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Abstract: The Centro de Ciencias de la Atmósfera at UNAM, in Mexico, uses the Water Research and
Forecasting model to provide weather forecasts to the country. In this study, we downloaded the
mean temperature and precipitation forecasts of the first 24 h generated by the WRF model in the
center of the country. Only the time series of our study region (Bahía de Banderas) was processed
from this database, from June to October 2010, and these data were compared with the data recorded
in six stations to evaluate the performance of the model at a local level. Data from 12 stations were
used to construct the observed temperature and precipitation maps for spatial validation. The results
show that the model performance was partially acceptable. The correlation coefficient for hourly
temperatures was an average of r = 0.84. Errors were less than 2 ◦C with a BIAS of ±1 ◦C. For the
accumulated 24 h precipitation, however, the results were not satisfactory (r = 0.26). The model
predicted only 25.7% of the rainy days observed. In terms of spatial distribution, ∼ 2.3 times more
rain was observed than had been predicted by the model.

Keywords: local modeling; mesoscale model; weather forecast; regression analysis

1. Introduction

Precipitation is an important element in the Earth’s hydrological cycle and is dy-
namically linked to atmospheric circulation, redistributing latent heat throughout the
troposphere [1].

The hydrometeorological phenomena that occur in Mexico directly affect the primary
activities of its economy (agriculture, fishing, forestry, livestock, and mining) and its urban
and rural populations [2–4]. In general, flood risk depends more on vulnerability, due
to the poor urban planning of infrastructure exposed to meteorological phenomena [5].
Meanwhile, the amount of economic damage due to floods in primary activities is lower
than in urban areas for the same level of exposure [4,6]. Forecasting is essential to prevent
risk in the economic activities and urban sector [7].

Forecasting the weather can be carried out based on the analysis of synoptic maps,
upper air data, satellite and radar images, and statistical analysis, to computational model-
ing [8,9]. Such studies promote numerical weather forecasting, leading to the development
of atmospheric prediction models [7]. Numerical weather prediction (NWP) models, as a
complement to the interpretation of conventional observations, can increase the certainty
of the forecasting process [3]. There are three forecasting models: global, regional, and
mesoscale [8,10]. In global modeling, most precipitation forecasts based on global NWP
models are available at large spatial scales (28 km, GFS) [11]. Meanwhile, regional nu-
merical weather prediction models can reproduce small-scale (20 km) phenomena, such
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as storms [8,11]. Mesoscale models can provide resolutions down to a few kilometers
(2 km) [8]. A higher spatial and temporal resolution in the NWP model allows the evolution
of a meteorological phenomenon to be observed in greater detail and thus provides a more
detailed framework in which the actual observations can be interpreted [3,12].

Weather research and forecasting (WRF) is an atmospheric model designed for both
research and numerical weather prediction [13]. The WRF model was the result of a multi-
agency effort to provide a next-generation system for mesoscale forecast modeling [3].

Corrales et al. [3] evaluated the amount of rain accumulated by 24 h predicted in
the WRF model in Mexico and compared it with the data registered in the Automated
Stations National Network managed by the Instituto Nacional de Investigaciones Forestales,
Agrícolas y Pecuarias (INIFAP, Mexico City, Mexico), from July 2012 to February 2013. They
integrated the model at 120 h and configured a single domain with 13 km of mesh pitch
and a 35-level vertical structure. However, the precipitation forecast given by the WRF
model was not statistically significant to its study [3].

The present research focused on the Bahía de Banderas region (BB), located in the
central zone of the western coast of Mexico, which has great tourist, ecological and economic
importance at the national level. In addition, adequate and reliable spatial forecasts of
precipitation and temperature are of interest in this region, due to the impact of these
meteorological events in the agricultural areas of the Ameca River Valley, Tomatlán, and
Talpa de Allende (Figure 1), as well as the problems of flooding in urban areas or the effect
of landslides on highways. So far, no numerical model can produce a perfect weather
forecast, since there are different error sources, so it is essential to verify predicted variables
by comparing them with observations through the use of statistical parameters [14].

