫ 1

0

ϕ(u)
ϕ′(u)

du (10)

In this study, we considered the following three different bivariate Archimedean
copulas expressed according to the choice of generator function: Clayton, Frank and
Gumbel. Table 1 reports all the used copulas in this paper, including explicit formulae of
bivariate copula functions and the range of the dependence parameter.

Table 1. Details (definition and parameter domain) of the copulas used in this paper.

Copula Expression Cθ(u,v) Range of Dependence Parameter

Clayton
(

u−θ + v−θ − 1
)−1/θ

]0, ∞[

Franck − 1
θ ln
[

1 + (e−θu−1)(e−θv−1)
e−θ−1

]
]−∞,+∞[\{0}

HRT (Survival Clayton) u + v− 1 +
{
(1− u)−θ + (1− v)−θ − 1

}−1/θ
]0, ∞[

Gumbel exp
{
−
[
(− ln u)θ + (− ln v)

]1/θ
}

[1, ∞[

Normal (Gaussian)
∫ φ−1(u)
−∞

∫ φ−1(v)
−∞

1
2π
√

1−θ2 exp
(

2θsω−s2−ω2

2(1−θ2)

)
dsdω [−1, 1]

Student’s

∫ φ−1(u)
−∞

∫ φ−1(v)
−∞

Γ( ν+2
2 )

Γ( ν
2 )πν

√
1−θ2

(
1 + X′Ω−1X

ν

)−(ν+2)/2
dX

[−1, 1]where t−1
ν is quantile function of the
Student’s distribution

with ν degrees of freedom, X = (x1, x2)
′ and

Ω =

(
1 θ
θ 1

)
is the correlation matrix

The choice of these copulas is motivated by our aim to include and evaluate several
types of copulas (Archimedean, elliptical), as it is not common to apply this approach in
radar meteorology quantitative precipitation estimation (QPE). Particularly, we emphasized
copulas with capacities to model the dependence between extreme values of the variables
of interest because these extreme values remain the least well retrieved from radar rainfall
algorithms. Thus, we privileged (focused) copulas with different tail dependence. The
tail dependence of a copula measures the probability of simultaneous extremes. In other
words, it is the probability that one variable is extreme given that the other is extreme. The
tail dependence indicator of a bivariate copula is derived from the following conditional
probabilities associated with the pair of continuous random variables (X1, X2) [37]:

λUP = lim
u→1−

Pr{F1(x1) > u | F2(x2)〉u } = lim
u→1−

1− 2u + C(u, u)
1− u

(11)

λLOW = lim
u→0+

Pr{F1(x1)〈u | F2(x2) < u } = lim
u→1−

C(u, u)
u

(12)
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where F1 and F2 are the marginal distributions for X1 and X2, with the continuous random
variables considered. Asymptotic independence is given by λLOW = λUP = 0, whereas tail
dependence values different from 0 denote the existence of upper (or lower) tail dependency
between extreme values of concerned variables. Because the upper (λUP) and lower (λLOW)
tail dependence coefficients are linked to the asymptotic behavior of the copula, they are
characterized by the invariant property under strictly increasing transformations of the
margin. Table 2 contains the lower and upper tail dependence coefficients of the copulas
used in this paper. Among these selected copulas, there is the HRT copula (also called
the Clayton survival copula). Lacking the properties of an Archimedean copula, HRT is
derived from Clayton as the limiting dependence structure for joint exceedances above a
high threshold in the class of Archimedean copula [58,59]. In this paper, the HRT copula
was used for its interest in the upper extreme values of bivariate considered variables for
which the dependency ratio is not zero, as seen in Table 2.

Table 2. Lower and upper tail dependence coefficients of the copulas used in this paper.

Copula λLOW λUP

Clayton 2−1/θ 0
Frank 0 0

HRT (Survival Clayton) 0 2−1/θ

Gumbel 0 2− 21/θ

Normal (Gaussian) 0 0
Student’s 2tν+1

(
−
√

(ν+1)(1−θ)
1+θ

)
2tν+1

(
−
√

(ν+1)(1−θ)
1+θ

)

2.4. Copula Estimation Strategy

Genest and Favre [51], Nelsen [53] and Boyé et al. [33] presented in a simple way
the successive steps required to build a copula model. One important step is to estimate
the parameters of the copulas. Remember that the copula function associates the joint
distribution law to univariate marginal distributions. Thus, the estimation of a copula
consists of determining the common parameter for the dependence structure, denoted
hereafter as θ, and the marginal distribution parameters referenced in (αi)i=1,2 for the
bivariate case considered in our study. These latter parameters are important because the
final step of copula simulations focuses on the generation of different sets of probable
variables to obtain synthetic datasets and compare them to original ones. Although there
are many nonparametric and parametric strategies to estimate copulas, we focused on two
parametric rank-based maximum pseudo-likelihood procedures, namely, Inference From
Margins (IFM) and Canonical Maximum Likelihood (CML).

