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Abstract: Accurate feature identification of drought disaster events is required for proper risk
management in agriculture. This study improved the crop water deficit index (CWDI) by including
the daily meteorological, crop development stage, soil moisture content, and yield data for 1981–2020
in northeastern China. Two drought characteristic variables (drought duration and intensity) were
extracted using the theory of runs to produce the improved crop water deficit index (CWDIwp).
Thresholds for the bivariate indicators were also determined for agricultural drought events of
varying severity. A joint distribution model for drought variables was constructed based on five
types of Archimedean copulas. The joint probability and the joint recurrence period for agricultural
drought events were analyzed for drought events with varying intensities in northeast China. The
results suggest that the CWDIwp can reliably identify the onset, duration, and intensity of drought
events over the study area and can be used to monitor agricultural drought events. The conditional
probability of drought intensity (duration) decreased as the drought duration (intensity) threshold
increased, whereas the drought recurrence period increased as the threshold for drought duration
and intensity rose. In the period (1981–2020), drought intensity in the three Northeastern provinces
showed an increasing trend in the order Jilin Province > Liaoning Province > Heilongjiang Province.
The spatial distribution of the joint probability and the joint recurrence period was obvious, and the
joint probability showed a decreasing distribution trend from west to east. The distribution trend
for the joint probability was opposite to that of the joint recurrence period. Furthermore, the areas
with high drought probability values corresponded to the areas with low values for the recurrence
period, indicating that the drought occurrence probability was higher, and the recurrence period
value was lower in the drought-prone areas. The high-risk drought areas (60–87%) were in western
Liaoning and western Jilin, with a recurrence period of 1–3 years, whereas the low-risk areas (<40%)
were located in the mountainous areas of eastern Liaoning and eastern Jilin. The joint probability and
joint recurrence period for agricultural drought events of varying severity were quite different, with
the probability following the order light drought > moderate drought > severe drought > extreme
drought. The order for the recurrence period was light drought < moderate drought < severe drought
< extreme drought. The results provide technical support for disaster prevention and mitigation in
drought risk management.

Keywords: agricultural drought event identification; improved crop water deficit index; bivariate
threshold indicators; risk assessment

1. Introduction

Drought is one of the most detrimental agricultural natural disasters because it threat-
ens agricultural production and worldwide food security [1,2]. Crop yield losses caused by
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drought can exceed the losses caused by all other factors combined. More than half of all
crop yield losses are attributed to drought due to its high frequency and its long duration
compared to other natural disasters [3,4]. The fifth IPCC assessment report indicated that
the global atmospheric temperature increased by 0.85 ◦C between 1980 and 2012 and will
continue to rise in the future. The precipitation pattern will undergo significant changes,
such as increased precipitation intensity and decreased precipitation frequency. Further-
more, evapotranspiration will also increase along with the increased drought frequency
and intensity [5–9]. Climate change may result in a series of ecological and environmental
challenges [6]. It is projected that by the end of the 21st century, the global drought-affected
area may increase by 15–44%. The crop area affected by drought could increase from
11.6 million hectares to 25 million hectares, which would greatly affect food production,
cause fluctuations in global food prices, and threaten food security [8,10,11]. Therefore,
there is an urgent need to conduct in-depth research into the occurrence and development
of drought events [12].

Drought events have multi-element and multi-scale characteristics, obvious spatial
and temporal distribution characteristics, and show dynamic evolution [13]. Extracting
the correct feature variables to characterize drought events will improve drought event
identification and drought frequency analysis [14,15]. Previous studies had different
emphases and evaluation indicators for drought events. To date, most researchers have
focused on a single variable, which leads to overestimation or underestimation of the
occurrence probability for drought events and cannot accurately describe the complexity
and impact of drought events [16]. Therefore, a complete, accurate description of drought
events requires a clear expression of multiple features, such as drought duration, degree of
occurrence, spatial distribution, and the correlation between variables [17–21]. Drought
events are usually studied by selecting appropriate drought indicators for a specific area
and then identifying drought events using univariate analyses. Since the introduction of
the Copula function into drought research, there has been considerable improvements and
progress in the analysis of multiple drought characteristics and multivariate events [22]. For
example, the Copula function has been widely used to study meteorological drought and
hydrological drought events. First, features such as the duration and intensity of drought
events are extracted from the standardized precipitation index (SPI) and Palmer drought
index (PDSI) based on run theory. The optimal Copula function is then used to fit drought
features to analyze the probability of drought events and their recurrence period [12,23–27].
In agricultural drought research there have been few related reports that have combined
drought duration and intensity to describe the characteristics of drought probability and
its recurrence period. Agricultural drought refers to drought that affects crop growth and
yield. Drought indexes that are closely related to crops should be selected to evaluate
drought. The crop water deficit index (CWDI) is used to analyze the crop water deficit from
two aspects: water source and expenditure. Including both crop water demand and crop
water supply in an analysis can better reflect the comprehensive influence of soil, plants,
and meteorology, and the crop water deficit situation. However, the climate, topography,
and soil condition differences in different regions can have an impact on the crop coefficient
and precipitation availability. Thus, the methods used to calculate the crop coefficient
and precipitation availability should be refined in future studies to obtain more accurate
results [28].