The study period (from June to October 2010) was chosen for two large atypical
phenomena that occurred in the BB region. One of these phenomena was caused by a
tropical wave associated with the trade winds from the NE, which caused atmospheric
instability in the whole region and generated a series of storms in the Ameca River basin,
Mexico. This caused this river to overflow, destroying one of the most important bridges
in the city. Later, atypical storms (>100 mm) appeared in the region, which caused severe
flooding and runoff in urban and rural areas. One of the objectives of this research was
to determine the efficiency of the WRF model to forecast atypical events such as those
mentioned. In addition, this study also evaluated the temperature and precipitation
forecasts generated by the WRF model (resolution of 7 km) and compared them with the
real data recorded in the atmospheric monitoring network in the BB region. This was
to determine the degree of confidence that can be obtained in weather forecasts at the
local level.

2. Materials and Methods
2.1. Study Area

The BB region is located in the Jalisco Block [15], at 19◦54′–21◦00′ N and 104◦00′–
105◦46′ W, and occupies 11,133 km2 of the area on the mainland [16]. It is part of the coastal
plain of the Mexican Pacific and has mountains reaching 2600 m above sea level, which
gives it a very rugged topography, particularly in the central and eastern areas (Figure 1).
Watercourses from these mountains carry rainwater down the Ameca River Valley, through
the city of Puerto Vallarta, and into Banderas Bay. The Cacoma and El Tuito mountain
ranges are natural hydrological frontiers that partially drain precipitation to the south,
generated by the weather systems that arrive from the south and southeast [16,17].
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Figure 1. Digital elevation model in 3D [18]. Significant topographic features are indicated with 
black capital letters: (A) Vallejo Mountain; (B) La Cumbre Hill; (C) Ameca River Valley; (D) Puerto 
Vallarta City; (E) Pitillal River; (F) La Bufa Hill; (G) Cuale River; (H) Jolapa Mountains; (I) Talpa de 
Allende City; (J) El Cuale Mountain; (K) El Tuito Mountain; (L) Cacoma Mountain; (M) Cajón Peña 
Dam; (N) Tomatlán City; (O) Banderas Bay. The stations used for 24-h validation are indicated with 
red triangles: (1) Tec Ny; (2) Asfalto; (3) CUC; (4) Prepa PV; (5) Coapinole; (6) Tomatlán River; and 
the black triangles indicated the stations used for the spatial validation: (7) Monteón; (8) Valle de 
Banderas; (9) San Juan; (10) La Desembocada; (11) Cajón Peña; (12) El Bramador; (13) El Tuito; (14) 
Talpa; (15) Mascota; (16) Corrinchis; (17) Mixtlán; (18) San Gregorio. 
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Figure 1. Digital elevation model in 3D [18]. Significant topographic features are indicated with
black capital letters: (A) Vallejo Mountain; (B) La Cumbre Hill; (C) Ameca River Valley; (D) Puerto
Vallarta City; (E) Pitillal River; (F) La Bufa Hill; (G) Cuale River; (H) Jolapa Mountains; (I) Talpa
de Allende City; (J) El Cuale Mountain; (K) El Tuito Mountain; (L) Cacoma Mountain; (M) Cajón
Peña Dam; (N) Tomatlán City; (O) Banderas Bay. The stations used for 24-h validation are indicated
with red triangles: (1) Tec Ny; (2) Asfalto; (3) CUC; (4) Prepa PV; (5) Coapinole; (6) Tomatlán River;
and the black triangles indicated the stations used for the spatial validation: (7) Monteón; (8) Valle
de Banderas; (9) San Juan; (10) La Desembocada; (11) Cajón Peña; (12) El Bramador; (13) El Tuito;
(14) Talpa; (15) Mascota; (16) Corrinchis; (17) Mixtlán; (18) San Gregorio.

2.2. Atmospheric Monitoring Network

In the BB region, there are 18 stations, both automatic (9) and manual (9). In this study,
we downloaded the time series of mean temperature (◦C) and precipitation (mm), during
the period from 10 June to 31 October 2010. Data from six (Figure 1 and Table 1, 1–6) stations
were used for the temporal validation, while data from the remaining 12 (Figure 1 and
Table 1, 7–18) stations were used for the area validation.
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Table 1. Location of the stations used for validation (see Figure 1).

Stations for Temporary Validation

Number Station Name Station Type Latitude Longitude Elevation
(masl)

1 Tec Ny Automátic 20.7615 −105.3658 33
2 Asfalto Automátic 20.7297 −105.2589 14
3 CUC Automátic 20.7040 −105.2230 30
4 Prepa PV Automátic 20.6630 −105.2160 34
5 Coapinole Automátic 20.6604 −105.1996 50
6 Tomatlán River Automátic 19.9983 −105.1333 141

Stations for Area Validation.