The Maximum Likelihood (ML) method is based on the optimization of the joint
distribution function (i.e., the selected copula). This consists of maximizing a log-likelihood
function. For a bivariate case of two random variables, X1 and X2, and assuming that
marginal distributions of these variables are continuous with probability density func-
tions f1(x1, α1) and f2(x2, α2), the joint probability density function can be expressed as
follows [42,60]:

f (x1, x2; α1, α2, θ) = cθ [F1(x1; α1), F2(x2; α2)] f1(x1; α1) f2(x2; α2) (13)

where F1 and F2 are univariate cumulative distribution functions with respective parameter
vectors α1 and α2; and cθ is the density of the selected copula C parameterized by a
parameter θ and described as

cθ(u, v) =
∂2Cθ(u, v)

∂u∂v
(14)
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By applying logarithm transformation to Equation (13), the log-likelihood function for
the joint distribution, noted as L(α1, α2, θ), can be written as

L(α1, α2, θ) =
n

∑
j=1

log cθ

[
F1
(
x1j
)
, F2
(
x2j
)]

+
n

∑
j=1

log f1
(
x1j; α1

)
+

n

∑
j=1

log f2
(

x2j; α2
)

(15)

The ML method consists of estimating the marginal parameters (α1, α2) and copula
parameter θ simultaneously. However, as the dimension of multivariate distribution
becomes large and supposing that marginal parameters are multi-parameter functions, the
number of parameters increases and the optimization problem becomes more difficult. Joe
and Xu [61] proposed an estimation method called Inference Functions for Margins (IFM)
which greatly reduced the computational difficulty. To determine the parameters α1, α2
and θ, the IFM method splits the maximization into the following two steps:

(1) Estimate α1, α2 by maximizing the log-likelihood of the two univariate marginal
distributions separately (the two last terms in Equation (15)) [39]:

α̂i = arg max
n

∑
j=1

log fi
(
xij; αi

)
(16)

(2) Estimate the association parameter θ given the previous estimates of α1, α2:

θ̂ = argmax
n

∑
j=1

log c
(

F1
(
x1j; α̂1

)
, F2
(
x2j; α̂2

)
; θ
)

(17)

Since Genest and Favre [51] argued that the estimates of θ from the IFM technique
depend on the choice of marginal function, we also employed the empirical Canonical
Maximum Likelihood (CML) method [33] to assess the quality of the IFM method’s estimate
of θ. The CML approach does not require prior estimation of marginal distribution. It
initially transforms the observations

{(
X1j, X2j

)}n
j=1 into pseudo observations with uniform

margins
{(

U1j, U2j
)}n

j=1 defined as follows for each considered variable:

U1i =
1
n

card
{

X1j ≤ x1i
}

(18)

U2i =
1
n

card
{

X2j ≤ x2i
}

(19)

Then, the estimation of the association parameters θ is executed as

θ̂CML = argmax
n

∑
j=1

log c
(
U1
(
u1j
)
, U2

(
u2j
)
; θ
)

(20)

2.5. Implementation of Simulations from Copula

This section introduces the methods used in this study to generate realizations of the
copulas from which we will design our simulated synthetic datasets for rain and radar
variables. From the original datasets, we determined the association between random
variables using copula parameters calculated as described in the previous subsection.
Once the measure of dependency is determined, we must perform simulations to gain
an idea of the shape of the distribution and assess the reliability of simulated bivariate
values compared to original ones. The simulation strategy is based on the following two
main steps:

• Simulate uniform random variables (U1 and U2 for a bivariate case) for a given copula;
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• Transform the random uniform numbers to variable data (X1 and X2) using univariate
marginals F1 and F2, whose parameters have been previously determined. This
approach can help in generating synthetic datasets using the copula method.

More details are available in the work of Bouyé et al. [33], Wang et al. [62] and Favre
et al. [39].

In the case of elliptical copula (Normal and Student’s copulas in this study), due to its
simplicity, the simulations of the uniform distribution functions of any continuous random
variables refer to Bouyé et al.’s [33] method. The simulations of random uniform variables
for a given Archimedean copula can be accomplished using two methods according to the
considered copula. The currently used generators are based on the recursive simulating
conditional distribution [33,35,39,55]. The general algorithm is described as follows for a
bivariate case:

• Generate two independent uniform random variables, U1 and U2. Denote them as v1
and v2, respectively.

• Set U1 = v1.
• Recursively generate U2 using the conditional distribution of the copula given, u1,

which is defined as follows:

Cu2|u1
(u1, u2) = Pr{U2 ≤ u2|U1 = u1} =

∂C(u1, u2)

∂u1
(21)

Finally, the values of u2 are obtained by inverting the conditional distribution
(Equation (21)) throughout the relation u2 = C−1

2 (v2, u1).

3. Materials and Methods
3.1. Original Datasets and Methodology

To implement the copula method introduced in the present study, two types of datasets
were used. A set of synthetic polarimetric radar variables derived from simulations based
on the T-matrix scattering code [63] was used to intrinsically illustrate the different steps
involved in investigating the dependence between two variables, KDP and R, within the
copulas theory. For this purpose, a large sample of 11,647 one-minute DSDs was used as
the basis for these electromagnetic scattering simulations, as detailed in the work of Gosset
et al. [8]. The final objective was the application of the copula method to realistic radar data
for quantitative precipitation estimation; R-KDP algorithms were developed from copula
simulations resulting from original datasets based on the X-band radar dataset (Xport)
gathered during African Multidisciplinary Monsoon Analysis (AMMA) campaigns in the
North of Benin [7,8,29]. This served to include measurement issues in investigating the
dependence between KDP and R throughout copulas theory. The performances of copula-
based rainfall algorithms were assessed using measurements from the Xport experiment as
part of the Megha-Tropiques algorithm validation campaign in Niamey (Niger) in August
2010 [64,65]. Sample PPI plots from the 13 August 2010 storm are presented in Figure 1.
The plots show Xport reflectivity and specific differential phase fields. The radar rain rate
estimates were compared with the network data of about 50 rain gauges. With this original
approach, the robustness of the algorithms was thus evaluated.