Northeast China mainly supports rain-fed agriculture, and is one of the main grain-
producing regions in China. The yield losses and fluctuations in grain production are
mainly caused by drought. As one of the three major maize belts in the world, northeast
China accounts for one third of the country’s maize output and half of its maize exports.
The total sown area of maize is more than 6 million hm2, and about 94% of the maize is
grown on rain-fed farmland [29,30]. Severe droughts were recorded in the maize growing
seasons of 2000, 2009, 2014, 2015, 2018, and 2020. Furthermore, drought has become the
greatest threat to maintaining stable grain production in Northeast China, which means that
it affects food security in China and across the globe [31]. The main aims of this study were
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as follows. (1) To more accurately identify agricultural drought events by improving the
calculation method for the CWDI through optimization of the crop, soil, and meteorology
aspects. The agricultural drought threshold index was determined by considering the
water deficit accumulation degree and its degree of influence on maize. (2) To construct
the optimal drought duration and intensity distribution function and, based on the joint
distribution Copula function, the probability of agricultural drought events of varying
severity in northeast China. The temporal and spatial distribution characteristics of the
recurrence period were also clarified. The findings will improve the scientific decision-
making basis for drought risk management, the practical application of agricultural disaster
prevention and mitigation, and regional socio-economic sustainable development.

2. Study Area and Methods
2.1. Study Area

The three provinces used in this study, i.e., Liaoning, Jilin, and Heilongjiang are located
in northeastern China and have a temperate continental monsoon climate with four distinct
seasons, rain and heat in the same season, and an annual average temperature range of
−4 ◦C to 11 ◦C. The annual precipitation is 371–1084 mm, and around 80% of the total
precipitation occurs in July-August. The annual sunshine hours range from 2219 h to 2952 h,
and the heat conditions are suitable for one crop a year. The area is an important commercial
grain production base in China and the land is mainly used to grow maize, rice, soybean,
and spring wheat. Although the rain and heat in this area occur in the same season, the
spatial and temporal distributions for precipitation are uneven and the evapotranspiration
rate is high. Seasonal droughts, such as spring drought and spring and summer drought,
often occur in the maize growing season, and there are clear regional droughts, which
are, mainly distributed in the western part of northeast China [32,33]. Figure 1 shows the
spatial distribution of agro-meteorological observation stations in northern China.
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2.2. Data Description

The data used in this study were the daily average temperature, daily maximum
temperature, daily minimum temperature, daily precipitation, daily sunshine hours, daily
water vapor pressure, and daily average wind speed data from 172 meteorological ob-
servation stations in northeast China from 1981 to 2020, In addition, crop yield, and soil
moisture content were measured every 10 days during the maize developmental phase and
the growing season from 55 agro-meteorological observation stations. National 1:250,000
500 m × 500 m DEM geographic information data were used in this study [34].

2.3. Study Methods
2.3.1. Improving the Calculation Method for CWDI

CWDI is used to evaluate drought level by China’s National Standard Agricultural
Drought Standard Grades, but the simulation accuracy of the CWDI needs to improve.
Therefore, one of the aims of this study was to increase the accuracy of the CWDI model
by improving the water supply and demand item data, such as the available soil water
at emergence data, and by considering the effectiveness of precipitation, and change the
ten-day crop coefficient to daily crop coefficient. This new method fully considers the
cumulative effect of the crop water deficit on maize growth and yield. The improved crop
water deficit index (CWDIwp) [35] calculation method is shown in Equations (1)–(5).