Number Station Name Station Type Latitude Longitude Elevation
(masl)

7 Monteón Automátic 20.9735 −105.3058 18
8 Valle de Banderas Automátic 20.7844 −105.2419 43
9 San Juan Automátic 20.8375 −105.2113 65

10 La Desembocada Manual station 20.7278 −105.1573 35
11 Cajón Peña Manual station 19.9936 −105.1291 98
12 El Bramador Manual station 20.2106 −105.0512 345
13 El Tuito Manual station 20.3198 −105.3261 604
14 Talpa de Allende Manual station 20.3804 −104.8224 1161
15 Mascota Manual station 20.5253 −104.7864 1241
16 Corrinchis Manual station 20.4801 −104.7800 1353
17 Mixtlán Manual station 20.4381 −104.4089 1545
18 San Gregorio Manual station 20.6208 −104.5681 1628

For the temporal validation, the time series consists of hourly mean temperature data
and accumulated precipitation every 24 h (n = 144 days). When some data were lacking in
both time series, we made them complete by applying the interpolation method proposed
by Paulhus and Kohler [19] (Px = (1/3)[P1(Nx/N1) + P2(Nx/N2) + P3(Nx/N3)]), where
Nx is the mean of available rainfall data at the target station, N1, N2, and N3 are the mean
of the available rainfall data at its surrounding stations, and P1, P2, and P3 are the known
precipitation data from the surrounding stations). The missing data in these six automatic
stations were <5% of the total, in each of both variables.

For the area validation (nine meteorological stations and three automatic stations), we
calculated the average of the mean temperature and for precipitation the total accumulated
amount was used.

Table 1 shows the location of the 18 stations used for this study.

2.3. Numerical Model

The WRF is a mesoscale model using fully compressible non-hydrostatic equations. It
is capable of handling both unidirectional and bidirectional nesting [11,20]. For horizontal
discretization, it uses Arakawa-C grid staggering and a third-order Runge–Kutta integration
scheme for time separation [11,20], and the schemes that generate the precipitation forecast
in the WRF model are microphysics and cumulus parameterization [11]. The WRF model
has two cores that solve its physics, the advanced research WPS (ARW) and the non-
hydrostatic mesoscale model (NMM) [11]. For this study, we used the precipitation and
mean temperature output data from the WRF version V3.0.1.1 model, and Table 2 shows
its configuration.
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Table 2. Configuration of the WRF model.

WRF Model Configuration

Horizontal spatial resolution 20 km -Mexico-, 7 km -Central Mexico area-
Simulation length 120 h

Boundary conditions update frequency 6 h
Dynamic Horizontal Smagorinsky first order closure

Horizontal grid system C, with 2 domains, with a 1:3 ratio
Microphysics Kessler scheme

Cumulus Parameterization Kain-Fritsch (new Eta) Scheme
Planetary boundary layer scheme YSU

The nesting used to obtain the temperature and precipitation forecast data from the
WRF model corresponded to the central zone of Mexico (94–106◦ N, 15–22◦ W), and the
resolution was 7 km. For this study, only the BB region data were selected from this nesting
(Figure 2), and we worked with the downloaded times series during the period 00:00–24:00
UTC (10 June–31 October 2010). We only process the first 24 h of the forecast, since these
hours are those that best correlate with the observed data, as the forecast period increases
to 48, 72, 96, and 120 h, the correlation coefficients decrease concerning observed values,
while the mean error increases as the forecast period increases [3,21].
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2.4. Statistical Analysis

We used the methods proposed by Jolliffe and Stephenson [22], Wilks [23], WWRP-
WMO [21], and JWGFVR [24] for the statistical analysis of the time series downloaded
from the WRF model. There are some examples of its applications in verification studies
of temperature, precipitation, humidity, and wind forecasts, such as the assessment of the
performance of the WRF model to the meteorological event in 2007 related to the flood
in Tabasco, Mexico [25], the validation of forecasts related to the West African monsoon
in 2006 [26], and the evaluation of high resolution (2 km) nesting for the subtropical area
of Delhi, India [27]. Other examples include validation of spatial rain forecasts using the
NIMROD model in the United Kingdom [28] and the evaluation of the performance of
MM5 on the coast of northern Peru [29].

