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Abstract: Air pollution is associated with respiratory diseases and the transmission of infectious
diseases. In this context, the association between meteorological factors and poor air quality possibly
contributes to the transmission of COVID-19. Therefore, analyzing historical data of particulate
matter (PM2.5, and PM10) and meteorological factors in indoor and outdoor environments to discover
patterns that allow predicting future confirmed cases of COVID-19 is a challenge within a long
pandemic. In this study, a hybrid approach based on machine learning and deep learning is proposed
to predict confirmed cases of COVID-19. On the one hand, a clustering algorithm based on K-means
allows the discovery of behavior patterns by forming groups with high cohesion. On the other hand,
multivariate linear regression is implemented through a long short-term memory (LSTM) neural
network, building a reliable predictive model in the training stage. The LSTM prediction model
is evaluated through error metrics, achieving the highest performance and accuracy in predicting
confirmed cases of COVID-19, using data of PM2.5 and PM10 concentrations and meteorological
factors of the outdoor environment. The predictive model obtains a root-mean-square error (RMSE)
of 0.0897, mean absolute error (MAE) of 0.0837, and mean absolute percentage error (MAPE) of
0.4229 in the testing stage. When using a dataset of PM2.5, PM10, and meteorological parameters
collected inside 20 households from 27 May to 13 October 2021, the highest performance is obtained
with an RMSE of 0.0892, MAE of 0.0592, and MAPE of 0.2061 in the testing stage. Moreover, in the
validation stage, the predictive model obtains a very acceptable performance with values between
0.4152 and 3.9084 for RMSE, and a MAPE of less than 4.1%, using three different datasets with indoor
environment values.

Keywords: predictive model; COVID-19; deep learning; LSTM; K-means; PM2.5; PM10; confirmed cases

1. Introduction

The COVID-19 pandemic caused by the agent of severe acute respiratory syndrome
coronavirus (SARS-CoV-2) has generated many deaths worldwide; at the end of May 2022,
the total is approximately 6 million in the world and 325,000 thousand in Mexico, with con-
firmed cases of around 528 million and 5.78 million, respectively [1]. The COVID-19
pandemic tested the organization, protocols, processes, and care and response time of the
healthcare system in all countries. The World Health Organization (WHO) issued recom-
mendations and protocols to reduce the spread of the virus [2]. Governments, international
institutions, public and private laboratories, and research centers have worked on develop-
ing vaccines to control the spread of the virus, reduce the risks to the patient’s health, and
prevent death in the event of infection. The rapid spread of SARS-CoV-2 caused the closure
of industrial, commercial, agricultural, educational, and investment activities in different
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pandemic waves, causing a deterioration of the global economy, which encouraged a home
office scheme in a wide variety of businesses.

Several studies have reported a possible relationship between air pollution and meteo-
rological factors with the transmission of COVID-19 [3–7]. These studies have analyzed
data on the concentrations of pollution, meteorological parameters, and confirmed cases
during the lockdown and partial lockdown of the COVID-19 pandemic. Therefore, indoor
and outdoor air quality can play an important role in the transmission of SARS-CoV-2.
In this sense, the Centers for Disease Control and Prevention (CDC) describes that people
become infected with SARS-CoV-2 through exposure to respiratory fluids that carry the in-
fectious virus [8]. This can occur by inhalation of very fine respiratory droplets and aerosol
particles, deposition of respiratory droplets and particles on mucous membranes (mouth,
nose, and eyes) by splashing or direct aerosols, or by contact of the mucous membrane with
hands contaminated with contaminated respiratory fluids or touching surfaces infected
with the virus [8].

Exposure to indoor pollutants is one of the main contributors to total human expo-
sure, causing respiratory, cardiovascular, lung cancer, and allergic diseases in prolonged
exposures [9,10]. These indicators of contamination are very relevant since human beings
spend around 90% of their time in closed environments [11]. Indoor air pollution ranks in
the top five environmental risks to public health [12]. Occupants of indoor environments
are exposed to various pollutants, such as particulate matter (PM2.5 and PM10), carbon
monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds
(VOCs), ozone (O3), and bio-aerosols [13]. During the confinement implemented to reduce
the growth curve of COVID-19 infections, the social distancing restrictions increased the
home occupancy and home-office activities. Nowadays, changes have been reported in
levels of pollutants inside homes [14–18], and outdoor pollution has decreased in many
cities [19–23].

Fine particulate matter with a size of less than 2.5 µm (PM2.5) is considered one of the
most significant environmental risks to people’s health. Long-term exposure to particulate
matter pollution (PM2.5 and PM10) is associated with a high rate of respiratory illness and
hospitalizations for chronic lung disease, pneumonia, cerebrovascular diseases, schematic
heart disease, lung cancer, and mortality [24–27]. An association between PM2.5 and con-
firmed cases, deaths, and hospital admissions due to COVID-19 infections has been proven
in several regions affected by the pandemic [28–33]. Furthermore, several studies have
estimated a relationship between short- and long-term exposure to PM10 with confirmed
cases of COVID-19 [34–36], patients who experienced pneumonia due to COVID-19 [37],
and COVID-19 severity and mortality [38,39]. Therefore, the COVID-19 pandemic has
highlighted the need to reduce particle concentrations to low levels through public policies
to reduce risks to the population’s health due to short-term and long-term exposure to
air pollutants, which includes the spread of SARS-CoV-2.

The pandemic’s impact on a global level (mental health, personal health, economy,
business, and interpersonal relationships) has required the implementation of mathematical,
statistical, and computational methods to discover patterns that allow the identification
of possible behaviors in the spread of COVID-19. Deep-learning techniques have been
proposed to classify X-ray images of people infected with COVID-19 [40–43], predict
confirmed cases and deaths [44,45], identify people’s moods through social networks
analysis [46,47], and diagnose and treat COVID-19 [48], among others.