CWDIwpi =

{
1− We+Pei+Ii

ETci
0

ETci ≥We + Pei + Ii
ETci < We + Pei + Ii

(1)

ETci =
M

∑
i=1

(Kci · ET0i) (2)

We = 0.1hρ(W −Wc) (3)

where, CWDIwpi is the improved crop water deficit index, We is the soil effective water
content to a soil depth of 20 cm at the time of crop emergence (mm), Pei is the sum of the
daily effective precipitation from the start of emergence (mm), ETci is the sum of the daily
water demand volume from the start of emergence (mm), and Ii is the sum of the daily
irrigation amount (mm) since crop emergence. The northeast China area is dominated by
rain-fed agriculture, which means that the irrigation amount can be ignored. ET0i is the
daily reference evapotranspiration (mm), Kci is the daily crop coefficient for maize, M is the
number of days from crop emergence to maturity, h is the thickness of the soil layer (cm), ρ
is soil bulk density (g cm−3), W is soil water content by weight (%), and Wc is the wilting
moisture point(%). The calculation methods of evapotranspiration and crop coefficient
refer to the literature [36].

pei =
m

∑
u=1

Peu (4)

peu = αuPu (5)

where, Peu is the u-th effective precipitation (mm), Pu is the u-th precipitation amount (mm);
αu is the effective utilization coefficient, and m is the number of precipitation events. In
general, the value for αu is as follows: when Pu ≤ 5 mm, αu = 0; when 5 mm < Pu ≤ 50 mm,
αu = 0.9, and when Pu > 50 mm, αu = 0.75 [17,37].

2.3.2. Identification Method for Agricultural Drought Events

The duration and intensity of agricultural drought events were extracted from the
CWDIwp series using run theory. Drought duration and intensity are shown in Figure 2.
Drought intensity represents the drought degree of crops, and is the result of both the
degree and duration of a crop water deficit. Taking 0 as the interception level, the period
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when the CWDIwp > 0 is defined as drought duration, and the cumulative CWDIwp
during the drought duration is defined as the drought intensity S (Equation (6)).

Si =
Q

∑
i=1

CWDIwpi CWDIwp > 0 (6)

where Si is the drought intensity over the duration of the drought and Q is the drought
duration (days).

The identification method for agricultural drought events during the maize growing
season is as follows:

(1) When CWDIwp is >0, it is preliminarily determined that drought has occurred during
this period.

(2) If drought events have a duration of <5 days and the drought intensity is <0, then it is
considered that no drought has occurred.

(3) For a drought event >5 days, when the duration of two consecutive drought events is
<10 days and the CWDIwp value during this period is 0, then the two adjacent drought
events are merged into one in terms of drought intensity and duration. Otherwise,
two adjacent drought events are considered to be two independent drought events.
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Typical drought years were selected for Pearson’s analysis between yield loss, and drought
duration and intensity, with correlation coefficients (p < 0.01) of−0.561 and−0.682, respectively.
The optimal segmentation method was used to determine the thresholds of the drought
duration and intensity two-factor indicator for agricultural drought events (Table 1).

Table 1. Threshold indicator of agricultural drought event.

Drought Severity D * ≤ 5 5 < D ≤ 30 D > 30

No drought S ≤ 0.1
Light drought S > 0.1 0 < S ≤ 7.5

Moderate drought S > 7.5 0 < S ≤ 15
Severe drought 15 < S ≤ 30

Extreme drought S > 30
* Notes: D is drought duration days.

2.3.3. Construction of Marginal Distribution Functions for Drought Duration and Intensity

The γ-distribution, the normal distribution, the lognormal distribution, the Wilson
distribution, the Poisson distribution, and the exponential distribution functions were
selected to fit the drought duration and intensity. The probability density function of
the distribution function is shown in Table 2. The maximum likelihood method and the
Kolmogorov Smirnov (K-S) method were used for parameter estimation and the goodness
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of fit test, respectively, to test whether the empirical distribution function conformed to the
selected theoretical distribution.

Table 2. Probability density function and parameters of different probability distributions.

