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Abstract: Fine particulate matter (PM2.5) pollution affects the environment and poses threat to human
health. The study of the influence of land use and other factors on PM2.5 is crucial for the rational
development and utilization of territorial space. To explore the intrinsic mechanism between PM2.5

pollution and related factors, this study used the land use regression (LUR) model, and introduced
geographically weighted regression (GWR), and random forest (RF) to optimize the basic LUR model.
The basic LUR model was constructed to predict the annual average PM2.5 concentrations using three
elements: artificial surfaces, forest land, and wind speed as explanatory variables, with adjusted R2

of 0.645. The improved LUR models based on GWR and RF, with an adjusted R2 of 0.767 and 0.821,
respectively, show better fitting effects. The LUR simulation results show that the PM2.5 pollution
in the northern Zhejiang is more serious and concentrated. The concentrations are also higher in
regions such as the river valley plains in central Zhejiang and the coastal plains in southeastern
Zhejiang. These findings show that pollution emissions should be further reduced and environmental
protection should be strengthened.

Keywords: PM2.5; land use regression model; geographically weighted regression; random forest;
Zhejiang Province

1. Introduction

Fine particulate matter (PM2.5) refers to particles in ambient air with an aerodynamic
equivalent diameter of 2.5 µm or less. PM2.5 affects the environment and climate [1]
and is also extremely hazardous to human health [2,3]. Based on micro-level studies on
PM2.5 formation mechanisms, an increasing number of studies have confirmed that, as
an atmospheric pollutant, PM2.5 has obvious regional transport characteristics [4,5]. The
distribution of PM2.5 is more influenced by macro-level factors, and scholars have explored
the effects of land use, transportation, and meteorological conditions on PM2.5 [6–9]. Land
is closely related to PM2.5. On the one hand, different land use types are sources or sinks of
PM2.5 [10,11]. The artificial surfaces not only carry many pollution emission sites such as
factory emissions and traffic emissions, but also have difficulty in blocking and adsorbing
dust, making regional PM2.5 concentrations prone to increase. Vegetation cover such as
forestland has a strong adsorption effect on air pollutants, which helps to reduce regional
PM2.5 concentrations. On the other hand, regional land use patterns also influence local
climate and thus have an indirect effect on PM2.5 [12,13]. Studying the influence of land use
on PM2.5 means understanding the formation mechanism of this pollutant from a systemic
perspective, to guide the rational development, use, and protection of territorial space. In
addition, it can also predict and simulate the spatial distribution based on the quantitative
study of the relationship between land use and PM2.5 [14–16].

Based on the relationship between PM2.5 and related factors, the regression relation-
ship between station monitoring data and elements such as land use can be analyzed, and
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a regression model of PM2.5 and these factors can be developed to simulate concentrations
within the region. This method has been applied in the Small Area Variations in Air Quality
and Health (SAVIAH) project in Europe, where scholars have mapped air pollution distri-
bution based on regression methods, using land use, traffic, and other relevant factors as
explanatory variables [17]. The method came to be known as the land use regression (LUR)
model. Instead of pursuing complex physicochemical processes, LUR models are based on
the analysis of the relationship between air pollutant concentrations and relevant factors,
and can make predictions according to measured data [18–20]. Currently, the LUR model be-
gins to be applied to the study of environmental issues besides atmospheric pollutants [21].
In addition, the development of the LUR model presents an in-depth trend from different
angles. Scholars have conducted extended research from different perspectives. Firstly, the
data used for modeling have been further enriched. Landscape pattern indicators, aerosol
optical depth, point of interest (POI), and three-dimensional (3D) data are introduced
into the model to help improve the accuracy and the spatio-temporal resolution of the
simulation [22–24]. Secondly, the spatio-temporal scale of the study has been expanded.
LUR was first used to simulate mean concentrations at urban spatial scales and over long
periods. However, now there are studies on the distribution of pollutants at different points
over 24 h, spanning across provinces, urban clusters, and countries [25–27]. Lastly, and
most importantly, LUR modeling methods have developed significantly. Nonlinear re-
gression, geographically weighted regression (GWR), generalized summation models, and
machine learning have effectively improved the models [28–30]. Therefore, here we take
Zhejiang Province as the study area and estimate PM2.5 concentrations using LUR, GWR,
and random forest (RF). In previous studies, applying LUR at province-level administrative
units in China [22,23,31,32], Liu et al. used land use, population density, road networks,
and distance to the ocean data to simulate the spatial distribution of PM2.5 concentrations
in Shanghai [31], but ignored POI, meteorological, and socio-economic factors. Wu et al.
used land use, population density, road length, and POI data to estimate spatial variations
in PM2.5 in Beijing [22], but did not consider meteorological and socio-economic factors.
We used more comprehensive predictor variables, including land use data, road data, POI
data, meteorological data, and socio-economic data. Moreover, in studies predicting PM2.5
concentrations in China, few studies compared the spatial distribution results and model
accuracy of LUR, GWR, and RF, while we provide a comparative analysis of the models.

