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Abstract: Scattered light polarization serves as an indicator and a characteristic of various processes
in the atmosphere. The polarization measurements of all scattering matrix elements provide an
adequate description of the optical and morphological parameters and orientation of particles
in clouds. In this article, we consider the problem of the calibration of matrix polarization lidar
(MPL) parameters. Calibration by air is an effective alternative to the technique for correcting optical
element parameters and among the calibration parameters of the MPL optical path are the relative
transmission coefficient of a two-channel receiver, the angular positions of the transmission axes of
the optical elements of the transmitter and receiver units, including the polarizers and wave plates,
and the retardance of wave plates. For the first time, the method of calibration by air was partially
implemented in the MPL to study Asian dust in the atmosphere. We considered the calibration
problem more generally and this was due to the need to calibrate different MPL modifications from
stationary to mobile ones. The calibration equations have been derived in terms of instrumental
vectors, and the method of their solution by the generalized least squares method has been proposed.
The method has been verified on a numerical MPL model and validated using MPL measurements in
Daejeon, Republic of Korea.

Keywords: polarization lidar; backscattering; Mueller matrix; wave plate

1. Introduction

Laser polarimetric remote sensing is successfully used to study the optical character-
istics of the atmosphere [1–7]. The widespread polarization sensing method consists in
measuring the cross-polarized components of irradiance scattered along the sensing path;
however, within the limits of representation of the particle scattering using the Stokes pa-
rameters, this is only a part of the information on the scattering matrix elements. Complete
information on the particle scattering matrix is obtained from measurements with a matrix
polarization lidar (MPL) [8–11].

As it was shown at the presentation [12] at the 28th International Conference,
4–8 July 2022, Tomsk, the calibration of the matrix polarization lidar parameters is an
urgent problem for remote sensing of the atmosphere. According to the existing practice,
the lidar parameters are estimated using the technique of correcting the optical element
parameters [8–10,13–16]; however, this correction method is pertinent only for laboratory
studies. For mobile lidars operating in an autonomous mode in a wide range of external
conditions, the calibration by measurements in the atmosphere becomes the main method.

The procedure of calibration by air has been partially implemented for the first time
in the MPL to study Asian dust in the atmosphere [11]. For calibration, a segment of the
sensing path with a prevalence of molecular scattering was chosen. In a measurement
series, four wave plates were alternately replaced in the optical lidar channel. As a result of
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calibration, the relative transmission coefficient of the two-channel receiver (below referred
to as the relative transmission coefficient) and the angular positions of the transmission
axes of the wave plates and polarization beam splitter (PBS) were estimated.

The calibration problem has been extensively reformulated and its solution has been
significantly revised after MPL modernization. The lidar design was simplified using the
procedure of an angular rotation of one wave plate of the laser radiation transmitter and
another wave plate of the scattered radiation receiver. The calibration segment was chosen
in air, and a series of measurements were carried out. The relative transmission coefficient
in the optical channel of the MPL receiver was estimated by means of constructing and
solving a linear system of equations. The angular positions of the transmission axes of the
optical elements and retardance wave plates were estimated by solving the system of the
nonlinear equations with the Gauss–Newton method.

The derivation of the calibration equation in terms of instrumental vectors is presented.
A two-stage method for estimating the parameters from the obtained calibration equations
with the generalized least squares method using available information is also described.

Using statistical methods, the stability of the method, rate of its convergence, devia-
tions of estimates, and behavior for weak echo-signals were checked. For this purpose, a
series of echo-signals for several signal levels were modeled. These data were then used to
solve the inverse problem of a parameter reconstruction. The scalability of the method for
a set of calibration parameters then allowed the method to be validated using the results of
the MPL polarization sensing in Daejeon, Republic of Korea [11].

In Section 2 of the present work, the calibration problem is formulated and the prin-
ciples of constructing the calibration equations for lidar echo signals are described. In
Section 3, methods for solving linear and nonlinear calibration problems are presented. In
Section 4, the procedure is described and the results of the verification and validation of
the method are given. In the Appendix A, the order of representation and the calculated
partial derivatives of the instrumental vectors are presented.

2. Calibration Equations

Here, we mainly use the notations of [11,17]. In particular, electromagnetic waves are
described in the (x, y, z) coordinate system in which the z axis is parallel to the radiation
propagation direction. In addition, we follow the traditional agreement for the light beam
passing through an ideal optical element: the direction of the rotation of vibrational ellipse
axes is positive for the clockwise rotation in the direction of the radiation source. If we
designate the vector basis of the optical element by (eI I , e⊥, ez), we consider that the vector
eI I defines the horizontal transmission axis relative to the y axis, and the direction of the
vector ez coincides with the z axis of the incident light beam.