Atmosphere 2022, 13, 1298 11 of 28
Atmosphere 2022, 13, x FOR PEER REVIEW 11 of 29 
 

 

 
Figure 1. PPI image of Xport radar observations in Niamey during the Megha-Tropiques satellite 
ground validation program at 1411UTC, 13 August 2010: (a) ZH (dBZ), (b) KDP. 

3.2. Copulas Simulations Datasets 
To illustrate the applicability of the copula simulation algorithms proposed in this 

paper, we considered the bivariate case including the rain rate R and the specific differen-
tial phase shift KDP variables. The design of a synthetic database from the copula simula-
tion results from a multi-step process that is thoroughly described by Genest and Favre 
[51] for a bivariate case study. Here, we outline the main steps. First, graphical methods 
were used to verify the link and the nature of dependency relationship between R and 
KDP. One of the graphical tools used here to check for the existence of dependency is chi-
plots [51]. This method was originally proposed by Fisher and Switzer [66,67]. Briefly, chi-
plots are a construction based on the 𝜒  statistic to analyze the independence of samples 
in a two-way table from functions depending exclusively on the ranks of ‘observations’ 

Figure 1. PPI image of Xport radar observations in Niamey during the Megha-Tropiques satellite
ground validation program at 1411UTC, 13 August 2010: (a) ZH (dBZ), (b) KDP.

3.2. Copulas Simulations Datasets

To illustrate the applicability of the copula simulation algorithms proposed in this
paper, we considered the bivariate case including the rain rate R and the specific differential
phase shift KDP variables. The design of a synthetic database from the copula simulation
results from a multi-step process that is thoroughly described by Genest and Favre [51]
for a bivariate case study. Here, we outline the main steps. First, graphical methods were
used to verify the link and the nature of dependency relationship between R and KDP. One
of the graphical tools used here to check for the existence of dependency is chi-plots [51].
This method was originally proposed by Fisher and Switzer [66,67]. Briefly, chi-plots
are a construction based on the χ2 statistic to analyze the independence of samples in a
two-way table from functions depending exclusively on the ranks of ‘observations’ (i.e.,
KDP synthetic sample and rain rate R data from DSD measurements, as described above).
For more details, the reader is referred to Genest and Favre [51].
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The second step concerns the determination of the selected copula parameters, θ. As
we mentioned above, this is achieved using a two-step method called IFM. The initial step
consists of determining the appropriate margins for each concerned variable. To model the
parametric distribution for univariate data, we used the method of maximum likelihood
detailed in Section 2 using relation (16). To this end, we evaluated almost twenty theoretical
distribution functions with one, two or three parameters, including Exponential, Geometric,
Poisson, Rayleigh Weibul, Birnbaum-Saunders, Extreme Value, Gamma, Inverse Gauss,
Logistics, Log-Logistic, Nakagami, Log-Normal, Normal, Rician, Uniform and Generalized
Pareto distributions. The reason for using so many theoretical functions is that Genest and
Favre [51] indicated that the IFM estimation copula parameter technique is sensitive to
the selected theoretical marginal distribution. Therefore, it appeared useful to test a wide
variety of functions and retain only those that best fit the empirical distributions of KDP
and R. The quality of the fit of marginal distributions was assessed using the criterion of
Akaike (AIC criterion) suggested by Frees and Valdez [35]. This goodness-of-fit score was
calculated for each theoretical distribution using the following formula:

AIC = n× log(MSE) + 2× k (22)

where k is the number of parameters being estimated, which is determined by the type
of univariate theoretical marginal distributions considered; n is the size of the sampling

dataset; and MSE = ∑n
i=1[Fth(i)−Fobs(i)]

2

n−1 represents the mean square error between the theo-
retical values (Fth(i)) and empirical distribution function values (Fobs(i)). Moreover, since it
is a classical fact of statistics that the power of a test may depend on sample size, we also
tested the effect of the ‘calibration’ data sample size.

Finally, the parametric estimates Fα̂1 and Fα̂2 of the margins were input to the log-
likelihood of copula (Equation (17)), which was then maximized to determine the parameter
θ of copula. These values of copula parameters were also estimated without assuming
theoretical marginal distributions using the CML method. The advantages of using the two
approaches is that θ determination from the IFM method could be assessed by comparing
with the CML results and thus confirming the best margin theoretical functions.

