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Abstract: Daily weather conditions are closely related to every field of production and life, and the
forecasting of weather conditions plays an important role in social development. Based on the data
characteristics of urban weather conditions, a deep learning network was designed to forecast urban
weather conditions, and its feasibility was proved by experiments. In view of the non-stationary and
seasonal fluctuation of the time series of daily weather conditions in Shenzhen from 2015 to 2019,
empirical mode decomposition (EMD) was used to carry out the stationary processing for the daily
minimum humidity, minimum pressure, maximum temperature, maximum pressure, maximum
wind speed and minimum temperature. The decomposed components, residual sequence and
original sequence were reconstructed according to the degree of relevance. On this basis, a long
short-term memory (LSTM) neural network for the Shenzhen daily weather forecast was used, using
the advantages of the LSTM model in time-series data processing, using the grid search algorithm
to find the optimal combination of the above parameters and combining with the gradient descent
optimization algorithm to find optimal weights and bias, so as to improve the prediction accuracy of
Shenzhen weather characteristics. The experimental results show that our design of the EMD-LSTM
model has higher forecasting precision and efficiency than traditional models, which provides new
ideas for the weather forecast.

Keywords: daily weather forecast; empirical mode decomposition; deep learning; LSTM

1. Introduction

The weather forecast refers to the comprehensive use of modern science and technol-
ogy for a region in the future for a period of time to forecast the temperature, humidity,
wind, etc. In today’s society, the weather forecast has a significant influence on people’s
production and living, and daily travel, agricultural production, natural disaster preven-
tion and other fields are an integral part of the normal operation of modern society. In
recent years, Shenzhen has been affected by typhoon [1] and flood disasters, and accurate
prediction of weather conditions can prevent flood disasters [2]. The results of forecast
weather conditions are used to assist weather warning systems and provide reasonable
information for emergency response and contingency planning [3]. Therefore, the Shenzhen
daily weather forecast is of great significance in preventing natural disasters. Air pollutants
can threaten human health by causing respiratory and cardiovascular diseases and even
death [4], while previous studies have shown that meteorology [5] is an important deter-
minant of atmospheric pollutant concentration. Among meteorological parameters, land
surface temperature has a strong and lasting positive correlation with the concentration of
air pollutants [6]. One study showed [7] that the concentration of atmospheric particulate
matter is related to the daily wind speed, daily temperature and daily humidity. Therefore,
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accurate prediction of the maximum temperature, minimum humidity, wind speed and
other meteorological indicators of the daily weather conditions of Shenzhen is of great
significance to people’s healthy living in the city and to prevent the high concentration of
air pollutants.

With the increasing scale of meteorological data, represented by big data, automatic
and intelligent technology began to play an important role in the weather forecast [8].
Therefore, people’s demand for improving the accuracy of future weather forecasts is
increasing day by day. To improve the accuracy of forecasting weather conditions, one
should make full use of various meteorological history data, since research on weather
conditions previously found that most have seasonal trends and the weather forecast
error of traditional time-series models, such as the ARIMA model, is bigger [9]. With the
rapid development of machine learning and deep learning technology, processing and
prediction of massive data using independent methods such as artificial neural networks
and the support vector machine has relatively good effects, but it is easy to fall into a
local optimum. At present, it is found that the characteristic fluctuations in various data
of weather conditions are obvious, and the forecasting of weather conditions has been
widely used in academia. Support vector machine (SVM) was used to forecast the short-
term wind speed of single wind speed data. The experiment proved that the prediction
accuracy of the SVM is higher than that of other traditional combined models [10]. The
LSTM model was used to forecast the temperature in Nanjing, and the results show that
the LSTM model is more accurate than other models [11]. EMD was used to deal with
nonlinear sequence problems and proved to have better performance in data processing
than traditional methods [12–15]. Wind speed was decomposed into several components
through the EMD sequence decomposition algorithm [16,17], a certain prediction model
was used to predict each component, and the output of each model was aggregated to
obtain the final prediction result. It was proved that the prediction model results after EMD
decomposition are more accurate. EMD was used to input the decomposed components
of short-term wind speed into an LSTM neural network for prediction [18], which fully
demonstrated the excellent performance of the EMD-LSTM prediction model. The EMD-
LSTM model was used to forecast ammonia concentration, and a comparison experiment
was conducted between a single-cycle neural network and the LSTM model. The results
show that the EMD-LSTM model has higher forecasting accuracy [19]. However, most
of the above combination forecasting methods only consider the mapping relationship
between single weather indicators, taking into account neither the long-term correlation
of weather indicators nor the related factors of other weather indicators. Therefore, on
the basis of previous studies, we added the interrelationship between weather conditions
and long-term annual factors and achieved accurate prediction of multivariable weather
conditions through experiments.