Assume that the radiation source and the receiver of the scattered radiation of the
MPL are located in one place. Then, for the scattering volume ∆V of the particles located
at the distance h from the receiver, the Stokes vectors of incident, S0 = (I, Q, U, V)T , and
scattered radiation, S, are related by the formula [8]:

S =
(

∆V/h2
)

MπS0 (1)

where the elements of the backscatter matrix Mπ , in m−1sr−1, are the volume backscattering
coefficients and T is the transposition index. This is the first order approximation of the
scattering theory.

The matrix Mπ can be represented as the sum Mπ = Aπ +Σπ of the scattering matrices
of particles, Aπ , and the molecular atmosphere, Σπ . With an allowance for depolarization,
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the backscattering matrix in air, σπ = Σπ/Σ11, in which the element Σ11 is normalized by
unity, has the form [18]:

σπ =


1 0 0 0
0 0.97 0 0
0 0 −0.97 0
0 0 0 −0.94

 (2)

The form of the matrix σπ is well known; therefore, it is natural to calibrate the MPL
parameters by measuring the radiation scattering characteristics in air. The simplified
optical scheme of the MPL is shown in Figure 1. Laser radiation is linearly polarized in
the yoz scattering plane, and the irradiance I is normalized by unity. Then, the normalized
Stokes vector of the laser radiation is s0 = (1, q, u, v)T = (1, 1, 0, 0)T .
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transmission axis at an angle of SCAφ  to the scattering plane. Then, the beam is split into 
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Figure 1. Optical scheme of the matrix polarization lidar. Here, ‘incident beam’ denotes the laser
radiation, RINC is the transmitter wave plate, RSCA is the receiver wave plate, PBS is the polarization
beam splitter, and NI I and N⊥ are the orthogonal recorded signals. The receiving collimator and the
recording system are not shown here.

The receiver coordinate system is obtained via rotation through an angle of 180◦ in the
scattering plane. At first, the beam is incident on the wave plate RINC with the transmission
axis at an angle of φINC to the scattering plane, and is scattered in the atmosphere. In the
receiver, the scattered radiation passes through the wave plate RSCA with the transmission
axis at an angle of φSCA to the scattering plane. Then, the beam is split into two orthogonal
components with the help of the polarization beam splitter (PBS) and is recorded as the
signals NI I and N⊥. The receiving collimator and the recording system are not shown in
the figure.

Consider the MPL calibration based on the measurements of scattered light irradiance
as a series of echo signals {NI I , N⊥} also designated as signals. Each ith measurement
in the series is made after rotations of the transmitter wave plate RINC and the receiver
wave plate RSCA. These are the rotations of the wave plates around the z axis in a series
of angular states { φINC, φSCA}. The calibration is aimed at determining the systematic
deviations of the MPL parameters: the relative transmission coefficient α; angular positions
of the transmission axes; wave plate retardances ∆ϕINC, ∆δINC, ∆ϕSCA, and ∆δSCA; the
angle ξ of the polarizer transmission axis.

Suppose that the signals NI I and N⊥ from the scattering layer ∆h at the distance h are
recorded in the photoelectron counting mode. Omitting for simplicity the serial number of
the measurement, we consider the polarization sensing equations in the first approximation
of multiple scattering theory as [8,11]:

NI I = NI I I
SCAσπ IINC (3)
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N⊥ = γNI⊥SCAσπ IINC (4)

Here, γ is the coefficient due to the difference in the transmission of the channel optics
and the photomultiplier sensitivity; N = ηN0∆hAh−2Σ11T2(h); η is the loss factor; N0 is
the number of photons per laser pulse; A is the effective receiver aperture; T2(h) is the
atmospheric transmission factor; I I I

SCA = g0MI IMSCA and I⊥SCA = g0M⊥MSCA are the
instrumental vectors of the receiver row; IINC = MINCs0 is the instrumental vector of the
transmitter column; g0 = (1, 0, 0, 0) is the unit row vector; MI I/⊥ are the PBS Mueller
matrices [16], where MSCA/INC are the Mueller matrices of the receiver and transmitter
wave plates given by Equation (A5). We consider that hereinafter, the signal relationships in
the form of the equations hold true with the accuracy determined by measurement statistics.