3.3. Quantile Regression Method

One of the aims of this paper was to extend the observed dataset used for deriving
rainfall estimators by adding synthetic extreme data from copula simulations which take
into account the dependency between the considered variables. Because of the increased
number of extreme values, regression techniques were required, which are less sensitive
to those values than classic Least Mean Square estimation (hereafter LMS method) of
rainfall algorithms. Indeed, for the conventional LMS method, the estimation of the mean
parametric regression model µ(X, β) accounting for the dependence of the conditional
mean of a variable Y on its covariates X is a solution for the minimizing problem

β = arg min
β

n

∑
i=1

(yi − µ(xi, β))2 (23)

where β stands for the parameters of the theoretical model µ(X, β), which is generally
formulated as a linear function based on the logarithm transformation of variables Y and X
in radar meteorology. In Equation (24), the minimized quadratic cost function increases
quadratically with residuals, and very large differences should be penalized. Koenker and
Hallock [68] indicated that the non-robustness of the LMS method is partially explained
by the effect exerted by such unusual extreme values in the dataset. Furthermore, one of
the limitations of the LMS regression method is to assume, a priori, that the explanatory
variable X has a uniform effect on the whole distribution of the dependent variable Y. In our
case, the variable of interest is the rainfall rate, which is characterized by strong variability
and is highly dispersed. A specific value of KDP corresponds to various values of rain rate.
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Lastly, the determination of algorithms for rainfall estimation is usually carried out using
a given range of rainfall rate (variable interest). However, in such conditions when one
observes the variable of interest beyond a threshold, estimation of the conditional mean
and mean relationships is compromised in the presence of censored or truncated data [69].

The Quantile Regression Estimation (hereafter QRE) method provides a more detailed
picture than the classic LSE method, as it focuses on the entire conditional distribution
of the dependent variable, not only on its mean [68]. Givord and D’Haultfoeuille [69]
argued that this method can be better adapted to certain types of data (truncated variables,
presence of extreme values, non-linear models). According to the extensive discussion in
Koenker and Hallock [68], QRE is based on minimizing asymmetrically weighted absolute
residuals and is intended to estimate conditional median functions and a full range of other
conditional quantile functions. In other words, in comparison to the LMS method of the
mean regression model concerned with the dependence of the conditional mean Y on the
explicative variable X, the quantile regression estimator tackles this issue at each quantile of
the conditional distribution. Thus, the QRE method provides a more complete description
of how the conditional distribution of Y given X = x depends on x. Moreover, quantile
regressions are also better suited to truncated or censored dependent variables and the
occurrence of extremes values in the dataset samples.

In brief, by considering the random variable Y, whose distribution function is ex-
pressed by FY(y) = P(Y ≤ y), the p-th quantile of Y can be defined by:

Qp(Y) = Inf{y : FY(y) ≥ p} (24)

In the case of quantile regression estimators, the dependence of conditional quantiles
of the variable of interest Y defined by Qp(Y|X) = inf {y: FY|X(y) ≥ p}, with the explanatory
variable X value, is modeled. In comparison with the LSE method based on the minimizing
issue as written in Equation (24), the QRE method proceeds in exactly the same manner.
However, the quantile regression is linked to the operations of ordering and sorting the
observations [68]. From the ordered values, the estimation of the parameters βp of the
theoretical quantile function is realized by solving [68]:

βp = argmin
β

n

∑
i=1

ρp(yi − ξ(xi, β)) (25)

where ρp is a ’check function’ defined by ρp(u) = u(p− I(u < 0)), I is the usual indicator
function, and ξ(xi, β) is the parametric function or the conditional quantile function.

Based on the works of Frees and Valdez [35] and Bouyé and Salmon [70], copulas
are well suited to the concept of ‘quantile regression’. Specifically, in the case of bivariate
parametric copula Cθ , if the probability distribution of y which is conditional on x is defined
by p = FY(y|X = x), the p-th quantile would be the solution y of the equation [35,70]:

p = FY(y|X = x) = C1[FX(x), FY(y), θ] (26)

where C1[u, v, θ] = ∂
∂u Cθ is the first partial derivative for the considered copula, and u = FX

and v = FY are the distribution functions of the variables X and Y, respectively. Under
certain conditions, if one is able to analytically express C1, the partial derivative of the
parametric copula Cθ and also analytically determine the inverse of this function, Bouyé
and Salmon [70] reported that the quantile y could be explicitly expressed as follows:

y = F−1
Y [D(FX(x), p, θ)] (27)

where D(FX(x), p, θ) is the partial inverse of C1.
Thus, for various quantiles and different values of x, Equation (27) results in regression

curves that can be used directly for the estimates of Y values conditional on x. These curves
might also be modeled by linear or nonlinear functions. However, such an approach is
limited by the difficulty, for some parametric copulas, in determining an analytical ex-
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pression for the inverse of the partial derivative c1. Furthermore, in the case that C1 is
not analytically invertible, the procedure for numerical root finding may be computation-
ally expensive. Hence, we determined the coefficients of rainfall algorithms by directly
applying the above-mentioned method of ‘quantile regression’ on observed and copulas
synthetic datasets.