The meteorological conditions of Shenzhen are changeable, often with “sudden warm
and cold” weather and a lack of relevant weather research. In this paper, the EMD-LSTM
model was used to forecast the daily weather conditions of Shenzhen city by analyzing
the historical weather data and related experiments. In order to reduce the use of a
single machine learning method to predict the characteristics of a data error, this paper
used empirical mode decomposition (EMD) on the various characteristics of weather data
noise reduction decomposition, with stability and with different frequencies of multiple
components and a residual error sequence, and picked out the greater influence on the
characteristics of the original sequence to merge the data. Combined with the long- and
short-term memory neural network (LSTM) in deep learning, multivariable forecasting was
realized, so as to provide more accurate prediction of the minimum humidity, minimum air
pressure, maximum temperature, maximum air pressure, maximum wind speed, minimum
temperature, average temperature, average pressure and minimum temperature of daily
weather conditions in Shenzhen.
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2. Data and Methods
2.1. Data

The data source of this paper is the daily data of Shenzhen published by Shenzhen
Meteorological Bureau (https://opendata.sz.gov.cn// accessed on 27 July 2022), the data
collection of the statistics from 2015–2019 Shenzhen daily weather conditions of minimum
humidity (%), minimum air pressure (Kpa), maximum temperature (◦C), maximum air
pressure (Kpa), maximum wind speed (0.1 m/s) and minimum temperature (◦C). According
to the data set, EMD method was used to decompose the weather indicators one by one.
After selecting variables by Pearson coefficient, the data were reconstructed and input
into LSTM network to achieve multivariable forecasting. Figure 1 shows the monthly data
trend of daily meteorological indicators in the past five years. The sequence has obvious
correlation and seasonal trend.
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2.2. EMD Method

Empirical mode decomposition (EMD) was proposed by Dr. Huang et al. in 1998 [20].
It is an adaptive time-frequency signal processing method, which can eliminate the non-
stationarity of sequence and extract the trend of data [21]. This method breaks the limitation
of the traditional data method which needs to set the basis function in advance and has
more obvious advantages than the traditional smoothing method [22]. Each signal is

https://opendata.sz.gov.cn//
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decomposed into stationary sequences of different feature scales, and each stationary
sequence is an intrinsic modal function (IMF) containing different feature scales of the
original signal. Among them, each IMF component must meet two conditions at the same
time: the number of original signal extreme points crossing zero is equal to or different
by one; at any time, the average of the upper and lower envelope of the original signal
must be zero. The steps of EMD decomposition for any original time-series signal to be
processed are as follows:

(1) According to the upper and lower extreme value points of the original signal, the
upper and lower envelope lines are calculated respectively by using cubic spline
interpolation, and the mean value of the upper and lower envelope lines is calculated,
as shown in Formula (1).

m1(t) = 1/2(U(t) + L(t)) (1)

(2) According to Formula (2), the intermediate signal is obtained by subtracting the
original signal from the mean envelope.

h1(t) = X(t)−m1(t) (2)

(3) The intermediate signal of h1(t) is obtained according to Formula (2), denoted as
h11(t), where m11(t) is the mean envelope of h1(t). Normally, the process iterates k
times until the resulting intermediate signal h1(t) meets the IMF condition. According
to Formula (3), SD represents the standard deviation of the intermediate signal of
two consecutive iterations where k represents the number of iterations, and h1k(t)
represents the intermediate signal obtained in the Kth iteration. According to Dr.
Huang, SD is set to 0.2–0.3.