As shown in Ref. [11], if we define the polarization ratio as c = (NI I − αN⊥)/(NI I + αN⊥),
where α = 1/γ, after a substitution of Equations (3) and (4), we obtain the MPL calibration equation:

ISCAσπ IINC = 0 (5)

where the transmitter and receiver instrumental vectors IINC and ISCA, using the termi-
nology of Ref. [11], are given by Equations (A1) and (A2). With am=n allowance for the
Equations (2), (A1) and (A2), Equation (5) is reduced to the form:

f J = f0 − c = 0 (6)

where:
f0 = 0.97qINCqSCA − 0.97uINCuSCA − 0.94vINCvSCA (7)

Here, f J ≡ f J(α, ϕINC, δINC, ϕSCA, δSCA, ξ) is the nonlinear functional of the calibration
parameters except for α.

Note that the matrix σπ is diagonal; therefore, the sum of the signals NII + αN⊥ is inde-
pendent of the angular positions of the PBS and receiver and transmitter wave plates; therefore:

NI I + αN⊥ = N
(

I I I
SCA + I⊥SCA

)
σπ IINC = N (8)

Equation (8) can also be written in the form of the functional:

fA ≡ fA(α, N) = NI I + αN⊥ − N = 0 (9)

Thus, to within small terms determined by the measurement statistics, the MPL
calibration equations have the form:

f J(α, ϕINC, δINC, ϕSCA, δSCA, ξ) = 0 (10)

fA(α, N) = 0 (11)

3. Solution of the Calibration Equations

Consider the method of solving the MPL calibration equations. Note that the calibra-
tion parameters, ∆ϕINC/SCA, define the initial angular positions of the wave plates. We
consider that the wave plate rotation angles φINC/SCA in a series of states { ϕINC, ϕSCA}
are accurate, where ϕINC/SCA ≡ (∆ϕ + φ)INC/SCA. In other words, φINC/SCA are known
quantities included in the calibration equation as constants. We accept, as the available
information, the Poisson statistics of the recorded signals [19]. We also consider that the
measurement errors are random and independent. As customary, we use signals instead
of averages and variances in a series of measurements. Recall that there are only three
methods of estimating the parameters: the method of moments, the least squares method
(LSM), and the maximum likelihood method [20]. Note that the regressors of the function-
als (10) and (11) comprise the measurements NI I and N⊥; therefore, the residuals in fitting
the calibration parameters depend on the measurements. The functional fA is linear in
the parameters α and N, whereas the functional f J is nonlinear in the angular parameters.
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In this case, the use of the LSM [20] is the optimal (economic) strategy. In addition, we
consider the two-stage solution method:

1. The linear parameters >α and
>
N are estimated as roots of the functional fA;

2. Substitution of >α into f J →
>
fJ is carried out;

3. The functional
>
fJ nonlinear in the angular parameters is solved with the Gauss–

Newton method.

3.1. Stage 1 of Solving the Problem

The linear functional fA(α, N) = 0 is the classical model of pairwise regression with
m measurements:

yi = β1xi + β2 + εi(i = 1, 2, . . . , m) (12)

in which yi is the model yi = −NI I , and the regressors can be represented in the form of
the row vector Ai = (xi,−1) = (N⊥,−1). The exogeneity of the regressors is violated since
cov(yi, εi) 6= 0 and cov(xi, εi) 6= 0. Then, the LMS estimates are unbiased, but non-effective.
The standard error estimates are biased and inconsistent. The problem is solved by using
the generalized least squares (GLS) [21]. The system of Equations (12) in the matrix form
has the form:

Aβ = Y (13)

where A is the m× 2 matrix composed of the corresponding row vectors Ai, β = (β1, β2)
T =

(α, N)T is the column vector of the model coefficients, and Y = (y1, y2, . . . , ym)
T is the col-

umn vector.
The GLS model coefficients are estimated based on the Moore–Penrose pseudoinverse(

ATA
)−1

AT [22,23] as:

_
β =

(
AT_

D
−1

A
)−1

AT_
D
−1

Y (14)

and the errors in the parameters
>
D
[>
N
]

and
>
D[>α] are estimated as the corresponding diago-

nal matrix elements: (
AT_

D
−1

A
)−1

(15)

The m×m error covariance matrix estimate
_
D ≡

_
D
[>
fA

]
in Equations (14) and (15) is

defined as the diagonal matrix with elements:

>
Dii

[>
fA

]
∼= NI I +

>α2N⊥ (16)

The estimates
_
β are found using an iterative procedure because it is necessary to set

the initial value α0 of
_
D. For the convenience of representation, the serial numbers of the

iterations are omitted here. The subsequent estimates
_
β are calculated from the previous

estimates by solving Equations (14) and (15). The well-known convergence criterion is
calculated from the residuals of the functional

>
fA. As a consequence of the Gauss–Markov

theorem [24,25], the GLS vector estimate
_
β is unbiased and effective. Since the matrix

_
D is

determined based on the available information, the GLS is often called the feasible GLS.