Marginal Distribution Probability Density Function Parameter

γ-distribution
f (x) = 1

βαΓ(a) xa−1e−x/β(x > 0)

Where Γ(a) =
∫ ∞

0 ya−1e−ydy
α : Shape parameter (α > 0)
β : Scale parameter (β > 0)

Lognormal distribution f (x) = 1
xσ
√

2π
e−

(lnx−µ)2

2σ2 (x > 0)
µ : Mean ln X(−∞ < µ < ∞)
σ : Standard deviation ln X (σ > 0)

Wilson distribution f (x) = ba−bxb−1e−(
x
a )
−b
(x ≥ 0)

α : Shape parameter (α > 0)
β : Scale parameter (β > 0)

Exponential distribution f (x) = λe−λx(x > 0) λ : Ratio parameter (λ > 0)

Normal distribution F(x) =
∫ x
−∞

1√
2πσ

e
−(x−µ)2

2σ2 dx
µ, sample mean values
σ, sample mean errors

2.3.4. Conditional Probability

Once the binary drought distribution function based on Copula function is deter-
mined, it is easy to obtain the conditional probability distribution of the functional. When
considering the probability of a binary distribution function, the most common method is
to estimate both the probability distribution of the selected variable when one of other the
variables exceeds a certain threshold and the joint transcendence probability that both meet
a certain condition at the same time [38]. The following are the conditional probabilities
for a given drought duration (Equation (7)), a given drought intensity (Equation (8)), and
the joint probability distribution that both satisfy a certain condition at the same time
(Equation (9)).

P(S ≤ s|D ≥ d′) =
P(D ≥ d′, S ≤ s)

P(D ≥ d′)
(7)

P(D ≤ d|S ≥ s′) =
P(D ≥ d, S ≤ s′)

P(S ≥ s′)
(8)

P(D ≥ d ∩ S ≥ s) = 1− FD(d)− FS(s) + C(FD(d), FS(s)) (9)

2.3.5. Copula Joint Probability Distribution Function

Based the correlation between variables results, the optimal joint distribution func-tion
for drought duration and intensity can be determined by the Copula function [39]:

F(d, s) = P(D ≤ d, S ≤ s) = C(FD(d), FS(s)) (10)

Table 3 shows the density functions of the five Copulas and the value ranges for the
parameters. The squared Euclidean distance between the empirical distribution function and the
theoretical distribution function [40], and the Akaike information criterion method [41] (Akaike
information criteria, AIC) can be used to estimate the parameters of the Copula function.

Table 3. Descriptions of the properties associated with the five selected Copula functions.

Copula Function Copula Distribution Function Parameter Ranges

Clayton max (µ−θ + ν−θ − 1)−1/θ θ ≥ 0

Frank − 1
θ ln
[

1 + (e−θµ−1)(e−θν−1)
(e−θ−1)

]
θ 6= 0

Galambos µνe[(−lnµ)−θ+(−lnν)−θ ]
−1/θ

θ ≥ 0

Gumbel-Hougaard e−[(−lnµ)θ+(−lnν)θ ]
1/θ

θ ≥ 1

Plackett 1
2

1
θ−1 {1 + (θ − 1)(µ + ν)− [(1 + (θ − 1)(µ + ν))2 − 4θ(θ − 1)µν]

1/2
} θ ≥ 0
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2.3.6. Determination of the Recurrence Period

The recurrence period for univariate variables is

T(d) =
N

n · [1− F(d)]
T(s) =

N
n · [1− F(s)]

(11)

where T(d) is the recurrence period of the drought duration, T(s) is the recurrence period
of the drought intensity, n is the number of drought events, and N is the length of the
drought sequence.

The co-occurrence recurrence period for two variables is:

T(d, s) =
N

n · P(D ≥ d ∩ S ≥ s)
=

N
n · (1− FD(d)− FS(s) + C(F(d), F(s))

(12)

2.3.7. Calculation Method for the Yield Reduction Rate

The yield reduction rate is calculated by comparing the actual output with the
trend output:

Iy = (1−Y/Yt)× 100 (13)

where Iy is the yield reduction rate (%), Y is the actual yield (kg hm–2), and Yt is the trend
yield (kg hm–2). The trend yield was simulated by the 5-year linear moving average.

3. Results
3.1. Identification and Validation of Agricultural Drought Events

The 2006 daily soil moisture observations at Fuxin station were used to verify the
applicability of the CWDIwp model.

As can be seen from Figure 3, the CWDIwp, drought intensity, and relative soil
moisture content had significant negative correlations. The lower the relative soil moisture
content, the more severe the crop water deficit and the stronger the drought severity.
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Figure 4. Development of a maize drought disaster at Fuxin station in 2006. 

Figure 3. Relationships between and relative soil moisture content and drought intensity
and CWDIwp.