Zhejiang Province’s strong internal linkages in economic and social activities, rapid
economic growth, rising population, and increasing urban scale have put enormous pres-
sure on the regional atmospheric environment. As one of the major provinces in the Yangtze
River Delta region, the duration and influence of hazy days in Zhejiang Province has been
increasing since the 1970s, especially since 2000 [33]. A previous study shows that from
January 2015 to April 2018, the change in air quality in northern Zhejiang was worse than
that in southern Zhejiang. For example, the air quality in Hangzhou, the capital of Zhejiang
Province, decreased by 6.69%. In contrast, the air quality in Lishui and Zhoushan in south-
ern Zhejiang improved by 8.04% and 4.67%, respectively [34]. As the industrial structure
continues to be optimized, and as the Air Pollution Prevention and Control Action Plan
is implemented in full, PM2.5 pollution in Zhejiang Province has improved significantly
in recent years. The Department of Ecology and Environment of Zhejiang Province has
issued a range of PM2.5 concentrations of 15–28 µg/m3 for the 11 cities in 2021. Further
studies are needed to track its changing characteristics. Based on the mechanism and
characteristics between PM2.5 and land use, the LUR model can be better applied to PM2.5
spatial distribution simulation, which helps us study the PM2.5 distribution characteristics
in Zhejiang Province. It also helps us understand the causes of pollution to a certain extent,
and to explore the inner formation mechanism of the influence of land use structure and
other factors on PM2.5. The main objectives of the study are: (1) exploring the correlation
between PM2.5 and the explanatory variables in the study area; (2) establishing a basic
LUR model and improved LUR models based on GWR and RF methods for more accurate
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regional PM2.5 simulation; and (3) providing a comparative analysis of the LUR, GWR,
and RF.

2. Materials and Methods
2.1. Data Sources

Figure 1 shows the location of the study area and spatial distribution of monitoring
sites and land use types. Data collection includes PM2.5 concentration monitoring data,
land use data, road data, POI data, meteorological data, and socio-economic data.
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The PM2.5 concentration data used hourly monitoring data of pollutants in µg/m3

from 1 January 2020 to 31 December 2020 at state-controlled air quality monitoring sta-
tions. Data were obtained from the China National Environmental Monitoring Centre
(http://www.cnemc.cn/, accessed on 20 June 2022). This study was mainly based on the
annual average PM2.5 concentration. For the validity of the data, PM2.5 concentration data
were pre-processed. Firstly, anomalous values with concentration values less than zero
or meaningless were excluded. Secondly, according to the China Ambient Air Quality
Standards (GB 3095-2012) on data validity, there should be at least 20 h of average concen-
tration or sampling time per day. When calculating the annual average concentrations,
there should be at least 324 daily average concentration values per year and at least 27 daily
average concentration values per month (at least 25 daily average concentration values in
February). According to the above principles, invalid data were eliminated and 49 valid
annual average data sites were retained in total.