3.2. Stage 2 of Solving the Problem

In the next step (item 2) after the substitution, the functional
>
fJ ≡

>
fJ(ϕINC, δINC,

ϕSCA, δSCA, ξ) takes the form:
>
fJ = f0 −>c = 0 (17)

where>c = (NI I −>αN⊥)/(NI I +
>αN⊥).
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In the Gauss–Newton method, the nonlinear form
>
fJ in the first approximation of the Taylor

series expansion is reduced to the linear form in the increments ∆ of the calibration parameters:

∂ f0

∂ϕINC
∆ϕINC +

∂ f0

∂δINC
∆δINC + . . . +

∂ f0

∂ξ
∆ξ +

>
fJ = 0 (18)

where the partial derivatives of f0, taking into account Equation (7), are determined by the
subsequent substitution as the partial derivative components of the instrumental vectors
given by Equations (A1)–(A10).

Let us consider Equation (18) as a model of multiple regression with m measurements:

yi = ∆1x(1)i + ∆2x(2)i + . . . + ∆5x(5)i + εi(i = 1, 2, . . . , m) (19)

where yi = −
>
fJ is the model, the vector of the model coefficients ∆ = (∆1, ∆2, . . . , ∆5)

T is
composed of the increments ∆ = (∆ϕINC, ∆δINC, . . . , ∆ξ)T , and the regressors in the form
of the row vectors Ji =

(
x(1)i , x(2)i , . . . , x(5)i

)
are composed of the corresponding partial

derivatives ∂ f0/∂ϕINC, ∂ f0/∂δINC, . . . , ∂ f0/∂ξ given by Equations (A6)–(A10). In the
matrix form, Equation (19) takes the following form:

J∆ = Y (20)

where J is the m× 5 matrix of the Jacobi derivatives composed of the row vectors Ji and
Y = (y1, y2, . . . , ym)

T . Here, Model (19) is endogenous with errors εi that depend on
measurements {NI I , N⊥}. As in the preceding case, a solution can be found using the

feasible GLS. The initial approximation vector is
_
β

0
=
(

ϕ0
INC, δ0

INC, . . . , ξ0)T . In the Gauss–
Newton iterative method, the subsequent parameter estimates are related to the previous
estimates through the increments:

_
β

j+1
=

_
β

j
+

_
∆

j
(j = 0, 1, 2, . . .) (21)

where j is the serial iteration number. The GLS estimate of the coefficient increment vector
_
∆

j
has the form:

_
∆

j
=

(
JT_

D
−1

J
)−1

JT_
D
−1

Y (22)

where
_
D ≡

_
D
[>
fJ

]
is the m× m covariance matrix of error estimates defined by the first

terms of the Taylor series expansion:

>
Dii

[>
fJ

]
∼=

NI I +
>α2N⊥ + N2

⊥
>
D[>α]

(NI I +
>αN⊥)

2

(
1 +>c2

)
(23)

The errors of the parameters
_
D
[>
∆
]

are the corresponding diagonal elements of the matrix:

(
JT_

D
−1

J
)−1

(24)

The well-known convergence criterion is also based of the residuals of the functional
>
fJ . The GLS estimate of the coefficient vector

_
β is unbiased and effective.

Note the key point in compiling the error matrices in Formulas (16) and (23) of the
available data:

• In stage 1 of the problem solution, the diagonal matrix
_
D
[>
fA

]
is composed of the error

estimates of measurements NI I and N⊥ as the initial data. As indicated above, taking
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into account the properties of the Poisson statistics, they are the signals themselves
NI I and N⊥;

• In the next stage, the diagonal matrix
_
D
[>
fJ

]
is composed of the error estimates for NI I ,

N⊥, and >α as the initial data; they are the signals NI I and N⊥ and
>
D[>α].

As shown in [20,26], if we denote the accuracy of estimates by
_
Dm=n given that the

number of unknowns coincides with the number of equations m = n, then the accuracy of

the parameter estimates for m > n is increased as
_
Dm≥n ∼=

_
Dm=n/(m− n + 1).