SD =
T

∑
t=0


∣∣∣h1(k−1)(t)− h1k(t)

∣∣∣2
h2

1(k−1)(t)

 (3)

(4) Using above method, obtain the first IMF postscript for c1(t), then c1(t) from the
original signal; obtain allowance for r1(t); due allowance r1(t) still contains a large
amount of information, thus the r1(t) as new original signal; repeat the above steps to
obtain rn(t) = r(n−1)(t)− cn(t).

When cn(t) or rn(t) is less than a predetermined value, or R is a monotone function
and cannot extract more IMF, the iteration is terminated. The final decomposition result is
Formula (4), where rn(t) represents the central tendency of the original sequence, and cn(t)
represents the characteristic performance of the original sequence on different scales.

X(t) =
n

∑
i=1

ci(t) + rn(t) (4)

2.3. LSTM Method

The model structure of long short-term memory network (LSTM) was proposed by
Professor Hochreiter in 1997 [23]. LSTM network structure is a neural network model of
recurrent neural network (RNN) formed by adding different gating units in the hidden
layer, which has longer short-term memory, stronger memory ability and better processing
of long serial number signal data. It enables the recurrent neural network to effectively
utilize the training data in a wide range, thus improving the performance of the model.
The internal department control structure of LSTM network is shown in Figure 1.

g f = σ
(

W f · [ht−1, xt] + b f

)
(5)
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Figure 2 shows the structure of an LSTM cell. LSTM uses three gates: input gate,
forget gate and output gate to control the flow of internal information. The forget gate
acts on the LSTM state vector ct, which represents the input of long-term memory ct−1 and
is used to control the influence of the memory of the last time on the current time. The
control variable g f of the forget gate is generated by Formula (5) where W f and b f represent
weights and bias and which is the activation function.
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The input gate is used to control LSTM’s reception of input, and a new input vector c̃t
is obtained by nonlinear transformation of the input xt at the current time and the output
ht−1 at the last time, which is used to control the input range within the range [−1, 1]. The
control variable gi of the input gate also comes from input xt and output ht−1, as shown in
Formula (6).

gi = σ(Wi · [ht−1, xt] + bi) (6)

Under the control of the forgetting gate and the input gate, LSTM selectively reads
the last memory information ct−1 and the new input c̃t of the current time. The refreshing
mode of state vector ct is shown in Formula (7).

ct = gi ∗ c̃t + g f ∗ ct−1 (7)

At this time, the state vector is selectively output under the action of the output gate.
In Formula (8), it is determined by the gating variable g0 of the output gate. The output
of LSTM is generated by Formula (9). Since g0 ∈ [0, 1] and tanh(ct) ∈ [−1, 1], the output
ht ∈ [−1, 1] of LSTM is obtained.

go = σ(Wo · [ht−1, xt] + bo) (8)

ht = go ∗ tanh(ct) (9)

3. Research Design
3.1. Construction of EMD-LSTM Combined Model

The data collected by the telemetry station of the meteorological station are various,
complicated and noisy. To solve this problem, this paper proposes a forecast model com-
bining EMD decomposition and the LSTM network. After data outliers are processed, the
characteristic values with a high correlation coefficient with the target value are screened
out from the original data set by Pearson’s correlation coefficient. After the combination
of components with high correlation with characteristic values is obtained through EMD
decomposition, the key sequences that mainly affect the target values are determined and
input into the LSTM network for the training model, and the final forecast results are
obtained. The EMD-LSTM combined model is shown in Figure 3.



Atmosphere 2022, 13, 1208 6 of 14

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 15 
 

 

1
~

−∗+∗= tftit cgcgc  (7)

At this time, the state vector is selectively output under the action of the output gate. 
In Formula (8), it is determined by the gating variable 0g  of the output gate. The output 

of LSTM is generated by Formula (9). Since ]1,0[0 ∈g  and ]1,1[)tanh( −∈tc , the output 

]1,1[−∈th  of LSTM is obtained. 