Land use data were obtained from the global land cover data “GlobeLand30 (V2020)”
(http://www.globallandcover.com/home.html?type=data, accessed on 20 June 2022) [35,36].
Road network lengths were used to represent traffic flow, which was obtained from Open-
StreetMap (OSM). Meteorological data, including wind speed, precipitation, air tempera-
ture, and sea level pressure, were obtained from ground-based weather stations and sourced
from the National Climatic Data Center (NCDC) (https://www.ncdc.noaa.gov/, accessed
on 20 June 2022). Population data were obtained from the WorldPop open population
dataset (https://www.worldpop.org/, accessed on 20 June 2022) [37].

http://www.cnemc.cn/
http://www.globallandcover.com/home.html?type=data
https://www.ncdc.noaa.gov/
https://www.worldpop.org/
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2.2. Methods

The LUR model (involving GWR, RF, and other spatial analysis methods) as well as
related model testing methods were used in this study.

The core idea of the LUR model is to construct regression relationships between air
pollutant concentrations at monitoring stations and factors such as land use and geographi-
cal elements of emission sources within a certain spatial scale. To build the fitted model,
the basic LUR was subjected to a multiple linear regression using the ordinary least squares
(OLS) method. The regression model was then used to simulate the atmospheric pollu-
tant concentrations and finally generate the spatial distribution of pollutants [31,38]. The
multiple linear regression equation is as follows:

Y = a0 + a1X1 + a2X2 + a3X3 + . . . + anXn + µ (1)

where Y is the atmospheric pollutant concentration value; Xi is the explanatory variable
that is ultimately included in the model; ai is the unknown parameter; and µ is the random
error term.

From a geographical perspective, the regression model should take spatial non-
stationarity into account, i.e., changes in the relationship between variables caused by
changes in geographical location. GWR reflects the spatial heterogeneity of the parameters,
allowing the relationship between variables to vary with spatial location [39]. By introduc-
ing the geographic location factor into the regression equation, the expression of the GWR
model is as follows:

Y = β0(ui, vi) + ∑ βk(ui, vi)xik + εi (i = 1, 2, . . . , n; k = 1, 2, . . . , p) (2)

where k is the number of independent variables in the model; xik is the kth independent
variable of sample i; (ui, vi) is the geographical coordinates (longitude, latitude) of the ith
sample; ∑ βk(ui, vi) is the regression coefficient of the kth independent variable in the ith
sample, as a function of geographical location; and εi is the random error, which should
obey a normal distribution.

Using classification techniques (predicting data classification results from a classifier
based on a training set) as an important source, and incorporating the idea of integrated
learning algorithms, a machine learning algorithm that builds multiple classification trees
(decision trees) and combines them in a bootstrap aggregating (Bagging) manner has been
proposed and widely used. Because of the integration of multiple decision trees (weak
learners), this learning method is known as RF. A diagram of the modeling process is
shown in Figure 2. First, multiple training samples were randomly selected from the data
sets to construct the classification and regression tree (CART). In the process of training, m
features were randomly selected from all features for the best split. The final prediction
result is the mean of all decision trees’ predictions [40]. Similar to the classical regression
model, random forest regression can construct the relationship between the explanatory
variables (x1, x2, . . . , xn) and the atmospheric pollutant concentration Y.
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Randomness is reflected in two aspects. On the one hand, randomness is reflected
in the selection of the samples, i.e., the training set is a bootstrap sample from the data
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sets. On the other hand, randomness is reflected in the selection of the features. When
constructing the decision trees, instead of including all M features of the sample in the
node split, m (m � M) features were randomly selected as feature variables, making each
decision tree distinct from the others.

2.3. Selected Factors

Before exploring the influence of factors on PM2.5, this study analyzed the correlation
between PM2.5 and the explanatory variables. Table 1 shows the correlation analysis
results of 14 factors which finally used explanatory variables in the multiple regression
model. Here, we used more comprehensive predictor variables compared to previous
studies [22,23,31,32], including land use, road length, POI, as well as meteorological and
socio-economic variables.

Table 1. Correlation analysis results.