4. Verification and Validation of the Calibration Method

The calibration method was verified for the MPL numerical model in which a series of
measurements were performed with subsequent rotations of the transmitter and receiver
λ/4 plates RINC and RSCA, respectively. The method was validated on the results of MPL
sensing of the Asian dust in Daejeon, Republic of Korea [11].

The convergence and stability of the method are critical to the set of angular positions
of the transmission axes of the λ/4 plates { ϕINC, ϕSCA} in the measurement series below
referred to as the ‘set of positions’ or simply the ‘set’. To solve this problem, the search
of the optimal variants of the set was performed. For this purpose, we first formed a set
{ϕINC, ϕSCA}. Then for this set, we modeled N instrumental vectors for the MPL receiver
and transmitter as a set of states { IINC, ISCA}. Then, the corresponding series of signals
were calculated from Formulas (3) and (4). Then the ranks, determinants, and condition
numbers of the matrices ATA and JTJ were calculated and compared. As the efficiency
criterion, we used the condition of good conditionality of the systems of Equations (14)
and (22). For simplicity, the sets were composed of placements with repetitions A

m
n = nm

in two variants A
2
3 and A

2
4.

As a result, two optimal sets { ϕINC, ϕSCA} were chosen: the fast set with A
2
3 = 9 and

the slow set with A
2
4 = 16. The fast set was { ϕINC/SCA} = { 0, π3/8, π6/8}, where the

angles are in radians; the instrumental vector set { IINC, ISCA} for it was:

IINC/SCA =


∗
1
0
0

∗
0.5
−0.5
0.707

∗
0
0
−1

 (25)

Here, the instrumental vectors are column vectors, and the asterisks are equal to 1 for
IINC and {−c} for ISCA.

The slow set was { ϕINC/SCA} = { 0,π2/8, π5/8, π7/8} with a periodicity of π radi-
ans and the corresponding instrumental vector set { IINC, ISCA}:

IINC/SCA =


∗ ∗ ∗ ∗
1 0 0.5 0.5
0 0 0.5 −0.5
0 1 −0.707 −0.707

 (26)

4.1. Verification

Figures 2–4 show the results of the application of the calibration method to the MPL
models with fast and slow sets { ϕINC, ϕSCA}. For convenience, we call these results
the fast and slow estimates, respectively. Figure 2 shows the histograms of the fast and
slow estimates of the parameters ∆

>
δINC (a) and ∆

>
δSCA (b) of the transmitter and receiver

λ/4 plates, respectively. Here, 5 × 104:F is the fast estimate and 5 × 104:S is the slow
estimate for <N> = 5 × 104; 5 × 103:F is the fast estimate and 5 × 103:S is the slow
estimate for <N> = 5 × 103; 500:F is the fast estimate and 500:S is the slow estimate for
<N> = 500 for both (a) and (b). The sample comprised 10,000 estimates of the MPL model
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parameters. Hereinafter, the histograms are shown as linear envelopes of the cells for the
best data visualization.
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The following procedure of the verification of the calibration method was chosen. For
convenience, it was assumed that the optical elements had no systematic angular position
errors and γ = 1. For the fast and slow sets { ϕINC, ϕSCA}, a series of values N was
composed of the known average values 〈N〉: 100, 500, 103, 5 × 103, 104, 5 × 104. Then, the
series of average signal values {〈NI I〉, 〈N⊥〉} were calculated from Equations (3) and (4).
Furthermore, the series of random echo-signals {NI I , N⊥} with the Poisson distribution
were generated for the average signals. After that, the inverse problem of estimating the
calibration parameters was solved. The initial approximation vector was set in the form
_
β

0
= (5◦, 5◦, 5◦, 5◦, 5◦).

The estimation accuracy and the convergence of the method were estimated from
statistical data. For this purpose, each procedure of generating a series {NI I , N⊥} and
solving the inverse problem was repeated 10,000 times. Here, the calibration parameters
are the initial angular positions of the λ/4 plates ∆ϕINC and ∆ϕSCA, deviations from
retardance of the λ/4 plates ∆δINC and ∆δSCA, and the angle deviation ξ of the PBS.

Figure 3 shows the histograms of the angle deviations of the transmission axes esti-
mates ∆>ϕINC (a) and ∆>ϕSCA (b) for the transmitter and receiver λ/4 plates, respectively.

Figure 4a shows the histograms of the angle deviations of the PBS transmission axis
>
ξ, and

Figure 4b shows the histograms of the deviations of the relative transmission coefficient>α.
Table 1 presents the estimates of the average deviations of the calibration parame-

ters for the examined sample of 10,000 results (marked in 〈 〉 parentheses). The data are
presented in columns of Table 1 depending on the signal-to-noise ratios (SNR).