In 2006, Fuxin experienced a continuous drought event during summer and autumn.
As shown in Figure 4, the drought began on 13 July. When the CWDIwp reached 0.48,
the drought intensity was 7.5, and when the drought event was 27 days old it entered
a moderate drought period, during which three precipitation events (34.38 mm in total)
were recorded. However, the relative soil moisture content fluctuated between 40 and 50%.
When the maize reached maturity, the CWDIwp was 0.61 and the drought intensity was
30.2, which lasted for 67 days and resulted in a yield reduction rate of 23.9%, suggesting a
severe drought event.
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A typical drought year (2020) in northeast China was selected to validate the CWDIwp
index and the two-factor threshold index for agricultural drought events. From late June
to late August 2020, a severe drought occurred in the southwest of northeast China that
had a severe impact on crop growth and yield formation at a critical stage for crop growth.
The results showed that 79 meteorological sites experienced drought in Northeast China.
The drought degrees for 76 of the sites were completely consistent with that calculated by
the index and the drought degrees for the other three sites were one grade different from
the historical record. The anastomosis rate was 96%, indicating that the index accurately
reflected the occurrence information for agricultural drought events.

3.2. Correlation between Drought Duration and Drought Intensity

Run theory was used to extract the drought duration and intensity values for agricul-
tural drought events from 1981 to 2020 at 55 meteorological stations in northeast China.
The year and start and end dates for the agricultural drought events were also extracted.
There was a significant positive correlation between drought duration and drought degree
in Northeast China with correlation coefficients between 0.56 and 0.97. Figure 5 shows the
correlation relationship between drought duration and drought severity at the 15 sites in
Liaoning Province. This significant correlation indicated that a joint distribution of drought
variables can be constructed using the Copula function.

Atmosphere 2022, 13, x FOR PEER REVIEW 9 of 17 
 

 

A typical drought year (2020) in northeast China was selected to validate the 

CWDIwp index and the two-factor threshold index for agricultural drought events. From 

late June to late August 2020, a severe drought occurred in the southwest of northeast 

China that had a severe impact on crop growth and yield formation at a critical stage for 

crop growth. The results showed that 79 meteorological sites experienced drought in 

Northeast China. The drought degrees for 76 of the sites were completely consistent with 

that calculated by the index and the drought degrees for the other three sites were one 

grade different from the historical record. The anastomosis rate was 96%, indicating that 

the index accurately reflected the occurrence information for agricultural drought events. 

3.2. Correlation between Drought Duration and Drought Intensity 

Run theory was used to extract the drought duration and intensity values for agri-

cultural drought events from 1981 to 2020 at 55 meteorological stations in northeast China. 

The year and start and end dates for the agricultural drought events were also extracted. 

There was a significant positive correlation between drought duration and drought de-

gree in Northeast China with correlation coefficients between 0.56 and 0.97. Figure 5 

shows the correlation relationship between drought duration and drought severity at the 

15 sites in Liaoning Province. This significant correlation indicated that a joint distribution 

of drought variables can be constructed using the Copula function. 

 

Figure 5. Relationship between drought duration and drought intensity at the 15 meteorological 

stations in Liaoning Province, China. 

3.3. Establishment of the Joint Distribution Function for Agricultural Drought Events Based on 

the Copula Function 

Kendall and Spearman rank tests were performed on the marginal distribution func-

tions for drought duration and drought intensity at 40 meteorological stations in North-

east China (excluding stations without drought) and the results showed that the Kendall 

rank correlation coefficient was above 0.8 and the Spearman rank correlation coefficient 

was up to 0.99. The corresponding distribution functions for drought duration and 

drought intensity were determined based on the goodness of fit and were found to have 

an exponential distribution and a gamma distribution, respectively. The high correlation 

between drought duration and intensity meant that a joint distribution function for the 

two variables could be established. The Clayton function had a minimum AIC of 38 of the 

40 stations. Therefore, the Clayton function was chosen as the optimal fitting function. 

3.4. Conditional Probability Analysis of Agricultural Drought Events 

Figure 6a,b shows the conditional probability distribution for different drought in-

tensity and drought duration thresholds at Fuxin Station, respectively. The conditional 

probability for drought intensity (drought duration) decreased with the increase in 

drought duration threshold (d’) (drought intensity threshold is represented by s’). When 

Figure 5. Relationship between drought duration and drought intensity at the 15 meteorological
stations in Liaoning Province, China.