4. Results
4.1. Copulas Simulation Datasets Assessment

Figure 2 shows the ‘chi-plot’ resulting from the sample of ‘calibration’ selected for KDP
and R variables. The coordinates of the points are (λi, χi), where λi is a measure of distance
between the pair (KDP

(i), R(i)) of the ‘calibration’ dataset and the center of the scatter plot
and χi is the square root of the traditional chi-square test statistic for independence in the
two-way table generated by counting points in the four regions delineated by the lines
x = KDP

(i) and y = R(i) [51].
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Figure 2. Dependence chi-plot for rain rate R from DSD measurements and corresponding KDP

synthetic values derived from T-matrix code simulation based on the same DSD dataset gathered
during the AMMA intensive campaigns in 2005, 2006 and 2007 in Northern Benin.

From Figure 2, it can be seen that most of the points do not fall (only one point) within
the confidence band of the ‘chi-plot’ (delineated by dashed horizontal lines in the graph),
which brings together the points indicating independency between the KDP and R variables.
As expected, we also noted the presence of a positive association between KDP and R. To
quantify the degree of dependence between KDP and R, the empirical value of Kendall’s tau
was calculated from relation (5). Based on the synthetic sample of KDP and the DSD-derived
rain rate, we obtained a value of 0.817, which indicated a good correlation between the two
variables of interest.

Figure 3 shows, for the five best fitted theoretical distribution functions, the evolution
of the AIC score as a function of the data sample size. The smallest AIC value indicates
the best fitted model. One can readily see from Figure 3 the strong dependence of the
test on sample size. For each variable, we retained only the model with the best AIC
scores regardless of the sample size. Thus, the specific differential phase shift was modeled
using the Generalized Pareto distribution, whereas the log-logistic distribution fits the
original datasets of rain rates well. Figure 4 illustrates the empirical cumulative distribution
function (CDF) of the variables R and KDP for its five best theoretical distribution functions.
It can be seen that despite the proximity of the CDF curves, the AIC criterion appears as a
goodness-of-fit score for discrimination between them.
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differential phase shifts and rain rates, by considering the sample size of 7000.
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For all the selected copulas Cθ , the obtained values of θ from the IFM method can be
seen in Table 3. These values of copula parameters were also estimated without assuming
theoretical marginal distributions using the CML method. The proximity of the θ values,
regardless of the estimation method, confirms the choice of KDP and R margin theoretical
distribution functions. Hereafter, only the values from the IFM method were considered.

Table 3. Inference Function for Margins (IFM) and empirical Canonical Maximum Likelihood (CML)
estimates of copula parameters from a sample of size 7000 of synthetic R and KDP values from
T-matrix simulations using DSD gathered at Nangatchori (Benin) during AMMA experiments. For
IFM estimates, log-normal and log-logistic marginal functions were used for R and KDP, respectively.

Copula θ̂IFM θ̂CML

Clayton 7.728 6.574
Frank 9.620 9.678

HRT (Survival Clayton) 11.001 13.287
Gumbel 8.552 9.251

Normal (Gaussian) 0.983 0.980
Student’s 0.984 (ν = 7) 0.983 (ν = 3)

Obviously, all the copulas are not appropriate and we should refine them using tools
such as a dependogram, Kendall diagram or others existing in the literature. In our case,
to test whether a copula is suitable for the description of the dependency in the data of
interest, we compared the scatter plot of empirical uniform variables of KDP and R (the
empirical joint distribution function or copula) with the simulated dataset from copulas.
This type of diagram is called a dependogram. Figure 5 shows examples of dependograms
standing for the more or less simultaneous nature of the copula achievements with those of
the empirical copula. This simultaneity (superimposition of black and gray dots) is more
obvious for Gumbel and Student’s copulas, which would indicate a better characteriza-
tion of the dependence between radar-specific differential phase shifts and rain rates by
both theoretical copulas. In particular, in the tails, it will be useful to analyze whether
concurrency is high and, therefore, if it is necessary to calibrate for our base sample a
copula with tail dependence. For the Student’s copula, as expected, dependencies in the
upper and bottom tails are because this copula is the only one to have non-zero asymptotic
dependence for both small and large values. However, the Gumbel copula and HRT seem
more suited to modeling the upper tail dependencies, while the Clayton copula is more
appropriate for lower tail distributions.

One of the issues with using the copula method is selecting the copula that provides
the best fit to resolve the problem at hand. Many proposals of goodness-of-fit tests for
copulas exist in the literature [71,72]. However, since we have the possibility to determine
the empirical copula of the data, the best copula could be chosen as the one that minimizes
the distance to the empirical. This is realized using the K-K plot (Figure 6) derived from
pseudo-samples obtained by transforming the empirical or original simulating data using
the empirical distribution function (U1 and U2 for a bivariate case). The distance between
the empirical and simulated copula is shown in the figure as the mean standard error (MSE)
for each copula considered.

For the application and in order to include measurement issues, we considered actual
specific differential phase shift (KDP) from an X-band radar dataset gathered during AMMA
experiments (2006–2007) in Northern Benin and the corresponding rain rates (R) using a
rain gauges network operating during these campaigns. From a bivariate observed sample
of size 2688, drawing a positive dependence between KDP and R (Figure 7), we simulated
20,000 synthetic data samples following the simulation setup for the four best copula
families (Gaussian, Student’s, Gumbel and HRT copulas) with parameters estimated by the
IFM (Inference of Margins) method (Table 4). In Figure 8, observed couples (in black circles)
are shown together with synthetic samples (gray circles). As expected, in the context of our
application, synthetic datasets from copulas with non-null upper tail dependence (Gumbel,



Atmosphere 2022, 13, 1298 17 of 28

HRT and Student’s copulas) were close to the observed data values. In particular, they
reproduce higher values than Gaussian copula simulations. This suggests the possibility of
designing polarimetric rainfall algorithms for X-band radars since these realistic synthetic
data involve large samples of higher values of KDP and R.
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Table 4. Inference Function for Margins (IFM) and empirical Canonical Maximum Likelihood (CML)
estimates of copula parameters from a sample of size of 2688 derived from areal data of R (rain
gauges) and KDP (Xport radar) operated in Northern Benin during AMMA experiments. For IFM
estimates, GEV and Burr marginal functions were used for R and KDP, respectively.