Table 1. Estimations of the average deviations of the calibration parameters depending on the SNR.

SNR 223.6 100 70.7 31.6 22.4 10

〈>α〉 −0.00003 ± 0.005 −0.0003 ± 0.01 −0.0006 ± 0.02 −0.003 ± 0.04 −0.005 ± 0.05 −0.03 ± 0.1
−0.00005 ± 0.004 −0.0003 ± 0.008 −0.0006 ± 0.01 −0.003 ± 0.03 −0.006 ± 0.04 −0.03 ± 0.08〈

∆
>
δINC

〉 0.03 ± 0.3◦ 0.05 ± 0.7◦ 0.04 ± 1.0◦ −0.03 ± 2.2◦ −0.2 ± 3.1◦ −1.2 ± 6.6◦

−0.03 ± 0.2◦ −0.04 ± 0.5◦ −0.05 ± 0.6◦ −0.1 ± 1.4◦ −0.2 ± 1.9◦ −1.1 ± 4.3◦〈
∆>ϕINC

〉 −0.007 ± 0.09◦ −0.01 ± 0.2◦ 0.01 ± 0.3◦ −0.01 ± 0.6◦ −0.02 ± 0.9◦ −0.02 ± 1.9◦

−0.003 ± 0.06◦ −0.004 ± 0.1◦ −0.04 ± 0.2◦ −0.003 ± 0.4◦ −0.01 ± 0.6◦ −0.04 ± 1.3◦〈
∆

>
δSCA

〉 0.05 ± 0.3◦ 0.06 ± 0.7◦ 0.06 ± 1.0◦ −0.04 ± 2.2◦ −0.1 ± 3.1◦ −1.0 ± 6.6◦

−0.01 ± 0.2◦ −0.03 ± 0.4◦ −0.03 ± 0.6◦ −0.1 ± 1.4◦ −0.2 ± 2.0◦ −1.0 ± 4.4◦
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Table 1. Cont.

SNR 223.6 100 70.7 31.6 22.4 10〈
∆>ϕSCA

〉 −0.01 ± 0.3◦ −0.02 ± 0.6◦ −0.01 ± 1.0◦ 0.03 ± 2.1◦ 0.1 ± 2.9◦ 0.5 ± 5.7◦

−0.008 ± 0.1◦ −0.007 ± 0.3◦ −0.002 ± 0.3◦ −0.02 ± 0.8◦ −0.02 ± 1.1◦ 0.04 ± 2.5◦〈>
ξ
〉 −0.01 ± 0.4◦ −0.01 ± 0.8◦ −0.009 ± 1.1◦ 0.04 ± 2.5◦ 0.13 ± 3.5◦ 0.6 ± 6.7◦

−0.02 ± 0.1◦ −0.02 ± 0.3◦ −0.01 ± 0.4◦ −0.03 ± 1.0◦ −0.02 ± 1.3◦ 0.07 ± 2.9◦

The standard deviation (STD) of the signal served as the noise estimate. Here, SNR =
〈N〉/

√
〈N〉 for the Poisson signal statistics. The upper figures in the table cells show the

fast set average parameter estimates, and the lower figures show the slow set estimates.
The results demonstrate fast convergence to the functional minimum, on average, in

two iterations and a good stability of the method for weak signals.

4.2. Validation

The proposed calibration method is scaled to the calibration parameters. This allowed
us to validate the method using the data of polarization sensing in Daejeon, Republic of
Korea, 36.34◦ N, 127.30◦ E on 1–2 June 2014 [11]. Figure 5 shows the vertical profiles of
the scattering ratio estimates from the data of atmospheric sensing with the MPL. The
scattering ratio profiles were calculated using the technique described in [8].
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Figure 5. Vertical profiles of the scattering ratio. The boundaries of the MPL calibration range are
indicated in red. MPL, Daejeon, Republic of Korea.

The matrix polarization lidar operated with a successive change of the receiver and
transmitter λ/2 and λ/4 plates and without wave plates. These states are described as

placement with repetitions A
2
3 = 9 [11]. There are six calibration parameters: the relative

transmission coefficient α; angular positions ∆ϕINC of the transmission axes of the λ/2
plate and ∆ψINC of the λ/4 plate of the receiver; ∆ϕSCA of the λ/2 plate and ∆ψSCA of
the λ/4 plate of the transmitter; the angle ξ of the PBS transmission axis. The vertical
resolution of the measurements was 60 m. The altitude range from 2700 m to 4200 m with a
prevalence of molecular scattering is clearly seen in Figure 5. The MPL was calibrated in this
altitude range. Figure 6 shows the histograms of the signal estimates

>
N. The characteristic

shape of the histogram in Figure 6 is due to lidar echo signal variations as was shown by
Equations (3) and (4).
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Figure 6. Histogram of the signal estimates
>
N. MPL, Daejeon, Republic of Korea.