2.4.1. Temporary Validation

For temperature validation, the following statistics compared the observed (O) data
with the forecast (F) data. Equations (1)–(4) were taken from Jolliffe and Stephenson [22],
Wilks [23], the World Meteorological Organization [30], and Corrales et al. [3] (Table 3).

Table 3. Statistical parameters for temperature validation (Jolliffe and Stephenson, [22]; Wilks, [23];
the World Meteorological Organization, [30] and Corrales et al., [3]). The statistic’s name, a short
description, and its equation are indicated. The statistics’ letters mean the following: forecasted value

(F), observed value (O), forecasted value mean
(

F

)
, observed value mean

(
O

)
, forecasted value

standard deviation (sF), observed value standard deviation (sO), pairs of forecast and observations
(n). Fi, Oi is the ith of n pairs of forecast and observations.

Statistical Parameter Description Equation

Correlation coefficient (r)
Provides the degree of linear correlation

that exists between the forecasted (F) and
observed (O) variables.

rFO = 1
n−1

n
∑

i=1

[
(Fi−F)

sF

(Oi−O)
sO

]
(1)

Root mean square error
(RMSE)

Provides the degree of average
correspondence between individual pairs

of forecasted and observed values.
RMSE =

√
1
n

n
∑

i=1
(Fi −Oi)

2 (2)

Mean absolute error (MAE)
Provides a measure of the average
closeness between forecasted and

observed values.
MAE = 1

n

n
∑

i=1
|Fi −Oi| (3)

Bias (BIAS)

Provides information regarding the
tendency of the model to either

overestimate or underestimate the forecast
of a variable.

BIAS = 1
n

n
∑

i=1
(Fi −Oi) (4)

For precipitation validation, the occurrence and behavior of precipitation are complex
and its daily estimation is challenging, mainly in regions where its topography is highly
irregular and has few pluviometers [31,32]. Continuous verification scores (especially those
involving square errors) are prone to large errors and can provide less useful information
for validating precipitation than the categorical rates [30].

Quantitative precipitation forecasts (QPFs) can be considered categorical events in
the sense that they provide values relative to a given reference. Therefore, precipitation
contingency tables [30] were used to examine the ability of the model to correctly forecast
the occurrence of cumulative precipitation over 24 h that is ≥ 1 mm [22,23] (Table 4).
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Table 4. Contingency table for binary events (yes/no). Modified from [30].

Observed

YES NO

Forecast
YES Hit Error

Forecast totalNO Fail Correct
Observed total Total

There are two scenarios in which the forecast is correct: Hit (rainy days were both
observed and forecasted) and Correct (rainy days were neither observed nor forecasted);
and two scenarios where the forecast is incorrect: Error and Fail. A perfect forecast should
only present Hits and Corrects, and the other cells present zeros. Based on Table 4, statistical
ratios (5)–(7) were calculated [30] (Table 5).

Table 5. Statistical ratio for precipitation validation [30]. The ratio, a short description, and its
equation are indicated. N = Total observed and unobserved events.

Ratio Description Equation

H Probability of detection of rainy days. H = Hit
Hit+Fail (5)

FAR False Alarm Ratio. FAR = Error
Hit+Error (6)

PC
Fraction of days observed with and
without rain that were accurately

forecasted.
PC = Hit+Correct

N (7)

To calculate the confidence interval (α = 0.05) of the three statistical ratios (Table 5),
Equation (8) was used [23,33]. The statistics’ letters mean the following: confidence interval
for the H, FAR, and PC statistics (p), the correspondence relationship between predicted

events and observed or unobserved events
(

p̂
)

, the total observed or unobserved events

(n), Zα/2 = 1.96, significance level (α), α = 0.05.

p =

p̂ +
(

Z2
∝/2

)
/2n± Z∝/2

√[
p̂
(

1− p̂
)]

/n +
(

Z2
∝/2

)
/4n2

1 +
(

Z2
∝/2

)
/n

(8)

2.4.2. Area Validation

The air temperature is a variable that is closely associated with altitude or height
above sea level [16,34,35]. For the spatial representation of the temperature observed in the
study region, the altitude of each station and its mean temperature averaged for the five
months of validation were taken as a basis. The observed temperature map was constructed
with the same initial resolution as that used in the WRF (7 km grid). A simple lineal regression
analysis was performed, based on the Velázquez et al. [16] and Gómez et al. [35]. The inde-
pendent variable was the altitude (x) and the dependent variable was the temperature (y)
(Equation (9)).