Types Factors Explanatory
Variables

Pearson’s Correlation
Coefficients

Land use

Area of cropland within a 10 km buffer zone
radius of the monitoring station CL 0.308 *

Area of forestland within a 10 km buffer zone
radius of the monitoring station FL −0.485 **

Area of grassland within a 10 km buffer zone
radius of the monitoring station GL −0.533 **

Area of artificial surfaces within a 10 km
buffer zone radius of the monitoring station AS 0.545 **

Geographical elements of
emission sources

Length of all roads within a 10 km buffer
zone radius of the monitoring station AR 0.525 **

Length of trunk roads within a 10 km buffer
zone radius of the monitoring station TR 0.449 **

Length of primary roads within a 10 km
buffer zone radius of the monitoring station PR 0.543 **

Length of secondary roads within a 10 km
buffer zone radius of the monitoring station SR 0.414 **

Number of catering services within a 10 km
buffer zone radius of the monitoring station CS 0.456 **

Number of car parks within a 10 km buffer
zone radius of the monitoring station CP 0.470 **

Number of petrol stations within a 10 km
buffer zone radius of the monitoring station PS 0.575 **

Meteorology
Annual average wind speed WS −0.247 **

Annual precipitation Prec 0.492 **

Population Population within a 10 km buffer zone radius
of the monitoring station Pop 0.422 **

** Correlation is significant at the 0.01 level (two-tailed); * correlation is significant at the 0.05 level (two-tailed).

Among the land use factors, according to the classification system of GlobeLand30
data, there are eight first-class land cover types in Zhejiang Province. However, the analysis
of the correlation between different land use types and PM2.5 pollution must be based
on a certain scale. Since the proportion of shrubland, wetland, and bare land in Zhejiang
Province is all well below 1%, only five types of land—cropland, forest land, grassland,
water, and artificial surfaces (construction land)—were selected. Pearson coefficients of
these variables and annual average PM2.5 concentrations were calculated for correlation
analysis. The results show that among the five types of land within a buffer zone of 2 km,
3 km, 5 km, and 10 km radius, the water variable was excluded as it failed to pass the
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significance test. The correlation coefficients of area of other four types of land within the
buffer zone of 10 km radius was the highest and passed the significance test. The complete
results of the correlation coefficients between land use variables and PM2.5 concentrations
are shown in Table A1 in Appendix A.

Among the geographical elements of emission sources, this study used road length to
represent the emission intensity of traffic sources. Because of the unavailability of traffic
density data here, we used road length data. Previous researches have demonstrated that
road length can be a feasible substitute for traffic density factor [41,42]. The lengths of four
types of road networks—motorway, trunk road, primary road, and secondary road, within
a buffer zone of 2 km, 3 km, 5 km, and 10 km radii centered on the 49 monitoring stations in
Zhejiang Province—were extracted. The Pearson correlation analysis shows that among the
length of all roads within a buffer zone of 2 km, 3 km, 5 km, and 10 km radii, the correlation
coefficients of that within the buffer zone of the 10 km radius were the highest, as well as
the length of trunk roads, primary roads, and secondary roads. The length of motorway
within the buffer zone of 10 km radius was excluded as it failed to pass the significance test.
Four types of POI data were obtained from factories, catering services, car parks, and petrol
stations, through the Gaode Map open platform. The number of POIs within a 2 km, 3 km,
5 km, and 10 km buffer zone centered on the 49 monitoring stations was calculated, and
then analyzed by Pearson correlation with the annual average PM2.5 concentration of the
stations. The results show that the factories variable was excluded as it failed to pass the
significance test. The correlation coefficients of other three types of POIs within the buffer
zone of 10 km radius was the highest. The complete results of the correlation coefficients
between geographical elements of emission sources and PM2.5 concentration are shown in
Table A2 in Appendix A.