Here, the average signal estimate
〈>

N
〉

= 784.26 with SNR = 28. The parameter esti-
mates were obtained by the calibration method from the experimental data of 494 series
of polarization measurements. Figure 7a shows the histograms of the angle deviation
estimates ∆>ϕINC and ∆>

ψINC of the transmission axes of the transmitter wave plates, the
∆>ϕSCA and ∆>

ψSCA of the receiver wave plates, respectively, and of the PBS transmission
axis

>
ξ. Figure 7b shows the histogram of the relative transmission coefficient >α.
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Figure 7. Histograms of the MPL parameter estimates, Daejeon, Republic of Korea. (a) Angle deviation
estimates of the transmission axes of the transmitter (∆>ϕINC and ∆>

ψINC) and receiver wave plates (∆>ϕSCA
and ∆>

ψSCA) and of the PBS
>
ξ. (b) The deviation estimate of the relative transmission coefficient>α.

The histograms are shown relative to the MPL average calibration parameter estimates
(marked in 〈 〉 parentheses) given in Table 2.

Table 2. Average calibration parameter estimates.〈
_
α
〉 〈

∆
_
ϕINC

〉 〈
∆
_
ψINC

〉 〈
∆
_
ϕSCA

〉 〈
∆
_
ψSCA

〉 〈
_
ξ

〉
1.111 ± 0.054 −4.12 ± 0.62◦ −1.8 ± 1.2◦ −4.39 ± 0.93◦ 3.1 ± 1.7◦ −2.7◦ ± 1.2◦
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Figure 8 shows the histogram of the convergence rate of the calibration method from the
data of the outdoor experiment as the number of calibration procedures versus the number of
iterations in the procedure. The sample histogram comprised 494 calibration procedures.

Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 15 
 

 

plates ( SCAϕΔ  and SCAψΔ ) and of the PBS ξ


. (b) The deviation estimate of the relative transmis-
sion coefficient α . 

The histograms are shown relative to the MPL average calibration parameter esti-
mates (marked in  parentheses) given in Table 2.  

Table 2. Average calibration parameter estimates. 

α  INCϕΔ  INCψΔ  SCAϕΔ  SCAψΔ  ξ


 

1.111 ± 0.054 −4.12 ± 0.62° −1.8 ± 1.2° −4.39 ± 0.93° 3.1 ± 1.7° −2.7° ± 1.2° 

Figure 8 shows the histogram of the convergence rate of the calibration method from 
the data of the outdoor experiment as the number of calibration procedures versus the 
number of iterations in the procedure. The sample histogram comprised 494 calibration 
procedures. 

 
Figure 8. Histogram of the convergence rate of the MPL angular parameter calibration method, 
Daejeon, Republic of Korea. 

On average, the convergence was reached in two iterations, which is characteristic 
for the least squares method. The results of the testing of the calibration method from the 
data of the outdoor experiment show a fast convergence and good stability of signals in 
the photoelectron counting mode. 

5. Concluding Remarks 
In this work, the principle of derivation and the method of solution of the equation 

of the MPL parameter calibration by air have been substantiated. To estimate the calibra-
tion parameters, the generalized least squares method was used. The minimum functional 
estimates obtained by this method are independent of the random variable distributions. 
The calibration parameter estimates are unbiased and effective.  

The problem of the choice of the states of the wave plate set used for the calibration 
measurements was considered. In the mode of the MPL calibration by air, two sets of an-
gular positions of the transmission axes of the lidar receiver and transmitter 4λ  plates 
in series of measurements were suggested.  

The results of the method verification on the MPL model showed a fast convergence 
in 1–3 iterations and a stability of the parameter estimation method. The validation of the 
calibration method on the data of MPL sensing in Daejeon, Republic of Korea, confirmed 

Figure 8. Histogram of the convergence rate of the MPL angular parameter calibration method,
Daejeon, Republic of Korea.

On average, the convergence was reached in two iterations, which is characteristic
for the least squares method. The results of the testing of the calibration method from the
data of the outdoor experiment show a fast convergence and good stability of signals in the
photoelectron counting mode.

