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Abstract: All elements of the scattering matrix have been numerically studied for particles of irregular
shapes whose size is much larger than incident wavelength. The calculations are performed in the
physical optics approximation for a particle size of 20 µm at a wavelength of 0.532 µm. Here the
scattered intensity reveals the backscattering coherent peak. It is shown that the polarization elements
of the matrix reveal the surges within the backscattering peak. The angular width of the surges
does not practically depend on particle shape, but depends on the particle size. It is shown that
these surges are created by interference between the conjugate scattered waves propagating in the
inverse directions. The results obtained are of interest for interpretation of lidar measurements in
cirrus clouds.

Keywords: physical optics approximation; light scattering; backscattering; Mueller matrix; cirrus
clouds; ice crystals

1. Introduction

The problem of light scattering by particles of irregular shapes whose sizes are much
larger than an incident wavelength is a challenging problem in optics. These particles occur
in the atmosphere as aggregates of ice crystals in cirrus clouds [1], and as the large-scale
particles of the atmospheric dust [2], etc. Such particles are also ubiquitous in the Universe.
For example, they are a part of the powder-like substance covering the surfaces of solar
system objects [3]. In particular, they are a part of the regolith covering the Moon.

The theoretical solution of the light scattering problem by the large irregular particles
has not yet been obtained. Here, the well-known methods for numerical solution of the
Maxwell equations [4] like the finite-difference time-domain method (FDTDM) or the
discrete dipole approximation (DDA) are not effective because the solution demands
extreme computer resources at a large magnitude of the size parameter x = πD/λ, where
D is the particle size and λ is the wavelength. At present, the numerical solutions can be
obtained only at about x < 100. The geometric-optics approximation for such particles is
not applicable too, since the geometrical optics do not take into account the interference
phenomena that are essential near the backward scattering direction.

The physical optics approximation that combines the principles of geometrical and
wave optics is most appropriate for solving the problem. There are many versions of the
physical optics approximation. In particular, about 30 years ago, P. Yang and K-N. Liou
developed such a method for solving the problem of light scattering by ice crystals of
cirrus clouds [5,6]. Later, their algorithm was generalized by K. Masuda [7]. Indepen-
dent algorithms were carried out also by K. Muinonen [8], H. Okamoto [9,10], L. Bi [11],
H. Ishimoto [12], E. Hesse [13], and others. However, their calculations were acceptable for
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large scattering angles. It was shown that the case of near backward scattering, which was
important for lidar studies, demanded some improved algorithms.

The authors of this paper have developed the algorithm that is applicable to backscat-
tering by large particles. This algorithm is described in detail in a recent book [14]. Some
calculations obtained with this algorithm have been already verified by comparisons with
the lidar measurements [15,16]. It is worthwhile to note that there are other numerical meth-
ods solving the problem of light scattering by large particles of irregular shapes [17–20].

It should be noted that astrophysicists studying light scattering on the abovementioned
powder-like surfaces had discovered two optical phenomena about 100 years ago. The first
phenomenon is the essential increase of the scattered intensity at the backward scattering
direction. It was caused by the opposition effect or backscattering peak. The second
phenomenon, named the negative polarization, can be described as the following: the
degree of linear polarization of the scattered light in the case of unpolarized incident light
becomes negative and reveals a surge near the backward direction. There are numerous
theories trying to explain these phenomena [21–35].

It is important that both phenomenon were obtained recently in the numerical solution
of the problem of light scattering by one randomly-oriented particle of irregular shape at
x < 150 where the discontinuous Galerkin time-domain method (DGTDM) was used [19,20].
We suggest that the reason that the same phenomena, i.e., the backscattering peak and
negative polarization, have been observed for such different scattering objects is because
the light scattered in both cases can be treated as a sum of photons with random trajectories.
For a powder-like scattering medium, the appearance of the random photon trajectories
is obvious, whereas a single randomly-oriented particle produces the random photon
trajectories because of multiple internal reflections from an irregular boundary of the
randomly-oriented particle.

In this paper, we show that the scattering matrix for the large particles of irregular
shapes, as a function of scattering angles, reveals some surges in the vicinity of the backward
direction for all elements of the scattering matrix analogously to the surge known for the
negative polarization phenomena. These surges have been explained by interference among
the waves constituting the scattered light.

2. Scattering Matrix for the Models of Ice Crystal Aggregates

We model the shape of ice crystal aggregates as a set of random polyhedrons shown
in Figure 1.
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Figure 1. Shapes of the model polyhedron particles.