Copula ^
θIFM

^
θCML

Clayton 1.165 1.526
Frank 11.474 11.474

HRT (Survival Clayton) 3.084 2.682
Gumbel 2.616 2.601

Normal (Gaussian) 0.754 0.790
Student’s 0.793 (ν = 2) 0.816 (ν = 3)
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Figure 8. Simulated random sample of size 20,000 from four copula families with parameters
estimated by the IFM (Inference of Margins) method. Observed values are indicated in black circles
and copula-simulated values are in gray circles.

4.2. Statistical Rainfall Regression Estimators

For radar quantitative precipitation estimation to perform well, the convenient choice
of algorithm is decisive. Thus, to analyze the impact of the datasets generated by the
copula method, these data were used to determine the power-law algorithms R = aKb

DP by
employing the classic LSE method. Each copula synthetic datasets were used to derive an
equation for mean rain rate estimation. As a comparison, the Least Mean Square estimate
(LMS) based on an observed ‘calibration’ dataset was also performed. Figure 9 illustrates
the difference between the derived algorithms by superimposing on the scatterplot of
R-KDP observed data (gray points), the fitting curves from copula datasets and the resulting
rainfall algorithms based on the original database. We also show the relation of the LMS
method based on ‘calibration’ data without thresholds, which differs from the estimator
derived by Koffi et al. [29] that discarded rain rates of below 5 mm/h, whereas in the
present study, we considered the entire range of rain rates.
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Figure 9. Scatterplot of differential specific phase shift (KDP) versus rain rate (R) for the calibration
sample data from the radar dataset from AMMA experiments (Benin, 2007). Five estimated regression
curves, one from real observed data (darker dashed curve) and four from Least Mean Square fitting
(LMS) over copula-simulated data. Gray circles are observed couples.

The algorithms from extreme values of Gumbel copula and that of Student’s copula
(which has no null asymptotic upper tail dependence coefficient) fit well with the observed
dataset. The copula approach can help to correct the disadvantages due to the lack of
sufficient extreme values in the database of previous investigations. Moreover, the fact
that the algorithm from the Gaussian copula (or bivariate normal copula), which is not
an extreme values model, performs better than the classic R-KDP derived directly from
‘calibration data’ indicates the usefulness of the copula approach, which allows us to better
characterize the dependency between variables in relationships by using invariant data
logarithm transformation correlation coefficients.

The further analysis of LMS together with QRE-based rainfall algorithms is subse-
quently presented in Figure 10 with the aim of showing the potential improvement of
fitting by taking into account quantile regression estimation. From Quantile Regression
Estimation (QRE) and LMS-derived algorithms, there is evidence that there is a gap be-
tween the LMS mean fitted curve and the 0.5 quantile adjustments. As mentioned above,
this is partially due to the non-robustness of the LMS method that is affected by the effect
exerted by unusual extreme values in the dataset [68]. This gap appears to increase when
considering extreme value copulas, as Gumbel and HRT show uneven fitting results for
0.5 quantile conditional distributions relative to LMS regression. In addition, according to
the copula considered, adjusted R-KDP curves are qualitatively better for quantiles above
0.5. For Gaussian copula, to achieve the best performing algorithm, we should consider
0.8 percentile distribution. Conversely, lower percentiles are better for Student’s, Gumbel
and HRT copula estimators. This highlights the need to investigate the entire conditional
distribution to determine radar rainfall estimators.
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Figure 10. Same as Figure 9, but superimposed curves are LMS vs. Quantile Regression Estimation
(QRE) of R on KDP (R = aKDP

b) for different quantile values or different probability levels (0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9): (a) QRE curves fitted on calibration radar data, (b–e) QRE curves deduced
from adjustments based on simulated samples from four families of copulas. The LMS best fit over
calibration data curve and the median (q = 0.5) QRE are indicated by the darker dashed and solid
lines, respectively.

4.3. Evaluation of Rainfall Estimation

The performances of the rainfall estimation algorithms applied to KDP values from the
‘validation’ sample (data from X-band experiments in Niamey in 2010) were quantitatively
evaluated by comparing retrievals to rain rate of the same sample using bulk statistics
for intense rain rates (R ≥ 30 mm/h), often poorly retrieved (Figure 11). As expected
from Figure 9, in heavy rain situations, the performance of the classic R(KDP) algorithm
from the LMS method was four times less than the 0.5 percentile-derived algorithm. Rain
rates of over 30 mm/h yield increased the performance of estimators with the percentile
considered. Thus, the 0.9 percentile-derived R(KDP) is the best estimator with a Kling and
Gupta efficiency (KGE) [73] of 12 times higher than Least Mean Square method.
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Figure 11. Comparison of KGE score through bar plot between radar estimate algorithms (Least Mean
Square and Quantile Regression Estimation algorithms based on calibration data). The reference
dataset for validation is the Niamey rain gauge data, and the rain rate threshold (30 mm/h) to
calculate KGE is also indicated.