In this study, an approach based on unsupervised machine learning and deep learn-
ing is proposed to predict confirmed cases of COVID-19, using historical data on pollu-
tion by PM2.5, PM10 and meteorological factors in the indoor and outdoor environment,
as well as confirmed cases and deaths from COVID-19. The data were collected during
the third wave of COVID-19 in Victoria, Mexico. The datasets were examined to identify
a possible structure in the values of the multidimensional variables using the Andrews
curves method. Furthermore, the datasets were analyzed using an unsupervised K-means
clustering algorithm to discover behavior patterns by forming highly cohesive groups.
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Subsequently, a multivariate linear regression analysis from the discovered clusters was
implemented through a deep-learning long short-term memory (LSTM) neural network.
The predictive model is evaluated through the root-mean-square error (RMSE), the mean
absolute error (MAE), the mean square error (MSE), and the mean absolute percentage
error (MAPE) metrics.

2. Materials and Methods
2.1. Area of Study

This study was conducted in the city of Victoria (23°44′00′′ N 99°08′00′′ W), located in
the State of Tamaulipas in northeastern Mexico, which had a population of approximately
350,000 inhabitants in 2020 within an approximate area of 188 km2. The population density
per km2 in 2020 was 1845 inhabitants. The annual mean temperature (2021) was 25.3 ◦C,
with a minimum and maximum temperature of 0 ◦C and 42 ◦C, respectively. The data on the
concentration of ambient air pollutants and meteorological factors in outdoor environments
were collected through four monitoring stations. These stations are installed in commercial,
residential, downtown, and suburban areas at the neighborhood level, considering the
topographical conditions of the city, located next to a mountainous area.

2.2. Data Collection

The outdoor environmental pollution data used in the study are from 1 May to
31 October 2021. Raw data were downloaded from a private cloud on the Internet, which
contains a database that receives and stores the data collected by the four monitoring
stations. These stations transmit the values collected by the sensors in real time, with a
temporal resolution of 24 h/7 days. When the data are received in the cloud, they are
automatically processed, validated, and saved using a cloud service. The outdoor dataset
contains hourly average values for PM2.5 (µg/m3), PM10 (µg/m3), temperature (◦C), rela-
tive humidity (%), atmospheric pressure (hPa), wind speed (Km/h), and wind direction
(◦). Each monitoring station has a low-cost sensor (LCS) for particulate matter 9387-P,
marketed by Libelium. This sensor is based on the Alphasense OPC-N3 sensor, which uses
a laser beam to count particles, detecting particles from 0.35 µm to 40 µm, sorting them
into 24-size containers capable of measuring up to 2000 µg/m3 (PM2.5), with a maximum
coincidence probability of 0.84% at 10,000,000 particles/L, and 0.24% at 500 particles/L [49].
In our experiment, particulate matter LCS (9387-P) was calibrated locally before each study,
achieving a determination coefficient of R2 = 0.86 for PM2.5 and R2 = 0.75 for PM10 with
the reference instrument.

The indoor air pollution data were collected between 27 May and 13 October 2021.
A total of 20 households were selected in which at least one inhabitant was diagnosed
positive in a COVID-19 test. The mobile indoor monitoring station was installed 15 days
after the house inhabitants obtained a negative COVID-19 test result. In addition, the house
was required to be disinfected by the public health department or by a private company
authorized by the government. The indoor dataset stores mean values of the attributes
PM2.5 (µg/m3), PM10 (µg/m3), temperature (◦C), relative humidity (%), and atmospheric
pressure (hPa) collected inside the houses. Furthermore, we added the values of the wind
speed (Km/h) and wind direction (◦) attributes collected at the monitoring station closest
to the household to the dataset. The measurements were conducted for 7 day/24 h contin-
uously indoors at 3-min intervals. The monitoring equipment was placed at approximately
a 1.3 m height indoors; depending on the time of day, it was located for several hours
in the kitchen, dining room/living room, or bedroom (this action was performed by the
person who lives in the house). The indoor monitoring instrument was equipped with a
Plantower PMS7003 LCS [50]. The manufacturer guarantees accuracy for PM2.5 (similar
accuracy for PM10) of 10 µg/m3 in the range 0–100 µg/m3, 10% for measurements in the
range 101–500 µg/m3, and 20% over concentration 500 µg/m3. The particulate matter LCS
(PMS7003) was calibrated before the study period, obtaining a correlation coefficient of R2

= 0.90 for PM2.5 and R2 = 0.78 for PM10 with the reference instrument. Temperature and
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relative humidity were measured with a BOSCH BME280 sensor [51], with a temperature
measurement range of −40 ◦C to 85 ◦C, an atmospheric pressure range of 300 to 1100 hPa
with a sensitivity error of ±0.25%, and relative humidity with an accuracy of ±3% RH
and hysteresis ≤2% RH. Each of the 20 monitored homes are located relatively close to
an outdoor monitoring station; that is, 5 of the monitored homes are located nearby each
monitoring station. On the one hand, 16 homes are located in low-income areas, ventilation
is natural by opening windows and the homes have at least one pedestal fan. On the other
hand, four homes are located in middle-income areas; ventilation is hybrid, through air
conditioning equipment installed in the bedroom or living room and natural ventilation
through opening windows. Furthermore, at least one pedestal or ceiling fan is available in
these homes.

The number of confirmed cases and deaths from COVID-19 recorded in Victoria city
from 27 May to 13 October 2021, and were compiled from the COVID-19 Mexico website
(open access data) of the government of Mexico. We built a dataset with the number
of confirmed cases and deaths per day. These attributes were added to the outdoor air
pollutants and meteorological factors dataset.

2.3. Statistical Analysis

Daily confirmed cases and deaths from COVID-19, concentration levels of pollutants
in the air, and indoor and outdoor meteorological parameters were statistically analyzed
using the Kolmogorov–Smirnov Lilliefors test to determine the normality of the data. The
datasets were identified as non-parametric distribution, for which it was determined to
apply a Spearman correlation analysis independently for indoor and outdoor pollution.
Spearman’s correlation coefficient was used to examine the relationship between variables
considered in our study. A clustering analysis based on K-means was implemented,
allowing us to discover behavior patterns between the instances of the indoor/outdoor
datasets, confirmed cases, and deaths from COVID-19, through the formation of natural
groups in the feature space. A multivariate linear regression analysis was performed using
a deep learning architecture based on an LSTM neural network from the clusters discovered.
In the training phase of the LSTM neural network, the prediction model with the highest
accuracy rate was selected, which allows for predicting future COVID-19 confirmed cases
with high efficiency and performance. In addition, a descriptive analysis was performed by
calculating the median, interquartile range (IQR), minimum and maximum values for the
continuous variables of concentrations of air pollutants, and meteorological factors.