3.3. Establishment of the Joint Distribution Function for Agricultural Drought Events Based on the
Copula Function

Kendall and Spearman rank tests were performed on the marginal distribution func-
tions for drought duration and drought intensity at 40 meteorological stations in Northeast



Atmosphere 2022, 13, 1234 9 of 16

China (excluding stations without drought) and the results showed that the Kendall rank
correlation coefficient was above 0.8 and the Spearman rank correlation coefficient was
up to 0.99. The corresponding distribution functions for drought duration and drought
intensity were determined based on the goodness of fit and were found to have an expo-
nential distribution and a gamma distribution, respectively. The high correlation between
drought duration and intensity meant that a joint distribution function for the two variables
could be established. The Clayton function had a minimum AIC of 38 of the 40 stations.
Therefore, the Clayton function was chosen as the optimal fitting function.

3.4. Conditional Probability Analysis of Agricultural Drought Events

Figure 6a,b shows the conditional probability distribution for different drought in-
tensity and drought duration thresholds at Fuxin Station, respectively. The conditional
probability for drought intensity (drought duration) decreased with the increase in drought
duration threshold (d’) (drought intensity threshold is represented by s’). When the given
drought duration is ≥20 days, the probability of a drought intensity ≤10 is 56% and when
the drought duration is ≥30 days, then the probability of a drought intensity ≤10 is 30%.
When the given drought intensity is≥10, the probability that the drought lasted≤30 days is
2.2%, but when the drought intensity ≥20, the probability that the drought lasted ≤30 days
is 0.17%.
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Figure 6. Conditional distribution of drought intensity when the drought duration exceeded d′

(a) and the conditional distribution of drought duration when the drought intensity exceeded s′ (b) at
the Fuxin station.

3.5. Joint Recurrence Period Analysis of Agricultural Drought Events

Figure 7a,b shows the recurrence period for a given drought intensity and drought
duration thresholds at Fuxin Station, respectively. The recurrence period for drought
intensity (drought duration) increases with the increase in drought duration threshold.
When the drought duration ≥20 days and the drought intensity is ≥10, then the recurrence
period for drought events is 2.3 years and when the drought duration is ≥30 days and the
drought intensity is ≥10, then the recurrence period for drought events is 2.4 years. When
the drought intensity≥20 and the drought duration is≥20 days, then the recurrence period
for drought events is 4.07 years, but when the drought intensity ≥30 and the drought
duration is ≥20 days, the recurrence period for drought events is 6.68 years.

3.6. Spatial and Temporal Distribution Characteristics of Agricultural Drought Events
3.6.1. Time Series Analysis of Drought Intensity

Figure 8 shows the temporal trend in drought intensity for each of the three North-
eastern provinces. The agricultural droughts in the Northeastern provinces from highest to
lowest are Jilin Province > Liaoning Province > Heilongjiang Province. There were more
agricultural drought events in the early 1980s, but then there were fewer drought events. In
the middle and late 1990s, agricultural drought events showed an increasing trend. Severe
drought events occurred in Liaoning Province in 1981–1983, 1989, 1992, 1997, 1999–2002,
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2004, 2006–2007, 2009, 2014, 2015, 2018, and 2020; in Jilin Province in 1982, 1996–1997,
2000–2002, 2004, 2006, 2007, 2009–2011, 2014–2015, and 2017; and in Heilongjiang Province
in 1982, 2000–2001, 2004, 2007, 2010, and 2016.
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3.6.2. Spatial Distribution Characteristics of the Agricultural Drought Event Joint
Probabilities and the Co-Occurrence Recurrence Periods

Figure 9 shows the spatial distributions of the joint probabilities and co-occurrence-
recurrence periods for bivariate (drought duration and drought intensity) features of agri-
cultural drought events in Northeast China. The joint probability of an agricultural drought
event showed a decreasing trend from west to east. The distribution trend for the co-
occurrence-recurrence periods showed an opposite trend, with the high probability area
corresponding to the low recurrence period area. This indicated that the joint probability
of the occurrence of drought was higher in drought-prone areas. As shown in Figure 9a,
the high drought value areas were in western and southern Liaoning, western Jilin, and
southwestern Heilongjiang with a range of 50 to 87%. The low-value areas were distributed
in the mountainous areas of eastern Liaoning and eastern Jilin with drought occurrence
values of below 40%. The remaining areas are between 40 and 50%. Figure 9b shows that the
drought high-risk areas are in western and southern Liaoning, western Jilin, and southwest-
ern Heilongjiang, with co-occurrence-recurrence periods of 1–3 years. Specifically, Baicheng
and Fuxin have co-occurrence-recurrence periods of just one year.
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3.6.3. Probability Spatial Distribution Characteristics of Agricultural Drought Events with
Varying Severities