)],[( 1 ottoo bxhWg +⋅= −σ  (8)

)tanh( tot cgh ∗=  (9)

3. Research Design 
3.1. Construction of EMD-LSTM Combined Model 

The data collected by the telemetry station of the meteorological station are various, 
complicated and noisy. To solve this problem, this paper proposes a forecast model com-
bining EMD decomposition and the LSTM network. After data outliers are processed, the 
characteristic values with a high correlation coefficient with the target value are screened 
out from the original data set by Pearson’s correlation coefficient. After the combination of 
components with high correlation with characteristic values is obtained through EMD de-
composition, the key sequences that mainly affect the target values are determined and 
input into the LSTM network for the training model, and the final forecast results are ob-
tained. The EMD-LSTM combined model is shown in Figure 3. 

 
Figure 3. EMD-LSTM. 

3.2. Design of Forecast Model 
Daily weather data of Shenzhen from 1 January 2015 to 1 January 2019 were selected. 

The data of missing values were supplemented by means of upper and lower data, 

Figure 3. EMD-LSTM.

3.2. Design of Forecast Model

Daily weather data of Shenzhen from 1 January 2015 to 1 January 2019 were selected.
The data of missing values were supplemented by means of upper and lower data, nor-
malized data were processed, and the target values were decomposed by EMD (here,
the minimum temperature was taken as an example, and other meteorological indicators
were consistent with the processing process). The decomposed variables were recombined
with the original data according to Pearson’s correlation coefficient as the input data set.
This paper used a deep learning network and Python software based on the Tensorflow
platform. The LSTM model structure of the design in this paper is composed of three layers
of an LSTM network layer upon layer overlay, with depth to extract data information, and
finally, the forecasted output is connected by a whole structure, the LSTM structure used for
extracting features, depth of extraction of the data characteristics of the weather conditions
and the connection layer for the final fitting; it combines the LSTM model to extract the
characteristics of the forecast, and results are obtained. According to the characteristics of
weather conditions, sequence data of seven steps are used to forecast the next sequence.
The LSTM network structure has three hidden layers with 50 neurons in each layer. The
structure of each node is shown in Figure 1. The learning rate of each layer is 0.1, and the
forecasted value of the output layer is output after the fully connected layer.

3.3. Optimization of Forecast Model

When optimizing a model to improve model training efficiency and prediction ac-
curacy, grid search (GS) and cross validation (CV) are used to determine the optimal
hyperparameter combination of the model, and the Adam optimization algorithm is used
to determine the optimal weight and bias of the model. Too many layers or too many
elements of hyperparameter LSTM layers, elements and fully connected layers will result
in overfitting, while too small a value will result in underfitting. The value of memory
duration will affect the training speed and accuracy of the model. Optimization of hyper-
parameters by GS-CV was conducted. All possible parameters were randomly and freely
combined by grid search, the parameters were optimized by the cross-validation method,
and the loss function of each cycle was calculated to obtain the optimal parameters. The
loss function selected here was the mean absolute error function, and the model parameter
combination with the minimum MAE was selected. Then the training model with optimal
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parameter combination was determined, and then the model was used to verify the error
between the real value and the predicted value.

For the optimization of the model, the Adam algorithm was used to optimize the
gradient descent algorithm, which dynamically adjusts the learning rate of each parameter
by using the first- and second-moment estimation of the gradient. The weight of the LSTM
model and the updated value ∆θt of bias are calculated by the following formula one by
one where Gt represents the gradient at time t; µ and ν represent the decay rate of the
distance estimate, generally, µ = 0.9, ν = 0.999; and m̂t and n̂t are corrections to mt and nt,
which can be approximated as unbiased estimates of expectations.{

mt = µ ∗mt−1 + (1− µ) ∗ Gt
nt = ν ∗ nt−1 + (1− ν)Gt

2 (10)

{
m̂t =

mt
1−µt

n̂t =
mt

1−νt
(11)

∆θt = −
m̂t√

n̂t + ε
∗ η (12)

Figure 4 shows the flow chart of the Adam algorithm. Firstly, the first moment and
second moment nt of gradient Gt are calculated by using Equation (10), and then the first-
moment estimation deviation m̂t and second-moment estimation deviation n̂t are corrected
according to Equation (11). Finally, the bias correction ∆θt of the weight of the LSTM model
is obtained by using Equation (12), where η is the step size and is the small constant of the
stable value. Generally, η = 0.001, ε = 10−8.
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3.4. Evaluation Method of Model Forecast Effect

When different forecast models are used for quantitative analysis and evaluation, the
mean square error (MSE), root mean square error (RMSE) and mean absolute error (MAE)
of evaluation indexes are used to evaluate the accuracy and stability of the model forecast,
and their calculation is shown in Formulas (13)–(15).