For the meteorological factors, wind speed, precipitation, air temperature, and sea
level pressure were considered. The Pearson correlation analysis shows that air temperature
and sea level pressure were excluded as the two variables failed to pass the significance
test. The complete results of the correlation coefficients between meteorological factors
and PM2.5 concentration are shown in Table A3 in Appendix A. Among the socioeconomic
factors, this study investigates their influence on PM2.5 pollution from both demographic
and economic perspectives. For the population, the correlation between population and
PM2.5 concentration within different buffer zones centered on national ambient air quality
monitoring stations was studied. The results show that the correlation coefficients of popu-
lation within the buffer zone of 10 km radius was the highest meteorological factors. The
complete results of the correlation coefficients between population and PM2.5 concentration
are shown in Table A4 in Appendix A. For the economy, based on the environmental
Kuznets curve theory, the panel data of GDP, per capita GDP, and an annual average
PM2.5 concentration of 11 cities in Zhejiang Province in 2020 were used for the analysis.
The coefficients for GDP and per capita GDP in the liner regression were −1.42 and −1.3,
respectively, and were both significant at the 0.01 level.

To avoid multicollinearity, only the factors with the strongest correlation within the
buffer zones of different radii were retained. Fourteen factors were finally used as explana-
tory variables in the multiple regression model. The area of water, the length of motorway,
the number of factories, air temperature, and sea level pressure were excluded as they
failed to pass the significance test.

3. Results
3.1. The Basic Land Use Regression Model

In the multiple stepwise linear regression, the variable Y in the regression model is the
average PM2.5 concentration in 2020 at each station. The most significant explanatory vari-
able was gradually added to the regression equation. Based on the regression coefficients
and statistics, the variables that were not significant or could not improve the fitting effect
were removed until there were no variables that needed to be removed or no variables
that could be introduced. Moreover, as samples with absolute values of standardized
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residuals greater than 2.5 affect the normal distribution of residuals, these samples need to
be excluded. Therefore, the final model was constructed based on 48 samples.

The multiple stepwise linear regression model contains three explanatory variables,
namely the area of artificial surfaces within a 10 km buffer zone radius, the area of forestland
within a 10 km buffer zone radius, and the wind speed.

Table 2 shows the multiple stepwise linear regression model parameters. The model
was better fitted with an adjusted R2 of 0.645. The root mean squared error (RMSE) was
2.46, with good accuracy. The standardized coefficients of artificial surfaces, forest land,
and wind speed were 0.416, −0.446, and −0.525, respectively. In addition to reflecting the
direction of each factor’s contribution to PM2.5, it also indicates that wind speed plays a
relatively more important role in reducing PM2.5 pollution when the land use type is similar.
In summary, the equation for the multiple stepwise linear regression is shown below:

Y = 0.000056 × AS − 0.000072 × FL − 0.424674 × WS + 34.234868 (3)

Table 2. Multiple stepwise linear regression model parameters.

Variables Coefficient T Beta VIF Ad-R2 RMSE p-Value

Intercept 34.234868 12.933 ** - -

0.645 2.46 0.000 **
AS 0.000056 3.759 ** 0.416 1.619
FL −0.000072 −3.851 ** −0.446 1.777
WS −0.424674 −5.690 ** −0.525 1.126

** Correlation is significant at the 0.01 level (2-tailed); T: t-test statistic value; Beta: standardized coefficient; VIF:
variance inflation factor; RMSE: root mean square error.

The constructed regression equation was subjected to residual analysis to verify the
reasonableness of the hypothesis and the reliability of the data. The significance of the
Kolmogorov–Smirnov (K-S) test was 0.200 and the significance of the Shapiro–Wilk (S-W)
test was 0.505, and the residuals were consistent with a normal distribution.

Figure 3a shows the probability–probability (P-P) plot of the standardized residuals.
The scatter was distributed around the straight line y = x, indicating that the standardized
residuals conform to a standard normal distribution, verifying that the regression hypothe-
sis holds and that the data are reliable. The accuracy of the constructed model was then
tested using the leave-one-out cross-validation method, and the RMSE was 2.56. Based on
a 2 km × 2 km fishnet, Zhejiang Province was divided into a total of 26,329 grids, and each
grid’s area of artificial surfaces within a buffer zone of 10 km radius, the area of forestland
within a buffer zone of 10 km radius, and the annual average wind speed were extracted.
The values of the explanatory variables were substituted into the obtained model and the
gridded PM2.5 concentration values were calculated to simulate the spatial distribution of
PM2.5 concentrations, as shown in Figure 3b.