The R language over the RStudio IDE (version 1.3.959) was used to perform the data
distribution Kolmogorov–Smirnov test and the descriptive statistical analysis. The k-means
clustering analysis was performed using the Scikit-Learn tool (version 1.1.1). The datasets
were standardized because they contained variables at different scales using the Standard-
Scaler library installed on the Scikit-Learn tool. Standardization is a pre-processing task on
the dataset, allowing the building of a deep learning model. Multivariate linear regression
using the LSTM neural network was implemented on a Jupyter Notebook, using Python
Keras 2.6.0, the high-level deep learning neural network library, with the TensorFlow
2.6.0 backend. Furthermore, the CuDNN library for LSTM networks (CuDNNLSTM) was
implemented for faster execution in the training and testing stages of the LSTM model,
reducing computation time using GPU technology. CuDNN is a GPU-accelerated library of
primitives for deep neural networks. Table 1 shows the hyper-parameters defined in the
LSTM neural network model. The Pandas 1.2.4 framework was implemented to manage
the datasets and handle the neural network’s time series. Moreover. the Plotly 5.1.0 library
was implemented to generate the visualization of the results through graphs.
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Table 1. Parameters of the LSTM neural network.

Layer Parameter

LSTM 700 units
Activation tanh

recurrent_activation sigmoid
unroll False

use_bias True
recurrent_dropout 0
return_sequences True

TimeDistributed Dense 1

optimizer adamax
loss mae

epochs 300
batch_size 32

3. Results
3.1. Statistic Analysis

The p-value given by the Kolmogorov–Smirnov Lilliefors test is less than 0.05 for both
datasets (D = 0.24532 and D = 0.2397 for outdoor and indoor datasets, respectively), meaning
that, indeed, the data is not normally distributed. The median PM2.5 concentration registered
is between 12 µg/m3 and 16 µg/m3, with an IQR between 10 µg/m3 and 22 µg/m3, in the
different monitored areas of the city (see Table 2). The maximum level for PM2.5 was recorded
at the AQIoT-4 station (621 µg/m3), and 636 µg/m3 for PM10, which occurred during the forest
fire season at the beginning of August (summer season). At the AQIoT-3 station, a median PM10
of 13 µg/m3 was registered, and a PM10 of 18 µg/m3 at the AQIoT-4 station during the study
period. In this period, the minimum temperature of 15.3 ◦C was recorded in the first week of
October 2021 (autumn season) at the AQIoT-5 monitoring station, which is located near the
mountain area (see Table 2). Relative humidity was reported with minimums of 29% to 41% in
late spring and summer, with a maximum of 99% recorded during the rainy season (September
and October).

Table 2. Descriptive statistics of meteorological factor data and particulate matter concentration outdoors.

Station PM2.5 (µg/m3) PM10 (µg/m3) Temperature (◦C) Relative Humidity (%)

Median (IQR) Min Max Median
(IQR) Min Max Median Min Max Median Min Max

AQIoT-2 12 (10) 3 76 14 (12) 4 86 27.3 16.2 42.0 88.7 41.1 99.8
AQIoT-3 12 (14) 4 274 13 (15) 5 330 27.3 15.7 41.8 86.4 35.4 99.9
AQIoT-4 16 (22) 5 621 18 (25) 6 636 27.4 16.1 42.0 86.0 40.4 99.8
AQIoT-5 13 (14) 3 87 14 (15) 4 99 27.2 15.3 41.5 90.9 29.7 99.9

The reference value standard in Mexico is defined as 30 µg/m3 for PM2.5 and 50 µg/m3

for PM10 for a 24-h average, published by the Ministry of Health of the Government of Mex-
ico in the environmental health norm [52]. In this context, the AQIoT-2 station PM2.5 daily
mean exceeded the official norm on October 13 and 14 (33.9 µg/m3 and 37.75 µg/m3). At the
AQIoT-3 station, the norm was exceeded on several days with a mean PM2.5 concentration of
37.88 µg/m3 (July 18), 32.24 µg/m3 (1 September), and 34.68 µg/m3, 38.20 µg/m3, 41.18 µg/m3,
and 32.84 µg/m3 from 12 October to 15 October, respectively. At the AQIoT-4 station, the great-
est number of days with concentrations outside the permissible limits for PM2.5 and PM10
occurred. The following levels for PM2.5 were recorded: 48.15 µg/m3 on 18 Jul, from 19 August
to 31 August, levels between 43.77 µg/m3 and 258.72 µg/m3, on September 1, 32.56 µg/m3,
and 36.97 µg/m3, 39.75 µg/m3, 44.64 µg/m3, and 35.37 µg/m3 from 12 October to 15 October ,
respectively. PM10 concentrations exceeded the environmental health norm with 62.19 µg/m3

(18 July), 76.80 µg/m3 to 259.46 µg/m3 from 19 August to 31 August and on 14 October with
a 56.12 µg/m3 level. Finally, at the AQIoT-5 station, the PM2.5 limit was exceeded with levels



Atmosphere 2022, 13, 1205 6 of 20

of 33.37 µg/m3 (1 September) and between 31.48 µg/m3 to 42.73 µg/m3 from 12 October to
15 October and 51.74 µg/m3 for PM10 on 14 October 2021.