y = a + bx (9)

The precipitation presents a high discontinuity [36], since there are significant spatial
segments where is no precipitation, while in other segments, precipitation is continu-
ous [31]. Furthermore, there are inconsistencies between the forecast and observation
data. In areas with complex topography, verification data are generally scarce [31,32],
as is the case in our study and others [34,35,37–39]. The topography acts to complicate
the elaboration of precise maps of observed precipitation. There is no ideal method for
displaying precipitation patterns; it depends on influencing geographic factors as well as
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the level of spatial correlation [40]. We used the multiple regression analysis applied by
Ninyerola et al. [34] and Velázquez et al. [16] for the generation of the observed precipita-
tion map in this research. y was the total precipitation, and the independent variables were
evaporation (x1) and elevation (x2) (Equation (10)) [16].

y = a + bx1 + cx2 (10)

The observed precipitation map used in the validation was corrected by applying the
Ninyerola et al. [34] method. This method determines an error for each meteorological
station; these errors were called the correctors. These correctors were the results of the
differences between the calculated and observed precipitation. With these values, we build
the corrector map using MatLab® software (R2016A), and then we added it to the map
generated with Equation (10); thus, we obtain the corrected map. This map improved r2 and
was the one used in the validation. In spatial precipitation validation, the root mean square
factor (RMSF) was also used as introduced by Golding [41]. This index is best suited to the
field characteristics of precipitation, i.e., the log transformation softens the high rank and
measures the extent of the spatial gap between forecast and observation (Equation (11)) [30].
The statistics’ letters mean the following: forecasted value (F), observed value (O), and
pairs of forecast and observations (N), RMSF is an exponential function, where exp mean ex.

RMSF = exp

 1
N

√√√√ N

∑
i=1

[
log
(

Fi

Oi

)]2
 (11)

2.4.3. Forecast Precipitation and Temperature Data

Numerical forecasts are presented as a spatial distribution on a regular grid. We used
the WRF model, version V3.0.1.1, which generates a grid of 7 km, to extract the fore-
cast precipitation and temperature data for the BB region, in the period from 10 June to
31 October 2010. We used a MatLab® script to download the 24 h time series (144 days). The
144 time series were unified into one time series for temperature and one for precipitation.

For temporary validation of the forecast of temperature and precipitation, the corre-
sponding data of each coordinate of each of the six meteorological stations were extracted.
Two different procedures were used for area validation. For the forecast temperature
time series, the average of the 144 days was calculated, and with this result, the map was
generated. To generate the forecast precipitation map, the sum of the precipitations of the
144 days was calculated. We used MatLab® scripts to generate the forecast temperature
and precipitation maps by inputting these time series. The color code used in the genera-
tion of forecast and observed temperature and precipitation maps was that proposed by
Loikith et al. [42].

3. Results and Discussion
3.1. Temperature Validation

We can see in Figure 3 the time series of the forecasted and observed temperature
corresponding to the six validation points, from June to October 2010. The WRF model
forecasted temperature as expected, i.e., it reflected the variability of both diurnal and
nocturnal temperatures (Table 6). The model was able to forecast significant thermal
oscillations, such as the low temperatures that occurred late in October (Figure 3; green
box). However, on 1 July 2010, Hurricane Alex made landfall in Tamaulipas, moving
inland and downgrading over the following days to a tropical storm and depression, before
reaching the edge of the western coast of Mexico. According to the Servicio Meteorológico
Nacional (SMN, México City, Mexico, by its Spanish acronym), this tropical depression
left a low-pressure zone that generated sudden changes in air flows, first from the north
and northeast and then from the west and northwest of the country. These flows caused
reduced temperatures in the first days of July (Figure 3; black box), and the model, which
had forecasted normal flows, could not predict these unexpected interactions.
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Table 6. Results of the statistical analysis of forecasted and observed temperatures. The first column
shows the six meteorological stations (see Figure 1), and the rest of the column shows the results of
the statistical parameters. RMSE, MAE, BIAS, stdD-F, stdD-O are in ◦C, meanwhile [−1 ≤ r ≤ 1].