The scattered light is described by the Stokes vector I = (I, Q, U, V). The incident light
I0 is transformed into the scattered light I by the equation [4]:

I(θ, ϕ) = Z(θ, ϕ)I0 (1)

Here θ and ϕ are the zenith and azimuthal scattering angles, respectively, that are
determined by the given incident n0 and scattering n directions, and Z is the so-called
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phase matrix 4 × 4. In the case of randomly oriented particles, the phase matrix reduces to
the scattering matrix F(θ) that has the following view.

F(θ) =


< F11 > < F12 > 0 0
< F12 > < F22 > 0 0

0 0 < F33 > < F34 >
0 0 − < F34 > < F44 >

 (2)

In astrophysics, the incident light is usually unpolarized

I0 = (1, 0, 0, 0) (3)

and intensity of the scattered light is measured with a polarizer oriented either perpendicu-
lar I⊥ or parallel I|| to the scattering plane. In this case, the quantity

p(θ) =
I⊥ − I||
I⊥ + I||

(4)

is called the degree of linear polarization. In notation of the scattering matrix, we get

p(θ) = −< F12(θ) >

< F11(θ) >
(5)

3. The Scattering Matrixes Calculated in the Physical-Optics Approximation

We have calculated the scattering matrixes of Equation (2) for the particle shapes of
Figure 1 using our physical-optics method [14]. In the physical-optics method, the light
inside a polyhedral particle of a large size is described by geometrical optics. As a result,
the light inside the particle becomes a superposition of many plane-parallel beams with
various transversal size and shapes propagating in different directions. After refraction
by an exit facet, any beam is transformed into a diverging spherical wave according to the
Fraunhofer diffraction. As a result, the scattered wave in the wave zone of the particle is a
superposition of a large number of diverging spherical waves that are summarized by our
code. The code also averages the scattered light over a random particle orientation; this
procedure is denoted by the brackets < . . . >.

In this paper, all numerical calculations are performed for the randomly oriented
particles with Dmax = 20 µm where Dmax is the maximum distance between two points on
the particle surface. The wavelength was equal to 0.532 µm, and the refractive index was
assumed as 1.3116.

Figures 2–4 show the scattering matrixes of Equation (2) obtained for three model
shapes of Figure 1. Note that our code allows us to calculate the scattered light in three
regimes: (1) geometrical optics, (2) incoherent summation (only diffraction), and (3) coher-
ent summation (diffraction + interference). The geometrical optics regime is most crude.
Here, any beam after refraction by an exit facet propagates straightforward to the scattering
direction sphere (θ, ϕ), producing only a point on the sphere. The incoherent summation
regime is more realistic. In this case, the Fraunhofer diffraction transforms the geometrical
optics dot into a diffraction spot on the scattering direction sphere. Finally, the coherent
summation regime is most exact. Here, the interference among the scattered waves has
been taken into account that it is performed inside the diffraction spots. Three regimes
have been shown by different curves in Figures 2–4. The truncated curves correspond to
the geometrical optics regime, and the solid blue and red curves are taken for the coherent
and incoherent summations, respectively.

In Figures 2–4, we see that the results obtained in the regime of geometrical optics (trun-
cated curves) are quite different from those obtained in other regimes. This fact proves that
the geometrical optics approximation does not describe this scattering problem adequately.



Atmosphere 2022, 13, 1279 4 of 13
Atmosphere 2022, 13, x FOR PEER REVIEW 4 of 13 
 

 

  

  

  

Figure 2. The scattering matrix for the shape 1 of Figure 1. 

  

Figure 2. The scattering matrix for the shape 1 of Figure 1.

Let us comment on the results obtained in Figures 2–4. The first element of the
scattering matrix < F11 > is the differential cross-section of the particle. Recently, we
showed [36] that the differential cross-section for large particles of irregular shapes creates
the coherent backscattering peak that was well known for random scattering media [21].
We see that the coherent peak appears in Figures 2–4 for all particle models in the regime of
coherent summation (blue curves).