5. Concluding Remarks

In this work, the principle of derivation and the method of solution of the equation of
the MPL parameter calibration by air have been substantiated. To estimate the calibration
parameters, the generalized least squares method was used. The minimum functional
estimates obtained by this method are independent of the random variable distributions.
The calibration parameter estimates are unbiased and effective.

The problem of the choice of the states of the wave plate set used for the calibration
measurements was considered. In the mode of the MPL calibration by air, two sets of
angular positions of the transmission axes of the lidar receiver and transmitter λ/4 plates
in series of measurements were suggested.

The results of the method verification on the MPL model showed a fast convergence
in 1–3 iterations and a stability of the parameter estimation method. The validation of the
calibration method on the data of MPL sensing in Daejeon, Republic of Korea, confirmed
the correctness of the chosen concept of method construction. This suggests the possibility
of a practical application of the method of MPL calibration by air in polarization sensing.

It should be noted that in practice, the directions of the basis vectors ez of optical MPL
elements do not coincide with the z axis of the incident light beam. In addition, the MPL
comprises other optical elements, for example, filters, lenses, etc., that introduce additional
optical distortions. In the calibration by the proposed method, their contribution was taken
into account in an implicit form; therefore, the MPL calibration parameter estimates should
be considered effective. This is the advantage of the proposed calibration method compared
to the correction technique.

Here, we have not considered the nature of the depolarization effect of the elements
of the molecular scattering matrix; however, as shown in [27], the bandwidth of the input
filters in the recording equipment should be taken into account. For spectral filter widths of
less than 0.5 nm, filtering of the Raman scattering lines can lead to a change in the scattered
radiation depolarization coefficient.
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Appendix A. Instrumental Vector

Following [8,11], the MPL transmitter and receiver instrumental vectors IINC and ISCA
can be represented in the form:

IINC = (1, qINC, uINC, vINC)
T (A1)

ISCA = (−c, qSCA, uSCA, vSCA) (A2)

Here, the transmitter instrumental vector IINC is the Stokes vector parameter and c is
the polarization ratio as defined above. The components of the instrumental vectors (A1)
and (A2) are defined as:

IINC = (1, r22, r32, r42)
T (A3)

ISCA = (−c, Cr22 + Sr23, Cr23 + Sr33, Cr24 + Sr34) (A4)

Here, S = sin 2ξ and C = cos 2ξ, the angle ξ is the (least) angle of the PBS transmission
axis, and rij are the Mueller matrix elements of the wave plate. The Mueller matrix M(ϕ, δ)
of the transmitter and receiver wave plates has the following form [17]:

1 0 0 0
0 C2 + S2 cos δ SC(1− cos δ) −S sin δ
0 SC(1− cos δ) S2 + C2 cos δ C sin δ
0 S sin δ −C sin δ cos δ

 (A5)

where S = sin 2ϕ and C = cos 2ϕ, ϕ is the angle of the fast axis, and δ is the retardance.
For the partial derivatives ∂IINC/∂ϕINC and ∂ISCA/∂ϕSCA, we have:

∂IINC
∂ϕINC

= (0, r22, r32, r42)
T (A6)

∂ISCA
∂ϕSCA

= (0, Cr22 + Sr23, Cr23 + Sr33, Cr24 + Sr34) (A7)

The designations here coincide with those accepted above except that rij here are the
elements of the Mueller partial derivative matrix ∂M(ϕ, δ)/∂ϕ of the wave plate:

2×


0 0 0 0
0 2SC(cos δ− 1)

(
C2 − S2)(1− cos δ) −C sin δ

0
(
C2 − S2)(1− cos δ) 2SC(1− cos δ) −S sin δ

0 C sin δ S sin δ 0

 (A8)
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The formulas for the partial derivatives ∂IINC/∂δINC and ∂ISCA/∂δSCA coincide with
those presented above except that rij here are the elements of the Mueller partial derivative
matrix ∂M(ϕ, δ)/∂δ of the wave plate:

0 0 0 0
0 −S2 sin δ SC sin δ −S cos δ
0 SC sin δ −C2 sin δ C cos δ
0 S sin δ −C sin δ − sin δ

 (A9)

For ∂ISCA/∂ξ, we obtain the expression:

∂ISCA
∂ξ

= 2× (0, Cr23 − Sr22, Cr33 − Sr23, Cr34 − Sr24) (A10)

where rij are the elements of the Mueller wave plate matrix given by Equation (A5).
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