# Automatic MeteoroLogical Stations stdD-F stdD-O r RMSE MAE BIAS

1 Tec Ny 2.96 2.59 0.82 1.75 1.43 −0.53
2 Asfalto 3.22 2.58 0.84 1.91 1.47 0.79
3 CUC 3.15 2.48 0.84 1.73 1.36 0.2
4 Prepa PV 2.87 2.56 0.82 1.6 1.22 0.15
5 Coapinole 2.89 2.36 0.84 1.57 1.24 −0.31
6 Tomatlán River 3.6 2.68 0.87 1.85 1.45 0.28

Average 3.12 2.54 0.84 1.74 1.36 0.1
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The validation points show a bias between the forecasted and observed temperatures
that did not exceed ±1 ◦C (Table 6). This is minor, according to Jolliffe and Stephenson [22],
since it represents only between 10% and 25% of the standard deviation of temperature,
except at the Asfalto station, in which the BIAS is 0.79, representing 30.6% of stdD-O.
Nevertheless, the standard deviations of the forecasts (stdD-F) are higher in all cases than
the observed values, indicating that the model overestimated higher temperatures and
underestimated low temperatures. The model projected higher temperatures at four sta-
tions (Asfalto, CUC, Prepa PV, and Tomatlán River) and less high temperatures in two
stations (Tec Ny and Coapinole). There is, on average, a good correlation between the
forecast and the observation (r = 0.84) of the six validation points. The errors (RMSE and
MAE) show values lower than 2 ◦C, indicating that the forecast errors are small and that
the forecast presents adequate accuracy. In comparison, other studies show similar trends.
In a validation analysis for the temperature of a WRF model in a subtropical region in
India, the RMSE was 2.55–4.26 ◦C for the nine simulations of summer conducted at two
stations; meanwhile, r was 0.94–0.97, and the BIAS ranged from −0.11 to −0.01 ◦C [27].
Challa et al. [43] reported a graphical analysis of the sensitivity of atmospheric dispersion
simulations, where the WRF underestimated daily temperatures. When evaluating tem-
perature for an air quality analysis in the northeast of the Iberian Peninsula, errors were
found in the 2 km domain, the RMSE was 1.5–3.8 ◦C, and the BIAS ranged from −3 to
1 ◦C [44]. In an analysis of the weather event of 2007 related to the flood in Tabasco, Mexico,
the errors (RMSE and MAE) in the two sampling points were 1.6 and 4.5 ◦C, respectively,
while the (BIAS) was −4.1 and 0.2 ◦C, and r was 0.97 and 0.96, respectively, for the 24 h
forecasts [25].

For the elaboration of the average observed temperature map, the equation used was
y = 28.27− 0.00506x with r2 = 0.937 and p = 0.00. The thermal gradient for every 1000 m
of altitude was −5.06 ◦C on average during the five months of validation. In other studies,
the results were similar. Gomez et al. [35], for the estimation of the average temperature in
Tepehuanes, Durango, Mexico, obtained an r2 = 0.926 on average for June to October, while
Ninyerola et al. [34], for the climatological modeling of the air temperature in Catalonia,
Spain, obtained an r2 = 0.848 on average for the five months of validation with the corrected
temperature maps.

The spatial distribution of temperature predicted by the WRF model (Figure 4a)
presented spatial thermal variability, similar to the observed temperature (Figure 4b).
The model also accurately determined the warm zones, on the coast (∼ 28 ◦C) and the
temperate zones in the mountains (16–18 ◦C). We observed that the determining variable
in the temperature in the study region is the type of topography. This corroborates what
Magaña et al. [7], Ninyerola et al. [34] and Jorba et al. [44] reported. Spatially, the tempera-
ture followed a bi-modal distribution that was reasonably well projected by the model in
its histogram when compared with the observed temperature (Figure 4).

The predicted spatial temperature distribution shows the same spread as the observed
temperature, with a standard deviation value of 3.3 ◦C (Figure 4). The BIAS was −0.6 ◦C,
indicating that the model slightly underestimated the observed temperature, with a correla-
tion of r = 0.95, while the RMSE was 1.23, showing a slight reduction in forecast accuracy.
As a background to these error results, a comparison can be made with the research of
Flaounas et al. [26], where they performed a simulation of the West African monsoon in
2006 using the WRF, and the simulated temperatures in comparison with those observed
for all of West Africa had a strong positive BIAS that reached 2 ◦C.
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3.2. Precipitation Validation

For binary (yes/no) events, a “yes” event is defined for precipitation equal to or higher
than a specified reference (in this study, it is 1 mm of accumulated rain in 24 h); otherwise,
it is defined as a “no event”. The distribution of the observed days with rain and the
days in which rain was not observed compared to those forecasted are shown in the next
contingency table (Table 7).