MSE =
1
m

m

∑
i=1

(
yi

test − ŷi
test

)2

(13)

RMSE =

√√√√ 1
m

m

∑
i=1

(
yi

test − ŷi
test
)2

(14)

MAE =
1
m

m

∑
i=1

∣∣∣(yi
test − ŷi

test

)∣∣∣ (15)

where yi and ŷi represent the real value and predicted value of a single sequence, respec-
tively. MSE represents the sum of squares of the deviation between the predicted value and
the true value. Compared with MSE, RMSE has the same dimension as the original data
and represents the square root of the ratio of the deviation between the predicted value
and the real value and the number of predicted tests, which reflects the deviation between
the real value and the predicted value. MAE represents the average absolute value of the
error and represents the actual size of the prediction error. The smaller the three evaluation
indexes, the more accurate the model’s predictions are.

4. Experiment and Analysis
4.1. Data Preprocessing

A correlation test between variables can be realized by the KMO test. The closer the
KOM statistic is to 1, the stronger the correlation between variables is, and the weaker the
partial correlation is. It can be seen from Table 1 that the KMO test values of all variables
are greater than 0.6, indicating that there is a high correlation between all-weather variables.
Therefore, multivariable prediction has a reliable basis.

Table 1. KMO test value.

Feature Minrelhumidity Maxtemp Maxpsta Exmaxwindv Mintemp Minpsta

KMO 0.812 0.827 0.790 0.661 0.808 0.606

Each component of six features was obtained through EMD decomposition, and
correlation coefficient analysis was carried out between the decomposed feature and all
components decomposed. Taking the minimum temperature as an example, EMD decom-
position of the minimum temperature was performed to obtain eight IMF decomposition
variables and a residual sequence, as shown in Figure 5.

The Pearson coefficient of each component and the minimum temperature of the
original sequence can be calculated by using Formula (16) of decomposed components
and the minimum temperature, and the variables highly correlated with the minimum
temperature can be screened out.

R =
1

n− 1∑ n
i=1

(
xi − x

sx

)(
yi − y

sy

)
(16)
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As shown in Table 2, the correlation coefficients between the original sequence of the
lowest temperature and IMF6 and IMF5 reached 0.822 and 0.510, indicating that these
two components had a great relationship with the original sequence. Therefore, two
indexes IMF6 and IMF5 were selected from all the components and then combined with
the remaining original indexes and input into the LSTM model to forecast the minimum
temperature with multiple variables. All other features are the same as the minimum
temperature prediction procedure.
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Table 2. Pearson coefficient.

Component Pearson Coefficient

IMF1 0.278
IMF2 0.278
IMF3 0.226
IMF4 0.202
IMF5 0.510
IMF6 0.822
IMF7 0.093
IMF8 0.031

r 0.178

4.2. Effect of Model

In this paper, data from 1 January 2015 to 15 January 2019 were selected as the training
set, and data from 16 January 2019 to 7 July 2019 were selected as the verification set. Data
from 16 January 2019 to 7 July 2019 were used as validation sets. Based on the optimal
parameters obtained from the model optimization above, the superiority of the EMD-LSTM
combined model designed in this paper was verified. The LSTM model, CNN model
and EMD-LSTM model were used for comparative experiments, and the three models all
converged in 20 iterations, among which the EMD-LSTM model had the fastest convergence
speed and reached a stable state in the seventh iteration with the smallest error. The LSTM
model reached a stable state in the 12th iteration, and the error was smaller than that of
the CNN model. The CNN model reached a stable state in the 15th iteration, with the
largest error among the three models. Figure 6 visually shows the small error between the
predicted value and the real value of each indicator in the validation set of the EMD-LSTM
model. It can be seen that the predicted value of the model is close to the real value and the
prediction effect is good.