As for the other elements of the scattering matrix in Figures 2–4, we obtain the follow-
ing general conclusions. All elements of the scattering matrices in the regime of coherent
summation (blue curves) reveal some surges near the backward scattering direction. The
angular widths of the surges are approximately the same; they are approximately equal to
the width of the coherent backscattering peak fort the first element < F11 >. In the regime



Atmosphere 2022, 13, 1279 5 of 13

of an incoherent summation (red curves), these surges disappear. This fact proves that any
surges in the elements of the scattering matrix near the backward scattering direction have
been caused by interference among significant amount of the backscattering waves. In
the other words, these surges are the coherent backscattering effects like the well-known
coherent backscattering peak [21].
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4. The Scattering Matrix for Other Size and Shapes of the Particles

Calculations of the scattering matrix for the large particles near the backward scatter-
ing direction demand considerable computer resources. Here, a great number of particle
orientations should be taken to obtain a reliable solution. Therefore, there is some inconsis-
tency between calculations obtained with different codes [35,36]. To support the results
of the previous section, in this section we repeat the calculations for other particle shapes
shown in Figure 5.
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In Figure 6 the scattering matrix is obtained for two particle sizes: D = 5 µm (thin
curves) and D = 20 µm (thick curves).
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As seen in Figures 2–4 and 6, the particle shapes change weakly the heights of the
surges where the heights are varied up to 15%. However, the particle sizes impact on
the polarization elements more essentially and leads to changes in the surge widths. In
particular, the surge angular width is doubled if the particle size is decreased by half. This
fact is well demonstrated in Figure 6 by the elements 12, 22 and 34, while the elements 33
and 44 are sensitive to particle shapes, too.

5. Grazing-Incidence Trajectories and the Backscattering Peak

It is important that in the case of a randomly-oriented faceted particle of convex shape,
the photon trajectories producing the coherent backscattering are mainly reduced to the
grazing-incidence trajectories. In the grazing-incidence trajectories, every reflection takes
place at the angle close to the full internal reflection and, consequently, the energy of the
beam after multiple reflections is almost saved. On the contrary, if a beam enters or leaves
the particle near the center of the particle projection on the plane perpendicular to the
incident direction, intensity of this beam strongly decreases because of the smaller reflection
coefficient at the near normal reflection by facets.

In a grazing-incidence trajectory, the light travels predominantly along the particle
surface and then leaves the particle after refraction by an exit facet that produces a beam
outgoing near the particle edge. An example of such trajectories is depicted in Figure 7.
The light travelling along this trajectory in the inverse direction creates analogously the
outgoing beam of the similar shape and size near the opposite particle edge as shown in
Figure 7a. Our calculation shows that transverse size of a grazing-incidence beam a is less
than the particle diameter D. Consequently, such a pair of the beams leaves a particle near
the opposite edges of a particle at the distance L between them, shown in Figure 7c. For
brevity, we call them a pair of conjugate beams.
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the beams on the exit facets (b) and on a plane perpendicular to the incident direction (c). The line L
connects the centers of the beam projections.

Figure 8 supports our suggestion that the grazing-incidence trajectories are dominant
in backscattering by large, randomly-oriented particles. Here we summarized the inten-
sities of the beams leaving the particle 3 of Figure 1 averaged over random orientations
of the particle. The numerical calculations were carried out in the geometrical optics ap-
proximation where only the beams leaving the particle in the near zone with the scattering
directions less than θ = 179◦ were taken into account. Figure 8 shows distributions of the
intensity of the backscattered light over the particle projection on the plane perpendicular to
the incident direction. We see that the outgoing intensity is not uniform; it is concentrated
near the particle edge, especially for the trajectories with two internal reflections.
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In the wave zone of the particle, the scattered field is a function of the scattering
direction that can be approximately found as the 2D Fourier transform of the picture
obtained on the plane perpendicular to the incident direction in Figure 7c. As a result, the
coherent backscattering is seen in the narrow cone of the scattering angles ∆θ ≈ λ/L about
the backward direction θ = 180◦.

6. Interference of the Grazing-Incidence Beams

Consider the pair of plane-parallel beams of Figure 7 leaving the particle at a backward
direction. In the wave zone of the particle, these beams produce two outgoing spherical
waves that are added coherently in any scattering direction n = (θ, ϕ), where θ and ϕ are
the zenith and azimuthal angles, respectively, and θ = 180◦ is the exact backward direction.

Figures 9 and 10 show the intensity M11(n) and the polarization element M12(n)
calculated for the conjugate beams of Figure 7 for particle with Dmax = 20 µm.
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Figure 9. Backscattered intensity M11(n) (a) and polarization element −M12(n) (b) for two beams of
Figure 7 at incoherent summation. The figure centers are the exact backward direction θ = 180◦, the
blue color in (b) corresponds to negative quantities.
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Figure 10. The same as in Figure 9 at coherent summation.

Factually, Figure 9a corresponds to the Fraunhofer diffraction patterns of these two
beams that are averaged between them. The angular width of the figure is ∆θ ≈ λ/a
where a is the transverse size of the beams in Figure 7.