The impact of the copula approach was also quantitatively studied. Figure 12 displays
the performance of algorithms investigated by stratifying results according to various
thresholds on the rain gauge rates and involving whole data distribution with respect
to the percentile of rainfall rates considered to determine algorithms. The KGE score is
used to measure how close estimations are to the observations. To better understand the
interpretation of results, it is useful to keep in mind that a value of 1 indicates perfect
estimates, while a KGE value equal to 0 or negative means the retrieval is not better or even
worse, respectively, than using the mean value of predicted rain rates.

It is evident from the figure that for a given rainfall rate threshold (lower bound of
the considered rainfall rate interval) indicating the targeted rainfall type for radar retrieval,
the R(KDP) estimator becomes more efficient considering larger KDP-conditioned rainfall
quantiles for the determination of its coefficients based on radar/rain gauge data samples. A
similar result is also observed for R(KDP) algorithms based on Gaussian copula simulations
for quantiles up to 0.7. However, between quantiles 0.7 and 0.8, it was exhibited that the
KGE values (standing for the performance of estimator) are independent of the quantile
considered for a targeted rainfall type.

On the other hand, for the retrieval of a specific type of rainfall from the radar, the
estimators deduced from HRT, Gumbel and Student’s copulas show a greater independence
from the quantile considered for its determination. This result indicates that such algorithms
are more robust with respect to the choice of KDP-conditioned rainfall quantiles considered
when establishing them.

For heavy rainfall rates (>30 mm/h), algorithms derived from synthetic Gumbel,
Student’s, HRT and Gaussian simulated datasets exhibited better performance compared
to the retrieval method based on ‘calibration’ observed radar and rain gauge datasets.
Specifically, for the percentile range from 0.2 to 0.8, algorithms derived from Gumbel,
Student’s and HRT copulas with non-null tail distributions led to a KGE of above 0 for
a rain rate threshold of almost 100 mm/h. This result shows that copula-based R(KDP)
algorithms lead to better performance than the classic method based on radar-gauge
comparison for rain rates higher than 100 mm/h. Thus, to reach such a performance, a
Gaussian-derived algorithm should be determined considering percentiles between 0.6 and
0.8. The reason would be that the Gaussian copula with a null tail distribution is unable to
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reliably reproduce rain rates and specific differential phase extreme values, as shown in
Figure 8.

Atmosphere 2022, 13, x FOR PEER REVIEW 24 of 29 
 

 

 
Figure 12. Isocontours of KGE score considering threshold of rainfall validation reference data and 
Quantile Regression Estimation algorithms. 

It is evident from the figure that for a given rainfall rate threshold (lower bound of 
the considered rainfall rate interval) indicating the targeted rainfall type for radar re-
trieval, the R(KDP) estimator becomes more efficient considering larger KDP-conditioned 
rainfall quantiles for the determination of its coefficients based on radar/rain gauge data 
samples. A similar result is also observed for R(KDP) algorithms based on Gaussian copula 
simulations for quantiles up to 0.7. However, between quantiles 0.7 and 0.8, it was exhib-
ited that the KGE values (standing for the performance of estimator) are independent of 
the quantile considered for a targeted rainfall type. 

On the other hand, for the retrieval of a specific type of rainfall from the radar, the 
estimators deduced from HRT, Gumbel and Student’s copulas show a greater 

Figure 12. Isocontours of KGE score considering threshold of rainfall validation reference data and
Quantile Regression Estimation algorithms.

5. Discussion and Conclusions

Quantitative precipitation estimates (QPE) by weather radar suffer from several
sources of uncertainties that are often difficult to disentangle. Very often, the poor rep-
resentation of the links between radar observables and rainfall parameters such as rain
rate, especially for intense rainfall, which is insufficiently represented in the adjustment
samples of rainfall estimators, limits its performance. The optimization methods of al-
gorithms based on setting up estimators by focusing on specific ranges of rainfall may
prove to be ineffective when applied for the retrieval of other types of rain rates outside the
calibration rainfall range considered. Furthermore, the generally used statistical method
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for determining the algorithms based on Least Mean Squares may be inadequate when
it comes to investigating the whole distribution of variables targeted for establishing the
rainfall estimators.

In this study, we proposed a method for estimating rainfall rates through the R(KDP)
algorithm, whose coefficients were determined from simulations of extreme value copulas,
allowing us to transcribe the link between R and KDP for all rain types. This approach
explicitly accounts for the joint empirical distributions of these two variables that are
modeled by the well-chosen copulas. To evaluate the robustness of the method, the
algorithms were fitted based on radar/gauge data of events gathered during the AMMA
intensive campaign in Northern Benin in 2007 and applied to the events in Niamey observed
during the validation experiment of Megha-Tropiques satellite measurements in 2010.