3.2. Improved LUR Model Based on Geographically Weighted Regression

Since only a few variables were ultimately included in the regression equation, some
variables that affect PM2.5 concentrations were ignored. In particular, there were differ-
ences between regions in socio-economic and natural environment, which may cause the
relationship or structure between the explanatory variables and PM2.5 to change spatially.
Therefore, this study considered the spatial heterogeneity and further analyzed the effect
of the relevant factors in different regions based on the GWR method.

To avoid global multicollinearity between variables in the GWR, three factors, the area
of artificial surfaces within a 10 km buffer zone radius, the area of forestland within a 10 km
buffer zone radius, and the wind speed, were used as explanatory variables for the analysis.
Figure 4 shows the coefficient of the three variables in the GWR. The results show that the
area of artificial surfaces has a positive effect on the increase in PM2.5 concentration. This is
attributed to the rapid expansion of artificial surfaces as urbanization progresses, gathering
a large number of industrial activities, energy emissions, etc., which directly contributes
to the increase in PM2.5 concentrations [11]. The coefficient of artificial surfaces gradually
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increases from northeast to southwest. This indicates that the area of artificial surfaces in
southwest Zhejiang has a stronger positive effect on the increase in the PM2.5 concentration
than that in northeast Zhejiang. The area of forestland has a negative effect on the increase
in PM2.5 concentration. This is due to the dust-blocking effect of the vegetation leaves and
absorption effect of the stem surfaces to weaken the PM2.5 concentrations [43]. The absolute
value of the coefficient of forestland gradually increases from southwest to northeast. This
indicates that forestland in northeast Zhejiang has a stronger negative effect on PM2.5 than
in the southwest region. The coefficient of wind speed shows a trend that is higher in the
east and lower in the west. As in the case of the annual mean wind speed, the effect on
decreasing PM2.5 concentration may be enhanced as the wind speed increases.
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cally weighted regression (GWR).

The global adjusted R2 of the GWR model was 0.767. The local R2 of the samples
ranged from a minimum of 0.53 to a maximum of 0.88, with an average of 0.65. The
normality of the standardized residuals of the model was tested and the significance of
the Shapiro–Wilk (S-W) test was 0.944, which is much greater than 0.05, indicating that it
conforms to a normal distribution. The P-P plot of the standardized residuals is shown in
Figure 5a. In addition, the standardized residuals should also show a random rather than
a clustering distribution in terms of geographical distribution. The global Moran index
(Moran I) was used for diagnosis and the results showed a global Moran index of −0.15
with a p-value of 0.23, with no significant clustering trend. The above analysis indicates
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that the model is reliable. Compared with the basic LUR model, the GWR-based improved
LUR model has a higher simulation accuracy with a residual sum of squares of 148.18, an
RMSE of 1.757, and an Akaike information criterion (AICc) of 214.73.
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The simulation results of the spatial distribution of the GWR-based improved LUR
model are shown in Figure 5b, which are generally consistent with the results of the multi-
ple linear regression simulation. The PM2.5 pollution concentration areas are roughly the
same, mainly in the urbanized areas of northern Zhejiang, central Zhejiang, and southeast-
ern Zhejiang.

3.3. Improved LUR Model Based on Random Forest Regression

The improved LUR model based on random forest regression aims to use the screened
factors as explanatory variables based on the results from the correlation analysis. Then, the
random forest regression was applied for model construction. The training and validation
sets were divided in a ratio of 8:2. The optimal parameters were determined using a random
search cross-validation method. The number of decision trees in the final model was 600,
and the maximum eigenvalue was 3.

The variables, in descending order of contribution to the model, are precipitation,
cropland, grassland, forestland, wind speed, population, and artificial surfaces. Unlike the
stepwise regression screening results, precipitation and cropland played a greater role in
the random forest model.

Figure 6a shows the linear fit of the model predictions to the actual values. The pre-
dicted values of the model largely matched the actual values, with the scatter concentrated
around the diagonal line, indicating a good fit. The adjusted R2 for the training set of
the model was 0.82, with an RMSE of 2.64 and a mean absolute error (MAE) of 1.34. The
adjusted R2 for the validation set was 0.65, with an RMSE of 6.04 and a MAE of 1.90.