On the other hand, in the descriptive analysis for particulate matter data inside the houses,
the lowest median of 8(11) µg/m3 was recorded in households located near the AQIoT-4 station
(see Table 3), and the highest median of 21(19) µg/m3 at the AQIoT-2 station. PM10 levels follow
this pattern of these stations with 9(11) µg/m3 and 23(21) µg/m3, respectively. The maximum
for PM2.5 pollution was registered in 311 µg/m3 and for PM10 in 365 µg/m3. The activities may
influence these values carried out in the kitchen and the filtration of pollutants from the outside.
In addition, most of the monitored houses do not have a cooker hood installed on the stove
that allows the extraction of particles generated when cooking food and by the combustion of
liquefied petroleum gas (butane/propane) used for cooking food. The maximum temperature
recorded inside the houses was very high (from 37.9 ◦C to 39.6 ◦C), with an average temperature
between 33.6 ◦C to 34.8 ◦C in the monitored areas (see Table 3). These temperatures occurred
between 3:00 p.m. and 9:00 p.m., from May to August 2021, coinciding with minimums of 33.9%
to 38.7% relative humidity.

Table 3. Descriptive statistics of meteorological parameters data, and indoor concentration of particu-
late matter (PM2.5 and PM10) .

Station PM2.5 (µg/m3) PM10 (µg/m3) Temperature (◦C) Relative Humidity (%)

Median (IQR) Min Max Median
(IQR) Min Max Me-

dian Min Max Median Min Max

AQIoT-2 21 (19) 2 223 23 (21) 3 230 34.8 28.8 39.4 57.2 33.9 95.0
AQIoT-3 15 (17) 3 177 16 (18) 4 177 34.8 21.4 39.6 56.5 35.6 93.9
AQIoT-4 8 (11) 2 311 9 (11) 3 365 33.6 28.4 36.5 58.6 38.7 91.2
AQIoT-5 14 (16) 2 141 16 (17) 3 143 33.9 28.4 37.9 62.6 36.5 90.4

The accumulated confirmed cases during the study period were 5981 people with a
positive test (53% are female patients), with a daily maximum of 104 confirmed cases of
COVID-19. Figure 1 shows the daily increase in infected people reported by the Ministry of
Public Health between 1 May and 31 October 2021. On the other hand, in the study period,
138 deaths caused by complications from COVID-19 were reported (63% correspond to
male patients), with a cumulative of 571 deaths since initiating the process of confinement
for the pandemic (17 March 2020).

Figure 1. Confirmed cases of COVID-19 during the entire study period.

Figures 2 and 3 show the mean daily concentration of PM2.5 and PM10 in outdoor and
indoor air, respectively, and the number of COVID-19 cases recorded per day. Figure 2 shows
that on several days in August 2021, the 24 h standard average (30 µg/m3) for PM2.5 was
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exceeded, coinciding with the period in which the highest number of COVID-19 confirmed
cases per day were recorded. In the case of the pollutant PM10, the short-term standard
(50 µg/m3) for daily average was exceeded on four occasions during the same month.

Figure 2. The daily mean concentration of PM2.5 and PM10 pollutants in outdoor air in relation to
confirmed cases of COVID-19.

Figure 3. Indoor PM2.5 and PM10 daily mean concentrations and COVID-19 confirmed cases.

Furthermore, Spearman correlation analysis was used to decipher the relationships be-
tween confirmed COVID-19 cases, particulate matter ambient air pollutants concentrations,
and five meteorological variables. Table 4 shows Spearman’s coefficient matrix calculated using
the dataset of particulate matter and meteorological factors in outdoor air. This analysis aims to
identify the behavior and association between the study variables, considering the growth in
positive cases and deaths for COVID-19 in these 20 weeks. All particulate matter types showed
perfect positive correlation with each other, r = 1 (p-value < 0.01). Statistically moderate positive
correlations between PM2.5 and temperature (T) and PM10 and T were found at a significant
level of 5% (0.56≥ r≤ 0.59). We found that PM2.5 and PM10 have a strong negative correlation
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for daily confirmed cases (DCC) of COVID-19, with a coefficient value of−0.74 (p-value < 0.01)
in both associations. Furthermore, results show a moderate correlation coefficient of atmospheric
pressure and deaths for COVID-19 at 0.49, with a p-value of less than 0.05. The correlation
analysis reveals a negative coefficient between the relative humidity (RH) and T (r = −0.70,
p-value < 0.01). We observe that T exhibits a strong relationship (r = 0.64, p-value < 0.01) with
wind direction (WD) variable.

Table 4. Spearman correlation coefficient matrix using the outdoor pollution and meteorological
factors dataset.

PM2.5 PM10 T RH WD WS AP DCC Deaths

PM2.5 1 1 ** 0.56 * −0.39 0.11 −0.15 0.24 −0.74 ** −0.25
PM10 1 ** 1 0.59 * −0.42 0.14 −0.16 0.23 −0.74 ** −0.25
T 0.56 * 0.59 * 1 −0.70 ** 0.64 ** −0.07 0.14 −0.36 0.04
RH −0.39 −0.42 −0.70 ** 1 −0.39 0.29 0.00 0.33 0.02
WD 0.11 0.14 0.64 ** −0.39 1 0.42 0.19 −0.15 0.32
WS −0.15 −0.16 −0.07 0.29 0.42 1 0.19 0.03 0.35
AP 0.24 0.23 0.14 0.00 0.19 0.19 1 −0.27 0.49 *
DCC −0.74 ** −0.74 ** −0.36 0.33 −0.15 0.03 −0.27 1 0.02
Deaths −0.25 −0.25 0.04 0.02 0.32 0.35 0.49 * 0.02 1

* p-value > 0.05, ** p-value > 0.01.