Table 7. Results of the indexes calculated for forecasted and observed precipitation accumulated
during the period of 10 June–31 October 2010.

Observed

YES NO Total

Forecast
YES 92 32 124

NO 266 474 740

Total 358 506 864

In contrast to the temperature analysis, the model showed poor performance in pre-
dicting the number of days with precipitation compared to what was observed. In contrast
to the temperature analysis. The period of rain under assessment covered 144 days at six
verification points, a total of 864 forecasts. From this total, the rain was observed on 358
days, which means that the model failed to predict 266 days, or 74.3% (Tables 7 and 8).
The correct proportion of days with rain forecasted (H) corresponds to 25.7%, with a CI
of 95% (21.4%, 30.5%) (Table 8). The proportion of days with rain that represented false
alarms (FAR) corresponds to 25.8%, with a CI of 95% (18.9%, 34.1%). Only PC shows a
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favorable performance with 65.5%, with a p of 95% (62.3%, 68.6%). However, this index
was influenced by the 474 days on which no rain occurred (Table 8).

Table 8. The results of the calculated statistics are based on the results of the contingency table
(Table 7). p is the confidence interval for the H, FAR, and PC statistics. [0 ≤ H ≤ 1], [0 ≤ FAR ≤ 1],
and [0 ≤ PC ≤ 1].

Statistic Value p Comment

H 0.257 0.214, 0.305 Probability of detection of days with rain.
FAR 0.258 0.189, 0.341 Probability of false detection.

PC 0.655 0.623, 0.686 The proportion of days with rain and without rain that was
accurately forecasted.

Severe events that occurred suddenly and could involve rainfall greater than 100 mm
were not accurately forecasted (Figure 5). The temporal distribution of precipitation showed
a very marked bias in the accumulated precipitation at the beginning of September (Figure 5,
green rectangle).
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According to the SMN report, on 4 September 2010, a low-pressure convergence line
formed over the western Sierra Madre and the Mesa Central (Figure 6). This generated the
propagation of cloudy days with a high potential for rain and thunderstorms that caused
precipitation exceeding 100 mm at the meteorological stations Prepa PV and Coapinole.
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Figure 6. Maps of the weather forecast generated by the Servicio Meteorológico Nacional (SMN) and
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B shows the areas of low pressure on the Mexican Pacific coast and in the Gulf of Mexico. The solid
and discontinuous yellow lines show the lines of convergence, both in (a,b). In (a), the line with blue
triangles indicates a cold front in northern Mexico, and (b) indicates a stationary front. Images were
obtained from the Weather Reports provided by the SMN and Conagua.

Table 9 shows the results of the statistical indices of the six validation points, suggesting
the poor performance of the model, since the model underestimated the accumulated
precipitation in 24 h periods, by between 2.3 mm and 10.24 mm. The correlation coefficients
in the six sampling points were < 0.3. The RMSF and MAE values in all cases were greater
than 15 and 6 mm, respectively, showing a low performance in terms of forecast accuracy.
In comparison, in an analysis for validating forecasts of accumulated rain to 24 h with
WRF for all of Mexico, Corrales et al. [3] reported errors (RMSF and MAE) of 6.25 mm and
2.26 mm, respectively, while the correlation was 0.35.

Table 9. Results of the statistical parameters of forecasted and observed precipitation accumulated
during the period of 10 June–31 October 2010. The first column shows the six meteorological stations
(see Figure 1), and the rest of the columns show the statistical results. RMSF, MAE, and BIAS are in
millimeters, while [−1 ≤ r ≤ 1].