The simulation results of spatial distribution based on random forest regression are
shown in Figure 6b, which are significantly different from those of multiple linear regression
and GWR simulation, but the judgment of high pollution areas is roughly the same.
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3.4. Model Comparisons

The evaluation of the different models on each indicator is shown in Table 3. To deepen
the understanding of the different models, a comparative analysis of the regression models
is provided, based on indicators such as MAE, RMSE, adjusted R2, and modified AICc.

Table 3. Regression model evaluation.

MAE RMSE Adjust R2 AICc

Multiple linear regression 1.95 2.46 0.645 229.94
Geographically weighted

regression 1.39 1.76 0.767 214.73

Random forest training set 1.34 2.64 0.821 -
Random forest validation set 1.90 6.04 0.645 -

MAE: mean absolute error; RMSE: root mean square error; AICc: Akaike information criterion.

It can be seen that the GWR-based improved LUR model performs better on all four
indicators compared to multiple linear regression. The GWR-based improved LUR model
shows less deviation between predicted and measured values, better accuracy of model fit,
and higher precision. However, it is also noteworthy that the results of multiple stepwise
linear regression identify the relevant factors which provide the best fit for GWR. The
RF-based LUR model has a much higher adjusted coefficient of determination for the
training set and a much smaller MAE, while also performing well in the validation set.
However, the RMSE is relatively large, which could be attributed to the limited samples,
making the fit results more accidental. It indicates that the accuracy of the model needs to
be improved by introducing more samples or selecting more suitable explanatory variables
to take advantage of the random forest’s ability to handle a large number of explanatory
variables. Similar to previous studies with a small number of monitoring sites [44,45], here
we achieved the spatial distribution of PM2.5 concentrations based on 49 monitoring sites,
but the issue of distribution and the number of monitoring sites still needs to be addressed
in the future. More monitoring sites could increase the precision of PM2.5 concentration
estimation [46]. Furthermore, although an improved LUR model with acceptable accuracy
was developed using GWR and RF, the accuracy of this model could be further improved by
introducing more predictors under a spatially uniform distribution of monitoring stations.

The average PM2.5 concentrations obtained by different methods for each city in 2020
were compared and analyzed, and the results are shown in Table 4. The values in the three
models were derived from the zonal statistics of the raster simulation results. The overall
trend of PM2.5 spatial distribution in Zhejiang Province obtained by different methods
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is similar, but the average PM2.5 concentrations in prefecture-level cities obtained from
different models are quite different. First, the average PM2.5 concentrations obtained based
on the national control air quality monitoring sites are generally larger. This is because
apart from the control points, the vast majority of stations are arranged within the urban
area of the city. As analyzed in the previous section, urban areas are where PM2.5 pollution
sources are concentrated, and land use patterns are not conducive to PM2.5 dispersion.
Therefore, the average value based on monitoring stations mainly reflects the pollution
situation in the urban area. However, the zonal statistics results obtained through the
models reflect the city-wide pollution concentration.

Table 4. Each city’s average PM2.5 concentrations based on monitoring stations and regression
model simulations.

Monitoring
Sites (µg/m3)

Multiple Linear
Regression

(µg/m3)

Geographically
Weighted

Regression
(µg/m3)

Random Forest
Regression

(µg/m3)

Hangzhou 28.86 19.32 17.67 22.91
Ningbo 22.90 19.85 19.48 22.74

Wenzhou 25.23 19.22 16.66 21.90
Jiaxing 27.88 23.87 26.35 25.52

Huzhou 25.98 20.33 19.00 23.27
Shaoxing 28.60 20.91 21.11 22.43

Jinhua 27.46 21.45 19.94 21.83
Quzhou 25.96 18.73 17.29 23.07

Zhoushan 16.75 18.64 18.45 22.01
Taizhou 24.53 19.51 18.49 21.49
Lishui 21.23 17.29 15.72 21.17

Zhejiang
Province 25.03 19.60 18.45 22.36

Due to the different underlying logic and methodology, the results based on the
regression model simulations differ significantly from those based on the monitoring sites;
(the simulated average PM2.5 concentrations are relatively low), while the differences
between the different regression models are relatively small. Geographically weighted
regression simulations yielded the lowest mean PM2.5 concentrations for each city in the
zonal statistics. It is also worth noting the relatively high estimate of pollution for Jiaxing
at 26.35 µg/m3. Due to the inclusion of more explanatory variables and a different model
structure, the random forest regression simulation results give different PM2.5 pollution
emissions for each city compared to the other two regression models. The simulation
results of the RF-based improved LUR show a small difference between the upper and
lower limits.