On the other hand, Table 5 shows the Spearman correlation matrix computed for
the indoor dataset. In this second correlation scenario, the concentration of pollutants and
meteorological parameters for the 20 households and the confirmed cases and deaths from
COVID-19 in the study’s period were considered. The correlation coefficient between PM2.5
and PM10 was highlighted as very high with r = 0.99 and the p-value < 0.01, as well as a
moderate association between PM2.5 and PM10 with the temperature (T) variable with r = 0.53
and r = 0.50, respectively. Furthermore, we found a moderate relationship between relative
humidity (RH) and the two types of particulate matter, with a significance level of less than
0.05. The variables corresponding to the meteorological parameters present strong correlations.
Temperature and relative humidity show a correlation coefficient of r = 0.60 (p-value < 0.01).
In addition, a strong positive correlation between wind direction (WD) and the variable wind
speed (WS) with r = 0.69 (p-value < 0.01), as well as a negative association between relative
humidity and wind speed of r= −0.60, p-value < 0.01. Finally, the correlation between PM2.5
and PM10 with the daily confirmed cases (DCC) of COVID-19 shows important changes
with respect to the level of correlation found in the outdoor scenario: a moderate positive
correlation of r = 0.50 between PM2.5 and confirmed cases and a relationship between PM10
and confirmed cases of r = 0.48 (p-value < 0.05). Furthermore, in this scenario, we find a
moderate positive correlation between the particulate matter variables and COVID-19 deaths,
with r = 0.40 and p-value < 0.05, in both cases.

Table 5. Spearman correlation coefficient matrix using the indoor pollution and meteorological
parameters dataset.

PM2.5 PM10 T RH WD WS AP DCC Deaths

PM2.5 1.00 0.99 ** −0.53 ** 0.48 * 0.15 −0.05 −0.17 0.50 * 0.40 *
PM10 0.99 ** 1.00 −0.50 * 0.49 * 0.11 −0.06 −0.20 0.48 * 0.40 *
T −0.53 ** −0.50 * 1.00 −0.60 ** −0.35 0.19 −0.18 −0.13 −0.15
RH 0.48 * 0.49 * −0.60 ** 1.00 −0.12 −0.60 ** −0.08 0.11 0.32
WD 0.15 0.11 −0.35 −0.12 1.00 0.69 ** 0.33 0.23 −0.14
WS −0.05 −0.06 0.19 −0.60 ** 0.69 ** 1.00 0.08 0.12 −0.08
AP −0.17 −0.20 −0.18 −0.08 0.33 0.08 1.00 −0.29 −0.33
DCC 0.50 * 0.48 * −0.13 0.11 0.23 0.12 −0.29 1.00 0.22
Deaths 0.40 * 0.40 * −0.15 0.32 −0.14 −0.08 −0.33 0.22 1.00

* p-value > 0.05, ** p-value > 0.01.

3.2. Dataset Analysis

Before implementing the machine learning algorithm based on K-means clustering,
the datasets were analyzed to identify if there is a structure in the behavior of the values of
the multidimensional variables. Visualizing multidimensional data is a complex process
compared to visualizing data in two or three dimensions. Then, implementing the Andrews
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curves method, one can identify the dataset structure since complex data is reduced to a
two-dimensional graph, making it possible to specify the associated variables, the formation
of groups, and outliers within the dataset. The curves are created using the features of
instances of each dataset as coefficients of the Fourier series.

Figure 4 shows the graph of the Andrews curves generated by comparing the outdoor
data of air pollution and meteorological factors with the indoor data of air pollution and
meteorological parameters. In this Figure, each color represents a class (indoor/outdoor); it
can be seen that the lines that represent the instances of the same class have similar curves.
Furthermore, a similarity between the curves of the two classes is identified. In addition, it
is observed that the vast majority of the data has a structure of sinusoidal curves with which
a pattern is discovered in the data, which makes it possible to apply an automatic learning
algorithm to discover this structure and understand the equation behind its data. The Andrews
plot shows the areas where the classes are grouped and correlated (for example, on the X-axis
with a value of 1.1 and between−300 and−1200 on the Y-axis. Similarly, a correlation between
classes can be seen in the value 2 on the X-axis and between the values 700 and 1500 on the
Y-axis). On the other hand, some atypical values are observed in the outdoor class (gray lines),
for example; in the curve located at the value of 0.2 on the X-axis with the value of 1750 on the
Y-axis. In values 2.2 and 1750 corresponding to the X-axis and Y-axis, other outliers occur in the
same class. In addition, atypical values are observed in the indoor class (green lines), which are
displayed correlated with atypical values of the outdoor class throughout the plot, for example,
in the line located at the value−2 of the X-axis with the value−250 of the Y-axis.

Figure 4. Andrews plot for indoor and outdoor data.

In Figure 5, four classes corresponding to outdoor air quality monitoring stations (AQIoT-2,
AQIoT-3, AQIoT-4, and AQIoT-5) were defined to discover if the data from the four monitoring
stations share a data structure and follow a pattern. This Figure shows the data structure using
the Andrews curves method; it identified that it has a similar structure and is consistent with
the data structure and patterns discovered in Figure 4. In addition, the same types of outliers are
identified, and most belong to the AQIoT-4 monitoring station (purple lines). It is observed that
some of these outliers correlate with values from the AQIoT-2 monitoring station (gray lines).
These two monitoring stations are located in the southeast and northeast areas of the city, with a
linear distance of approximately 5 km, and share similar characteristics of altitude above sea
level, topographical conditions, and wind currents. This correlation is visualized in the lines at
the value −2 on the X-axis and between −200 and −350 on the Y-axis.
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Figure 5. Andrews plot for outdoor air quality monitoring stations data.

Figure 6 shows the indoor air pollution data structure for which 20 classes were
defined and represent the data collected in the 20 monitored houses. At the level of detail
displayed in Figure 6, it is observed that in the data structure in the rise of the curve located
at the value −2 of the X-axis (between the values 700 and 1000 of the Y-axis) until the
descent before the curve located at the value−1 of the X-axis (between the values−850 and
−1300 of the Y-axis) there is an almost perfect grouping of the lines, which continues at the
end of this curve and until the beginning of the next curve. A group between fewer classes
but with a correlation between all classes is visualized in the following curves. Regarding
the outliers, it is identified that the house labeled with class 17 correlates with the outliers
identified for outdoor class (see Figure 4). This discovery is important because household
17 is close to the AQIoT-4 monitoring station (see outliers in Figure 5).