By conducting a quantitative diagnosis in terms of the KGE performed for rain rates
of greater than 30 mm/h for algorithms based only on radar/gauge observed ‘calibration’
dataset (LMS and QRE statistical methods applied to derive R(KDP) coefficients), condi-
tional quantile regression algorithms significantly reduced the errors in rainfall retrieval,
more so than LMS regression. It was shown that assuming a 0.9 percentile, KGE increases
to 0.5, a score that is rarely achieved for this type of rain. The similarity score for the R(KDP)
algorithm has been reported by researchers [29,74] in the optimizing framework of the
performances of this estimator. To reach such scores, in the cited previous work, all rainfall
types were included in the bulk statistics. Given the high weight of rainfall rates below
30 mm/h, their results were more influenced by this range of rainfall. Unlike these works,
in our study, only higher intensity rainfalls (>30 mm/h) were considered for the KGE
calculation, whereas for these rain types, the performance of the algorithms was generally
degraded. Thus, it was shown that Quantile Regression Estimation performs better than
the Least Mean Square method that assumes the mean distribution.

Another interesting result that is clearly shown in this study is the contribution of
the copula approach to increasing the performance of algorithms in estimations of the
higher intensity rain rates. At this stage, R(KDP) formulas were fitted using either copula-
simulated datasets or radar/gauge observations by applying only Quantile Regression
Estimation. We noticed that the R(KDP) estimator adjusted for radar/rain calibration does
not exceed 0.6 in terms of KGE regardless of the percentile and rainfall rate threshold
considered. In addition, the reliable determination of intense rainfall (>30 mm/h) is almost
impossible considering R(KDP) algorithms pre-established by considering sample quantiles
of calibration data of less than 0.3. For higher rainfall rates (i.e., for higher thresholds
considered to describe extreme rainfall), more important quantiles must be considered for
the establishment of algorithms in order to lead to reliable estimates. For this purpose,
Matrosov et al. [27,28] and Koffi et al. [29] used the traditional LMS method that is closest
to the 50th quantile (a measure of the central tendency of the distribution) to achieve
satisfactory results for rainfall greater than 30 mm/h. However, as we can see in the current
work, this is a minimum threshold since the QRE method shows that better performance
can be achieved by considering higher quantiles for the same types of targeted precipitation
rates. Thus, it was found that rainfall corresponding to higher quantiles provides more
accurate estimates of intense precipitation. With a QRE method, users are free to choose
the desired statistical quantile level according to their application [49].

For estimators derived from simulated extreme value copulas (Gumbel and HRT)
or with non-null distribution tail copulas (Student’s copula), the errors are considerably
reduced, with the possibility of obtaining a performance score (KGE) varying between
0.6 and 0.8 for rainfall rates of above 5 mm/h. These results are all the more important
as they overpass those of Koffi et al. [29], although they applied optimization criteria
(giving more weight to higher rain rates by discarding values below 5 mm/h) when
determining the coefficients of the R(KDP) estimator, contrary to our results, for which no
thresholding on rain rate values were obtained a priori. Moreover, at equal percentiles
between 0.15 and 0.8, the estimators derived from the synthetic copula data outperformed
those derived from the radar/gauge observations. This indicates that taking into account
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the link between the radar (KDP) and rainfall (R) variables is crucial for better-performing
algorithms. The knowledge of such a link is even more important for acceptable retrievals
of heavy rainfall. Our results show that for the Gumbel, HRT and Student’s copulas, given
percentiles between 0.2 and 0.8, it appears possible to adequately estimate rainfall rates of
almost above 100 mm/h (KGE > 0). For a Gaussian copula, reaching such performances
requires considering higher percentiles (0.6 to 0.8) for estimators’ determination. This
demonstrates, first, the importance of taking into account tail dependence copulas (HRT,
Gumbel and Student’s) in the context of extreme rainfall quantitative estimation. The
algorithms for estimating intense rainfall based on such copulas of extreme values (HRT
and Gumbel) and those with non-zero tail distribution (Student’s) to a lesser degree are
better suited and more robust since their performances seem, in terms of KGE, not to be
dependent on the choice of the rain rate range (standing by a wide range of percentile
values from 0.2 to 0.8 providing similar KGE scores) considered for their determinations.
These results illustrate the interest of including the copula approach in the design of
QPE algorithms. In particular, to overcome the limitation in the size of the calibration
datasets and scarcity of extreme values, which are drawbacks in determining efficient
rainfall estimators of intense precipitations, the copula method appears quite important to
generate reliable synthetic datasets. This study highlighted the advantage of using a copula
model that captures the dependence between radar observable and rainfall parameters and
consequently offers a way to produce accurate simulations of extreme rainfall. Furthermore,
the Quantile Regression Estimation method, applied on such synthetic datasets, provides a
more detailed picture than the classic LMS method as it focuses on the entire conditional
distribution of the dependent variables, not only on its mean. In future work, a promising
approach using copulas that we should consider is probabilistic quantitative precipitation
estimation by directly inverting, analytically or numerically, the first partial derivative of
the considered parametric copula. Such a method would allow us to discard the assumption
of a power-law relationship between R and KDP. Moreover, monitoring the probability
of extreme precipitation leading to flash flooding could be achieved by combining this
method with pre-established precipitation rate thresholds.
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