It can be seen from Table 3 that the mean square error, root mean square error and
mean absolute error of the EMD-LSTM model are all minimum, which shows that the
model designed in this paper is suitable for weather prediction. The mean error MSE,
RMSE and MAE of the model designed by us are 0.0435, 0.1216 and 0.0654, respectively.
Compared with the original LSTM model and CNN model, The MSE value of the EMD-
LSTM model is reduced by 1.92% and 4.12% on average, the RMSE value is reduced by
3.11% and 16.69% on average, and the MAE value is reduced by 6.15% and 16.26% on
average. Therefore, among the basic models in deep learning, the EMD-LSTM model has
the best effect and the least error.

Table 3. Error comparison results of deep learning model.

Feature
MSE RMSE MAE

LSTM CNN OUR LSTM CNN OUR LSTM CNN OUR

Minrel-humidity 0.0304 0.0865 0.0117 0.1744 0.2941 0.1082 0.1250 0.2340 0.0828
Minpsta 0.0001 0.0854 0.0000 0.0041 0.2922 0.0033 0.0308 0.2288 0.0036

Maxtemp 0.0287 0.0853 0.0091 0.1673 0.2920 0.0957 0.2207 0.2309 0.0974
Maxpsta 0.0017 0.0846 0.0002 0.0041 0.2909 0.0147 0.0041 0.2291 0.0099

Exmaxwindv 0.4164 0.0836 0.3088 0.6453 0.2892 0.5577 0.4227 0.2269 0.1873
Mintemp 0.0117 0.0870 0.0093 0.1083 0.2950 0.0963 0.1329 0.2312 0.0702

Averagetemp 0.0124 0.0827 0.0090 0.1114 0.2776 0.0950 0.0747 0.2218 0.0701
Averagepsta 0.0000 0.0823 0.0000 0.0069 0.2767 0.0021 0.0045 0.2213 0.0017
Mean error 0.0627 0.0847 0.0435 0.1527 0.2885 0.1216 0.1269 0.2280 0.0654
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The comparison between our model and the traditional machine learning models,
namely the random forest (RF) and support vector machine (SVM) models, is shown in
Table 4. It can be seen from Table 4 that the mean square error, root mean square error and
mean absolute error of our model still are all minimum. The daily humidity prediction
errors of RF and SVM are both large, while the overall mean error of RF is smaller.
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Table 4. Error comparison results of traditional machine learning models.

Feature
MSE RMSE MAE

RF SVM OUR RF SVM OUR RF SVM OUR

Minrel-humidity 63.1064 270.8046 0.0117 7.9440 16.4561 0.1082 6.0868 13.0728 0.0828
Minpsta 0.0369 0.6665 0.0000 0.1922 0.8164 0.0033 0.0712 0.6619 0.0036

Maxtemp 0.2815 28.9850 0.0091 0.5305 5.3838 0.0957 0.5305 4.3865 0.0974
Maxpsta 0.0386 0.4880 0.0002 0.1966 0.6986 0.0147 0.1520 0.5789 0.0099

Exmaxwindv 0.6720 28.1332 0.3088 0.8197 5.3041 0.5577 0.8197 4.3221 0.1873
Mintemp 0.3297 29.5761 0.0093 0.5742 5.4384 0.0963 0.3825 4.4670 0.0702

Averagetemp 0.8608 27.1707 0.0090 0.9278 5.2126 0.0950 0.7092 4.2500 0.0701
Averagepsta 0.1032 0.4326 0.0000 0.3212 0.6577 0.0021 0.2530 0.5525 0.0017
Mean error 8.1800 48.2821 0.0435 1.4383 4.9960 0.1216 1.1256 4.0365 0.0654

The comparison between our model and regression models, namely the multiple
linear regression (MLR), support vector regression (SVR), polynomial regression and ridge
regression models, is shown in Tables 5 and 6. As can be seen from Tables 5 and 6, the mean
square error, root mean square error and mean absolute error of our model are still the
smallest. The daily humidity prediction errors of the four regression models are all large,
but ridge regression is the best among the four regression models because of its minimum
overall mean error.