Figure 6. Andrews plot for indoor pollution data per household and outdoor pollution data.
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3.3. Clustering Analysis

The K-means clustering algorithm was used to classify the instances of all variables in
each dataset. The K-means algorithm is an unsupervised method of grouping by partitions;
it does not require a class or prior knowledge to classify an instance within a group or
cluster based on a measure of similarity between samples. In our approach, the algorithm
was implemented using the Euclidean distance metric, selecting the instances with the
minimum distance to the centroid (Ck); that is, there is maximum homogeneity between the
objects in the group and the greatest difference between the groups. The number of clusters
(K) was defined by implementing the Elbow method, which allows for determining the
optimal value for K. In the three datasets used in our experiment, this method determined
an optimal value of K = 3, using all the variables and instances in each dataset. In addition,
the value of the initial centroids was defined randomly, considering all the instances of
the dataset.

The clustering analysis will allow identifying the groups that contain more instances
and the origin of these instances (indoor or outdoor, monitoring station or homes), enabling
us to find a representative group that allows training the LSTM neural network model with
high performance and predict with the minimum error future cases of people infected by
COVID-19. Figure 7 shows the result of the clustering analysis considering the dataset
divided into indoor and outdoor environments. Cluster 0 is the most populated with 3643
instances, followed by clusters 2 and 1 with 3547 and 2789. Most cluster 0 instances belong
to the AQIoT-4 monitoring station or the houses located near this station and are linked to
the AQIoT-4 monitoring station; the same scenario is presented in cluster 2. The goodness
of the clustering obtained was evaluated through the silhouette coefficient (also known
as silhouette width), obtaining a value of Si = 0.61; a value in the Si > 0 means that the
observation is well grouped; the closer it is to 1, the better the grouping. The silhouette
coefficient allows interpreting and validating the coherence between the group elements;
that is, it measures how similar an object is within its group (cohesion) compared to other
groups (separation).

Figure 7. Clustering plot for indoor/outdoor pollution data.

Figure 8 shows the clusters generated for the outdoor type dataset divided by a
monitoring station. Cluster 1 has the largest number of instances (2910); in cluster 0,
2829 homogeneous instances are grouped. In cluster 1 and cluster 2, most samples corre-
spond to the AQIoT-3 monitoring station, followed by AQIot-4 with a minimum difference
of six instances. AQIoT-4 is the most representative in instances grouped in cluster 0. In the
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grouping validation, the model outdoor type dataset obtained an average silhouette width
of Si = 0.62.

Figure 8. Clustering plot for outdoor pollution data.

The cluster analysis, using the data collected inside houses presents a behavior similar
to that displayed in the cluster analysis for indoor–outdoor and outdoor datasets. The simi-
larity is observed in the formation of the clusters, the clusters with more instances, and the
origin of the instances (linkage to a monitoring station). Figure 9 shows the formation of
the clusters using the indoor data; some instances with greater distance to the centroid of
their cluster are observed for which they are shown separated from the group. The clusters
generated from the indoor data obtained the best goodness evaluation compared to the
previously presented clusters, with a Si = 0.63, as shown in Figure 10.

Figure 9. Clustering plot for indoor pollution data.
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Figure 10. Plot of clustering silhouette coefficients using 3 clusters in indoor dataset.

3.4. Prediction Model

Instances labeled with the AQIoT-4 monitoring station identifier were extracted from
the indoor and outdoor datasets, generating two new datasets. In each of these datasets,
80% of the instances were selected to build a sub-dataset (for each dataset) that will be used
in the training of the LSTM neural network, which allows generating a prediction model
based on LSTM for each dataset (indoor/outdoor). The remaining 20% of instances of the
original dataset were built into the test sub-dataset and used to evaluate the prediction
model’s performance. In the training stage, the LSTM model learns from the behavior
(dependency between variables) identified from the regression analysis of each instance in
the training dataset. The number of confirmed cases is the target or dependent variable
(output) and is a function of independent variables or predictors (input). In our experiment,
the predictors are PM2.5, PM10, temperature, relative humidity, atmospheric pressure, wind
speed, and wind direction. Then, with the predictive model generated in the training stage,
each instance of the test dataset is used to predict the value per day of the confirmed cases
variable. In each prediction, the LSTM model receives the value of the eight predictor
variables as input.

Table 6 shows the performance obtained by the LSTM prediction model using the
outdoor dataset. First, the prediction model is evaluated with the remaining 20% of the
AQIoT-4 monitoring station dataset instances. The prediction model obtains error metrics
very close to 0. The RMSE metric reaches a value of 0.0897, indicating the concentration
level of the data in the regression line has an excellent fit, with a minimum distance from
the data points of the regression line. Furthermore, the difference between the predicted
and actual values is low, with an MAE of 0.0837, indicating that the average forecast is very
acceptable. Regarding the MAPE metric, a value reached 0.4229 suggests that the average
difference between the predicted and current values is less than 1%.

Table 6. Error metrics results of LSTM deep learning model during testing and validation stages
(outdoor dataset).

Station % of Instances RMSE MAE MSE MAPE

AQIoT-2 100% 0.2560 0.1397 0.0655 0.4196
AQIoT-3 100% 0.2523 0.1483 0.0637 0.4310
AQIoT-4 20% 0.0897 0.0837 0.0080 0.4229
AQIoT-5 100% 0.2386 0.1508 0.0569 0.5070

The LSTM prediction model was validated with 100% of the dataset instances from
the AQIoT-2, AQIoT-3, and AQIoT-5 monitoring stations. An RMSE metric of 0.2560
was obtained with the first dataset (see Table 6), indicating an average distance between
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the predicted values of confirmed cases of COVID-19 by the model and the real values
in the validation dataset. Moreover, the prediction model obtained an MAE = 0.2560,
an MSE = 0.0655, and a MAPE = 0.4196, reporting a high accuracy of the regression model
in the prediction. Similarly, in the validation of the prediction model with the datasets of
the monitoring stations AQIoT-3 and AQIoT-5, very acceptable error metrics were achieved,
0.2523 and 0.2386 in the RMSE and MAE of 0.1483 and 0.1508, respectively. In the validation
stage with the outdoor data collected at the AQIoT-5 station, the model obtained the highest
MAPE error metric for the prediction task (0.5070).