Figure 10 shows the joint probability spatial distributions of the bivariate characteris-
tics associated with agricultural drought events with different grades in Northeast China.
As shown in Figure 10, there are large differences in the joint probabilities of drought events
with different severities and the order for the different grades is light drought > moderate
drought > severe drought > extreme drought. The areas at high risk from light drought
are in southern Liaoning, central Jilin, and most of Heilongjiang, with joint probabilities of
50–60%. The low-value areas are in the mountainous areas of eastern Liaoning and eastern
Jilin, with joint probabilities of between 20% and 40%, and the joint probabilities for the rest
of the region are between 40% and 50%. The moderately arid high-risk areas are in western
Liaoning, with joint probabilities of between 20% and 30%. The areas at low-risk from
moderate or severe drought are in eastern Liaoning, eastern Jilin, and most of Heilongjiang,
with values below 10%. The regions with severe and extreme drought joint probabilities
(>10%) are distributed in western Liaoning and western Jilin. The rest of the regions have
values of <10%.
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3.6.4. Spatial Distribution of Co-Occurrence-Recurrence Periods for Agricultural Drought
Events with Different Grades

Figure 11 shows the spatial distributions of the co-occurrence-recurrence periods
for the bivariate characteristics of agricultural drought events of different severity in
Northeast China. It can be seen from Figure 11 that the co-occurrence-recurrence periods
for agricultural drought events among the grades are quite different and follow the order
light drought < moderate drought < severe drought < extreme drought. In addition, there
is a gradually increasing trend from west to east. The distribution of regions with similar
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recurrence periods but suffering from either severe drought or extreme drought is basically
the same. The low-value light drought areas are in western Liaoning and western Jilin
where drought occurs once every 1–3 years. The high-value areas are in eastern Liaoning
and eastern Jilin where drought occurs once in more than twenty to hundreds of years.
The low-value moderate drought, areas are in western Liaoning and western Jilin, where
drought is expected to occur once every 3.5–10 years. The low-value areas for severe and
extreme drought recurrence are in western Liaoning and western Jilin where the recurrence
rate is 5.9–20 years.
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4. Discussion

Agricultural drought is closely related to weather systems, crop types and soil charac-
teristics. The soil water content is lower than the crop water requirement, which causes
a water shortage in the crop and affects its normal growth and development, resulting
in reduced yields or total loss of the harvest [42–44]. A series of drought indicators have
been established to improve agricultural drought identification and assessment. Each
indicator has its own advantages and disadvantages depending on its focus. Furthermore,
most evaluation indicators are not linked to the physiology, morphology, and function of
crops after drought. There are still deficiencies in the identification process for drought
assessment indicators. For example, they cannot describe the mechanism and process of
drought occurrence and crop development, they do not reflect the cumulative impact of
drought on crops as duration increases, and do not reflect the relationship between the
drought assessment indicators and yield loss. Currently the widely used drought indicators
are based on monthly and above temporal scales, and are less suitable for characterizing
short-term droughts. A drought indicator based on daily time scales would be able to
describe drought conditions more accurately [45–48]. In the context of climate change, it
is important to supplement and develop agricultural drought indicators that are based
on a daily time scale. Therefore, selecting and constructing appropriate daily time scale
agricultural drought indicators will help to accurately identify agricultural drought events.
From the indicators constructed so far, most of the indicators do not reflect the physical
interaction between disaster-causing factors and disaster-affected bodies, although the Stan-
dardized Precipitation Evapotranspiration Index (SPEI) and the CWDI do use the 10-day
crop coefficients, and the monthly or growth stage in their calculation formulas [49,50].
This study selected the CWDI because it is linked with crop growth and development. The
aims were to optimize the crop coefficient, introduce the effective soil water amount at
seedling emergence and effective precipitation during the growing period, and integrate
crop data, meteorology, and soil moisture conditions. The CWDIwp had a better agronomic
and meteorological significance than the other indicators. The occurrence and development
of drought were evaluated on a daily basis since crop seedling emergence. The evaluation
threshold indicator for a constructed drought event and the new identification method can
effectively diagnose whether a drought event will occur. The identification and diagno-
sis methods of agricultural drought event are carried out from the perspective that crop
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growth and yield formation are affected by drought, which is essentially different from the
evaluation indexes of meteorological and hydrological drought [12,26,27,51,52].