As for the coherent summation presented in Figure 10, we see practically the same
patterns as in Figure 9, but these patterns are additionally cut with the interference fringes
because of the interference between conjugate beams. In our case, these fringes appear as
many straight stripes. These stripes are oriented perpendicular to the line L connecting the
centers of the beam projections on the plane perpendicular to the incident direction shown
in Figure 7c. Note that any stripe has its order. Thus, the zeroth-order stripe corresponds
to the condition that the phase difference between the scattered beams on the scattering
direction sphere is less than 2π, and so on. The angular width of one stripe in Figure 10 is
equal to ∆θ ≈ λ/L. As a result, the number of stripes in Figure 10a cutting the diffraction
pattern of Figure 9a is equal to about L/a.

The polarization element of the Mueller matrix M12(n) in Figure 10b should be
nonzero within the same interference stripes as in Figure 10a. However, unlike the scattered
intensity M11(n) in Figure 10a, the magnitudes of M12(n) in Figure 10b are sign alternat-
ing quantities. As a result, the zeroth-order stripe of Figure 10a has been transformed in
Figure 10b into two oblate ovals touching at θ = 180◦.

Figures 9 and 10 are obtained for a fixed particle orientation shown in Figure 7, while
we need to have the Mueller matrix averaged over random particle orientations. The
procedure of averaging over particle orientations reduces to averaging over three Euler
angles that includes also averaging over particle rotations around the incident direction. Let
us denote a particle rotation over the incident direction by the angle α. It is the averaging
over α that will be further considered in detail.

Assuming that the patterns of Figures 9 and 10 are obtained at α = 0, it can be shown
that at arbitrary α we obtain M11(θ, ϕ; α) = M11(θ, ϕ − α; α = 0) and M12(θ, ϕ; α) =
M12(θ, ϕ− α; α = 0), i.e., the elements M11 and M12 at the arbitrary turn α are equal to
the same values at α = 0 but shifted azimuthally at ϕ− α. Consequently, the average over
α reduces to integration of Figure 10 over the azimuth angle ϕ. Any line ϕ = const in
Figure 10 is called a meridian. Assume that the zeroth meridian ϕ = 0 goes perpendicular
to the stripes and the meridian ϕ = π/2 goes along the zeroth interference stripe. Figure 11
presents the polarization along these two meridians.

The function M12(θ, ϕ = 0) oscillates due interference between the beams with the
angular widths of the stripes of about λ/L. Because of the constructive interference, the
function M12(θ, ϕ = 0) is positive. Another function M12(θ, ϕ = π/2) corresponds to
the Fraunhofer diffraction of these beams in the perpendicular direction. The diffrac-
tion pattern is the peak with the angular width of λ/a. Since their sum at the exact
backward direction should be zero M12(π/2, ϕ = 0) + M12(π/2, ϕ = π/2) = 0, the
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function M12(θ, ϕ = π/2) is negative along the meridian. The average of the functions
< M12 >= [M12(θ, ϕ = 0) + M12(θ, ϕ = π/2)]/2 is shown in Figure 11 by a black line. We
see that the sum passes through a local minimum at the angle θ0 = λ/2d. The green line
in Figure 11 shows the element M12 already numerically averaged over all meridians. We
ascertain that the desired function − < M12 > passes its local minimum at the same point
θ0 = λ/2d. This fact proves that the physical mechanism providing appearance of the local
minimum is the interference between pairs of conjugate beams. It is interesting that this
point θ0 = λ/2d is equal to a half of the angular width of the coherent backscattering peak
for intensity of the scattered light.
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7. Conclusions

1. In our previous paper [36], we demonstrated that, in the problem of light scattering
by a large particle of irregular shape, the backscattered intensity revealed a coherent
peak caused by interference of the waves propagating in the inverse directions. In this
paper, we have demonstrated that all polarization elements of the scattering matrix reveal
similar regularities; namely, the polarization elements create the surges within the coherent
backscattering peak. These surges are the results of interference of the waves propagating
in the inverse directions.

2. We have shown that the angular width of the surges does not practically depend on
particle shape, but depends on particle size. In particular, particle shapes usually change
the surge heights up to 10–15%, whereas a double particle size leads to a half angular width
of the surges.

3. We have shown that the angular width of the surges is approximately equal to
one-half of an angular width of the coherent backscattering peak.

The results of this paper could be used for interpretation of the data obtained from
lidar soundings of cirrus clouds.
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