Figure 11 shows the comparison of the time series between the actual data (blue line) and
the predicted data (red line), with a prediction of 85 days of confirmed cases of COVID-19, using
100% of the dataset on particulate matter and meteorological factors collected at the AQIoT-2
monitoring station (outdoor). Figure 11 shows a similar prediction between the real (original)
value and the predicted value; only in the forecast between days 40 and 42 (X-axis) is there
a slight separation between predicted and real data. On days 46, 48, 51, and 83, a prediction
slightly lower than the real value is observed. Figure 12 shows the prediction of confirmed
cases of COVID-19 generated from the AQIoT-4 station test dataset. The predicted data is for
16 days, without observing a difference between the predicted data line and the real data. This
is because the difference between the number of confirmed cases predicted and the number of
confirmed cases contained in the test dataset is at the decimal level (for example, 6.148918 vs. 6),
which is confirmed by the metrics of very low errors achieved by the deep learning LSTM
network model.

Figure 11. Prediction accuracy comparison between actual and predicted data using AQIoT-2 test
dataset (blue, original values; red, predicted values).

Figure 12. Comparison between actual and predicted data using the AQIoT-4 test dataset.
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Table 7 presents the performance of the LSTM prediction model for confirmed cases of
COVID-19, using PM2.5, PM10 concentration data and meteorological parameters collected
inside houses as input data to the model. The neural network LSTM was trained with
80% of the instances of the indoor dataset linked (located near) to the AQIoT-4 monitoring
station. The remaining 20% of the dataset was used to test the prediction model. Moreover,
the predictive model was validated with 100% of the three datasets containing particulate
matter concentration and meteorological factor values in five households (indoor) each.
These houses are located near the AQIoT-2, AQIoT-3, and AQIoT-5 monitoring stations,
respectively. The validation of the prediction model using the dataset of houses near the
AQIoT-2 monitoring station obtained a very acceptable performance with very low error
metrics, with values of 0.4152, 0.3243, and 0.1724, in RMSE, MAE, and MSE, and with a
value in the MAPE metric less than 2%. In the validation with data from houses near the
AQIoT-3 station, the highest error metrics of the model were reached, with an RMSE = 3.9084,
an MAE = 1.1627, and a MAPE of 4.0744 (see Table 7). These metrics are acceptable since
the prediction model adjusts to unknown values and complex behaviors in the input data
and manages to predict confirmed cases of COVID-19 with error metrics of less than 5%.
The minor error metrics in the testing and validation stages of the predictive model were
obtained with the dataset of houses near the AQIoT-4 monitoring station, with values of 0.0892,
0.0592, and 0.2061 for RMSE, MAE, and MAPE, respectively, confirming the high performance
and accuracy of the predictive model (see Table 7). When the model was validated with the
dataset of houses near the AQIoT-5 monitoring station, an RMSE = 1.5046, a MAPE of less
than 2%, and an MAE value of 1.0603 were obtained, demonstrating that the predicted data
are very close to actual data.

Table 7. Error metrics results of the LSTM neural network model during testing and validation stages
(indoor dataset).

Station % of Instances RMSE MAE MSE MAPE

Houses near AQIoT-2 100% 0.4152 0.3243 0.1724 1.7302
Houses near AQIoT-3 100% 3.9084 1.1627 15.2756 4.0744
Houses near AQIoT-4 20% 0.0892 0.0592 0.0079 0.2061
Houses near AQIoT-5 100% 1.5046 1.0603 2.2641 1.7082

Figure 13 and 14 show the predictions of confirmed cases of COVID-19 using the
pollution values by particulate matter (PM2.5 and PM10) and meteorological parameters
inside houses located around the monitoring stations AQIoT-3 and AQIoT-5. With these
datasets, the prediction model reached the highest values in the error metrics in its val-
idation stage (see Table 7). In the predicted data shown in the time series of Figure 13,
a different behavior than expected is identified on day 4, with a predicted value lower than
the actual value (8.12 versus 26). Subsequently, the behavior is similar between the real and
the predicted data, with a slightly smaller difference between the predicted data and the
original data on days 12, 16, 18, and 20. In the time series shown in Figure 14, the predicted
data line follows the behavior discovered in the real data. However, in the prediction of the
second day, it has a value slightly higher than expected. In contrast, from day 13 to day 22,
it predicts slightly lower than expected values in the number of confirmed cases.
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Figure 13. Prediction accuracy comparison between actual and predicted data using indoor dataset
(AQIoT-3).

Figure 14. Prediction accuracy comparison between actual and predicted data using indoor dataset
(AQIoT-5).

4. Discussion

Models to predict new infections, deaths, and recovered patients from COVID-19
have been a topic of great interest to the scientific community in recent months [53,54].
The authors of [55] propose a multivariate and univariate model based on a Stacked LSTM
network for forecasting the time series of COVID-19 deaths in Sao Paulo. Data from the air
quality index, temperature, and relative humidity, as well as the number of confirmed cases
and deaths from COVID-19, are used to train the LSTM network. In the evaluation stage of
the predictive model, it reached an RMSE of 8.62, considering the variables of deaths from
COVID-19 and the air quality index to predict deaths from COVID-19. In [56], the authors
evaluate various methods based on machine learning to predict the spread of COVID-19,
concluding that the variables of humidity and temperature have a greater weight than
other variables in predicting the mortality rate.