# Meteorological Stations r RMSF MAE BIAS

1 Tec Ny 0.27 15.32 6.19 −2.3
2 Asfalto 0.29 16.59 7.8 −5.44
3 CUC PV 0.22 16.99 7.93 −5.13
4 Prepa PV 0.24 27.28 12.38 −10.24
5 Coapinole 0.28 23.85 10.97 −8.31
6 Tomatlán River 0.23 17.78 7.88 −5.42

Average 0.26 19.64 8.86 −6.14

For the elaboration of the accumulated precipitation map during the study period,
we used the equation y = 2391.38− 173.888x1 − 0.32496x2, where r2 = 0.389 and p = 0.11.
After the precipitation map was corrected, the r2 = 0.478 and p = 0.00. In contrast,
Ninyerola et al. [34], for the climatological modeling of precipitation in Catalonia, Spain, ob-
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tained an r2 = 0.818 for June to October. First, we calculated multiple correlations including
latitude and altitude; these variables were also used in the equation of Ninyerola et al. [34],
but in our results r2 = 0.235 and p = 0.30; therefore, we used altitude and evaporation in
our equation, and thus we obtained the highest value of r2.

The spatial distribution of precipitation forecasted by the model was poor compared
to that observed in the verification (Figure 7). Mean precipitation for the entire period
(10 June–31 October 2010) was forecasted at 503 mm, but 1355 mm was observed. WRF
underestimated the accumulated precipitation during the entire study period, with a BIAS
of −852 mm; meanwhile, the average degree of correspondence between individual pairs
of predicted and observed values (RMSE) was 930 mm and produced the histograms
shown in Figure 7. Despite the above, the model (Figure 7a) was able to predict areas
of high precipitation (the Tuito Mountains, La Bufa Hill, and Cacoma Mountain) and of
lower precipitation (the coastal zone and the Ameca River Valley), very similar to what
was observed. The value of the RMSF index is very close to 2 (RMSF = 1.96), indicating
that the WRF was able to predict where higher and lower precipitation occurred; however,
it underestimated the accumulated precipitation for the entire period, with a BIAS of
813 mm (Table 9) and produced the histograms shown in Figure 7. Other researchers found
similar results—for example, Flaounas et al. [26] found, in a simulation of the West African
monsoon in 2006 using the WRF, that the precipitation pattern was generally modeled to an
adequate level, although these authors acknowledged that convective rainfall is a constantly
changing variable that is difficult to model. Casati [28], in his thesis for the evaluation of
the NIMROD model for spatial rain forecasting in the United Kingdom, found values of
RMSE and MAE that were < 3, while the value of correlation was less than 0.4 in the eight
case studies and the RMSF index was between 1.75 mm and 9.27 mm. Magaña et al. [7], in
their MM5 model evaluation for rain forecasting in periods of 24 h for Mexico City, found
large spatial differences in August during the period of 2008–2010. They reported that
in the south and southwest of Mexico City, the rain was overestimated by approximately
50 mm, while in the western area where greater precipitation was observed, the model
underestimated the precipitation by approximately 200 mm from a total of 300 mm and, on
the east side of the city, the difference was approximately 50 mm.

Regarding short-term forecasting in the BB region, relatively little is known about the
quality of predictions from models that are run on a national or regional scale. When high-
resolution spatial forecasts are performed in cases where ground effects are important, the
quality of the forecasted rainfall is limited by different spatial patterns [7]. Another limiting
factor is working at a low resolution (50 km) to save computational resources, for example
in the analysis of the African monsoon reported by Flaounas et al. [26]. In this context,
Flores [29] pointed out that the differences between the predicted and observed variables
are because the model simplifies and smoothes the surface processes by representing them
in a grid of 18 km resolution. Meanwhile, Jorba et al. [44] found that the simulation with a
high horizontal resolution (2 km grid) in the geographic area of Catalonia, Spain, can allow
the analysis of the possible atmospheric circulation that occurs. In correspondence with
the above and taking into account these limitations in the quality of the forecasts, we have
evaluated the output results of the WRF at the working resolution (7 km).
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4. Conclusions

The use of numerical models such as the WRF for weather forecasting has become a
fundamental tool to support decision-making both at the government level and in society
in general, and is also of great value for atmospheric research. Thus, in this research and
based on the statistical results, we have concluded that the temperature forecasts of the
WRF model for the BB region were acceptable concerning what was observed during the
study period. Meanwhile, the precipitation forecasts were not consistent with what was
observed, especially in severe weather events (hurricanes, electric storms), and due to
the complex topography of the study area. A study involving the use of the model at
the regional and local levels is recommended to increase its resolution and improve its
performance in weather forecasting. The configuration, operation, and evaluation of these
findings will be of interest not only for short-term meteorological purposes but also for
decision making in daily activities.
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