4. Conclusions

We established a basic LUR model and improved LUR models based on geographically
weighted regression and random forest methods to simulate the distribution of PM2.5
concentration. The basic LUR model was established based on the multiple stepwise linear
regression method. The three elements of artificial surfaces, forest land, and wind speed
were finally included as explanatory variables. The model was well fitted with an adjusted
R2 of 0.645. The average RMSE of the leave-one-out cross-validation was 2.56. The results
of the basic LUR model show that PM2.5 pollution was concentrated in the northern part of
Zhejiang Province. The concentrations were also higher in regions such as the river valley
plains in central Zhejiang and the coastal plains in southeastern Zhejiang. The explanatory
variables of the GWR-based improved LUR model exhibited spatial heterogeneity. The
adjusted R2 of the GWR-based improved LUR model reached 0.767, showing a better
fit. In the RF-based improved LUR model, precipitation and cropland showed greater
contribution than the factors of artificial surfaces, forest land, and wind speed. The adjusted
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R2 of the training model reaches 0.821, which is a significant improvement compared with
the basic LUR model. The PM2.5 concentration simulation results of different models differ
in some regions, but the distribution of high-pollution areas in three models are roughly
the same, concentrated in northern Zhejiang, the river valley plains in central Zhejiang,
and the coastal plains in southeastern Zhejiang. These findings indicate that more effective
measures to reduce air pollutants need to be implemented.
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Appendix A

Table A1. Correlation coefficients between the area of each land type and PM2.5 concentration at
different buffer radii. The missing value is attributed to insufficient data on the area of forestland
within a buffer zone of 2 km.

Types 2 km 3 km 5 km 10 km

Area of cropland 0.053 0.060 0.041 0.308 *
Area of forestland - −0.389 ** −0.483 ** −0.485 **
Area of grassland −0.244 * −0.323 * −0.399 ** −0.533 **

Area of water −0.180 −0.177 −0.122 0.064
Area of artificial surfaces 0.331 * 0.375 ** 0.523 ** 0.545 **

** Correlation is significant at the 0.01 level (two-tailed); * correlation is significant at the 0.05 level (two-tailed).

Table A2. Correlation coefficients between geographical elements of emission sources and PM2.5

concentration at different buffer radii.

Types 2 km 3 km 5 km 10 km

Length of all roads 0.345 ** 0.382 ** 0.477 ** 0.525 **
Number of factories −0.027 −0.141 −0.070 0.140

Number of catering services 0.146 0.270 * 0.400 ** 0.456 **
Number of car parks 0.276 * 0.336 ** 0.443 ** 0.470 **

Number of petrol stations 0.268 * 0.291 * 0.472 ** 0.575 **
** Correlation is significant at the 0.01 level (two-tailed); * correlation is significant at the 0.05 level (two-tailed).

http://www.cnemc.cn/
https://www.openstreetmap.org
https://www.openstreetmap.org
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Table A3. Correlation coefficients between meteorology and PM2.5 concentration.

Types Correlation Coefficients

Annual average wind speed −0.247 **
Annual precipitation 0.492 **

Annual air temperature −0.121
Annual sea level pressure 0.113

** Correlation is significant at the 0.01 level (two-tailed).

Table A4. Correlation coefficients between population and PM2.5 concentration at different
buffer radii.

Types 2 km 3 km 5 km 10 km

Population 0.243 0.256 * 0.376 ** 0.422 **
** Correlation is significant at the 0.01 level (two-tailed); * correlation is significant at the 0.05 level (two-tailed).
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