Table 5. Error comparison results of regression models (a).

Feature
MSE RMSE MAE

MLR SVR OUR MLR SVR OUR MLR SVR OUR

Minrel-humidity 76.6398 270.8046 0.0117 8.7544 16.4561 0.1082 6.93398 13.0728 0.0828
Minpsta 5.4037 0.6665 0.0000 2.3246 0.8164 0.0033 1.8191 0.6619 0.0036

Maxtemp 0.2718 28.9850 0.0091 0.5137 5.3838 0.0957 0.3626 4.3865 0.0974
Maxpsta 0.0371 0.4880 0.0002 0.1926 0.6986 0.0147 0.1439 0.5789 0.0099

Exmaxwindv 1.0182 28.1332 0.3088 1.0091 5.3041 0.5577 0.7916 4.3221 0.1873
Mintemp 0.2789 29.5761 0.0093 0.5281 5.4384 0.0963 0.3515 4.4670 0.0702

Averagetemp 1.1538 27.1707 0.0090 1.0741 5.2126 0.0950 0.8571 4.2500 0.0701
Averagepsta 0.1282 0.4326 0.0000 0.3581 0.6577 0.0021 0.2811 0.5525 0.0017
Mean error 10.6164 48.2821 0.0435 1.7801 4.9960 0.1216 1.3973 4.0365 0.0654

Table 6. Error comparison results of regression models (b).

Feature
MSE RMSE MAE

Polynomial Ridge OUR Polynomial Ridge OUR Polynomial Ridge OUR

Minrel-humidity 51.3825 74.3812 0.0117 7.1682 8.6245 0.1082 5.3278 6.5912 0.0828
Minpsta 33.3586 4.5763 0.0000 5.7757 2.1392 0.0033 3.7370 1.5969 0.0036

Maxtemp 1.0508 0.0111 0.0091 1.0251 0.1053 0.0957 0.6960 0.0739 0.0974
Maxpsta 0.0052 0.0413 0.0002 0.0719 0.2032 0.0147 0.0522 0.1593 0.0099

Exmaxwindv 1.0263 1.1421 0.3088 1.0131 1.0687 0.5577 0.7843 0.8388 0.1873
Mintemp 1.0263 0.0228 0.0093 1.0131 0.0151 0.0963 0.7843 0.0110 0.0702

Averagetemp 1.5147 0.0295 0.0090 3.8919 0.0543 0.0950 2.9777 0.0806 0.0701
Averagepsta 0.0445 0.0000 0.0000 0.2109 0.0001 0.0021 0.1647 0.0001 0.0017
Mean error 11.1761 10.0255 0.0435 2.5212 1.5263 0.1216 1.8155 1.1690 0.0654

5. Conclusions

In order to improve the accuracy of weather forecasts, this paper proposes a fusion
model based on a deep learning neural network of long and short memory. The minimum
humidity, minimum air pressure, maximum temperature, maximum air pressure, maxi-
mum wind speed, minimum temperature, average temperature and average pressure were
predicted under daily weather conditions in Shenzhen, China. The method of filtering
the correlation coefficients of the components of each variable decomposed by EMD and
then recombining the data into an LSTM network makes full use of the advantages of
EMD in the decomposition of non-stationary data with seasonal trends and reduces the
influence of data noise and seasonal fluctuations. Combined with the LSTM model, it has
the advantage of “memory ability and forgetting ability” in time-series data processing, the
grid search is used to find the optimal combination of hyperparameters, and the gradient
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descent optimization algorithm is used to find the optimal weight and bias of the model, so
as to improve the prediction accuracy of Shenzhen’s weather characteristics. Four kinds of
traditional machine learning models and four Kernel regression model experiments fully
prove that the EMD-LSTM combined model designed in this paper is a more efficient and
accurate model, which is suitable for weather prediction and can provide new ideas for
weather prediction.
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