Even though the CWDIwp index value is high, the drought threat to the crops can be
small because the drought period has a short duration. In contrast, when the CWDIwp
index value is low, the crops can still be under considerable threat from drought because
it has a long duration period. In previous studies, only the magnitude of the CWDI was
considered, but the effect of duration was ignored; thus, it cannot represent the actual
drought process. The dual effects of the CWDI and duration (shaded area in Figure 2) need
to be considered together. Therefore, this study emphasized the cumulative effect of crop
water deficit. Based on the relationship between yield reduction rate, and drought duration
and drought intensity, bivariate threshold indicators for drought duration and the drought
intensity of drought events of different severity were determined and drought events were
identified based on run theory.

Northeast China is a rain-fed agricultural area in China and agricultural drought
events often occur. The characteristics, variation patterns, and causes of drought in North-
east China have been extensively analyzed [32,33], but these studies were biased due
to their univariate descriptions of drought characteristics in Northeast China. However,
agricultural drought is a multivariate, comprehensive event and there are usually high
dependencies between the feature values, such as drought duration and drought intensity.
Therefore, just using the probability distribution of univariate characteristics can only
give a partial correlation rather than causality [22]. In recent years, run theory has been
widely used to evaluate drought events. For example, the multivariate Copula function
was gradually introduced into the hydrology field from the financial field [51] and then
gradually extended to meteorological drought [13] and agricultural drought event assess-
ment. In this study, five probability density distribution functions were used to test the
significance of drought duration and drought intensity. The results show that drought
duration and drought intensity conformed to the exponential distribution function and the
gamma distribution function, respectively, which is consistent with the research results
reported by Zuo et al. [52]. The Copula function was used in this study to construct the
joint distribution of agricultural drought events. It was then used to investigate different
combinations of drought duration and drought intensity to comprehensively reflect the
characteristics of drought events. This method can better reveal the temporal and spatial
distribution characteristics of the occurrence frequency and recurrence period for agricul-
tural drought events in different regions and at different levels. The results are consistent
with the results reported by previous researchers [6,48]. The new evaluation system can
distinguish the drought characteristics of different agricultural regions in Northeast China,
supports agricultural drought research, and provides novel insights. Therefore, drought
indicator selection, threshold optimization, and Copula multidimensional feature variable
analysis will be the research focus in the future.

5. Conclusions

In this study, the CWDI was optimized and improved based on a comprehensive
consideration of crops, meteorology, and soil factors. A method for agricultural drought
event identification based on run theory was also established. Bivariate threshold indicators
were determined that could identify drought duration and the drought intensity of drought
events of varying severity. The frequency and intensity were analyzed to reveal the spatio-
temporal variations in agricultural drought events across Northeast China. The main
conclusions are as follows:

(1) CWDIwp is an effective index for agricultural drought events monitoring. It can
reliably evaluate information about drought onset, duration, and intensity, and can
effectively capture the space-time structure of the events.

(2) In terms of temporal distribution, drought intensity in the three Northeastern provinces
showed an increasing trend. Drought events were more frequent in the early 1980s,
but then the number of drought events decreased. The drought events began to
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increase again in the mid-to-late 1990s and remained at a relatively high level from
2000 to 2004. This was probably due to increased heat resources and decreased water
resources during the growing season in Northeast China [53,54].

(3) In terms of spatial distribution, the joint probability showed a decreasing distribution
trend from west to east. The areas with high joint probability values matched the low
value areas for the joint recurrence period, indicating that the drought joint probability
was higher, and the joint recurrence period was lower in the drought-prone areas.
There was also a clear region-specific distribution. The drought high-risk areas are in
western Liaoning and western Jilin with a joint probability range of 60–87% and a joint
recurrence period of 1–3 years. The low-risk drought areas (probability <40%) are
distributed in the mountainous areas of eastern Liaoning and eastern Jilin. The joint
probabilities and joint recurrence periods for agricultural drought events of varying
severity were quite different, with the joint probability order from high to low being
light drought > moderate drought > severe drought > extreme drought. The joint
recurrence period order was as follows: light drought < moderate drought < severe
drought < extreme drought.
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