For their part [57], they propose the use of a multilayer perceptron (MLP) neural
network to implement a regression model with the capacity to determine the relationship
between the parameters of pollutants in the air and the number of COVID-19 patients,
estimating the number of patients corresponding to each parameter of the contaminant.
This study uses data on the concentrations of PM10, PM2.5, SO2, NOx, NO2, O3, CO,
and confirmed cases of patients with COVID-19. The implemented model obtains a rate of
97% in the testing stage of the prediction performed. In [58], they use three variants of the
LSTM neural network to predict daily cases of COVID-19. In the multivariate regression
approach, they use the values of relative humidity and temperature to improve the model’s
performance, which is implemented with data from different cities. The predictive model
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obtains the best results in the multivariate proposal with an RMSE between 0.175 and
142.112 and a MAPE between 0.6 and 8.9, considering diverse populations. Tsan et al. [59],
present an approach based on the LSTM neural network to predict confirmed cases of
COVID-19. The proposed model can predict confirmed cases in ranges of 1, 3, 7, and 14 days.
In the proposal, values of five air pollutants and seven meteorological factors are combined
with the number of confirmed cases of COVID-19 to build a dataset. The predictive model
obtains a performance (using all the variables of the dataset) according to the RMSE metric
of 66.697, 80.617, 71.526, and 75.965 for the predictions of 1, 3, 7, and 14 days, respectively.

Nowadays, diverse approaches have been proposed that associate meteorological
variables, air pollution, and confirmed cases and deaths of COVID-19. Researchers seek
to determine a relationship between these variables that allows finding patterns in the
data to build reliable prediction models. An important aspect during the confinement
implemented through various social distancing rules due to the COVID-19 pandemic in
the world is indoor air pollution. Our proposal deals with data-driven analysis based on
the pollution levels of PM2.5 and PM10 inside houses where at least one inhabitant was
infected with some variant of COVID-19. The predictive model is based on an unsupervised
machine learning and deep learning approach. The predictive model obtained low error
metrics in the testing and validation stages using pollution data and indoor meteorological
parameters. In the test stage, the predictive model achieves an RMSE value of 0.0892
and a MAPE of 0.2061, using only 20% of the instances in the dataset. In the validation
stage, it reaches an RMSE of 0.4152 and a MAPE of 1.7302 in one of the three datasets
used in this stage. The prediction model obtained higher error metrics when data collected
inside houses near the AQIoT-3 and AQIoT-5 monitoring stations were used (see Table 7).
Therefore, we must consider that the concentration of PM2.5 and PM10 variability inside the
monitored houses increases the complexity of the problem. This variability is caused by the
different activities carried out inside the households. For example, the concentration levels
in the kitchen increase when food is cooked and by the combustion of propane/butane gas.
However, in these houses, the variation in temperature and relative humidity is minimal
when carrying out these activities in the kitchen area. In the study, these activities vary in
duration and timetable in which they are carried out, and each house is an environment
with specific characteristics (for example, number of windows, people who live in the
house, air extraction system, etc.) that can affect the behavior of the pollutants in a certain
period. An additional explanation is that the number of confirmed cases time series has a
medium linear correlation with the daily mean concentration of PM2.5 and PM10 time-series;
in terms of the LSTM neural network training stage, this does not add lots of information
in the search space.

On the other hand, the proposed approach was also implemented considering outdoor
pollution data of PM2.5, PM10, and meteorological factors, associating these variables with
confirmed cases and deaths from COVID-19 in the same period. The LSTM predictive
model obtains very high performance and accuracy in the test stage with an RMSE of
0.0897 and a MAPE of 0.4229. In the validation stage, the model reaches RMSE values of
0.2386, 0.2523, and 0.2560, and in the MAPE metric of 0.4196, 0.4310, and 0.5070 for the
three datasets used in this stage, respectively. With the error metrics presented, it is possible
to trust the predictive model based on the LSTM neural network due to its performance
and accuracy in the testing and validation stages.

5. Conclusions

In this paper, we verify the influence of particulate matter concentrations (PM2.5 and
PM10) and meteorological factors (relative humidity, temperature, atmospheric pressure,
wind direction, and speed) on the spread of COVID-19. The association between these
variables made it possible to predict future positive cases of COVID-19 from data collected
in Victoria, Mexico. In our proposal, the LSTM neural network predictive model was trained
with particulate matter pollution data and meteorological factors from outside and inside
houses. The outdoor dataset corresponds to the data collected through four monitoring
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stations at the residential level. The indoor dataset was generated from data collected inside
20 households distributed near the monitoring stations. A k-means clustering algorithm
was implemented to discover patterns from the cluster formation. The above allows
selecting the ideal dataset to train the LSTM neural network model. The predictive model
implements a multivariate linear regression obtaining very low error metrics (with both
datasets). Then, it can be considered a viable and reliable option due to its performance and
accuracy in predicting the number of confirmed cases of COVID-19, based on particulate
matter concentration data and meteorological factors.
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43. Ismael, A.M.; Şengür, A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 2021,

164, 114054. [CrossRef]
44. Dash, S.; Chakravarty, S.; Mohanty, S.N.; Pattanaik, C.R.; Jain, S. A Deep Learning Method to Forecast COVID-19 Outbreak. New

Gener. Comput. 2021, 39, 515–539. [CrossRef]
45. Majhi, R.; Thangeda, R.; Sugasi, R.P.; Kumar, N. Analysis and prediction of COVID-19 trajectory: A machine learning approach.

J. Public Aff. 2021, 21, e2537. [CrossRef] [PubMed]
46. Basiri, M.E.; Nemati, S.; Abdar, M.; Asadi, S.; Acharrya, U.R. A novel fusion-based deep learning model for sentiment analysis of

COVID-19 tweets. Knowl.-Based Syst. 2021, 228, 107242. [CrossRef]
47. Kaur, H.; Ahsaan, S.U.; Alankar, B.; Chang, V. A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19

Tweets. Inf. Syst. Front. 2021, 23, 1417–1429. [CrossRef] [PubMed]
48. Ibrahim, D.M.; Elshennawy, N.M.; Sarhan, A.M. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19,

pneumonia, and lung cancer chest diseases. Comput. Biol. Med. 2021, 132, 104348. [CrossRef] [PubMed]
49. Libelium Comunicaciones Distribuidas, S.L. Smart Environment PRO—Waspmote Gases PRO v30 Board. 2019. Available online:

https://development.libelium.com/gases_pro_sensor_guide/sensors#particle-matter-pm1-pm2.5-pm10-dust-sensor (accessed
on 17 March 2022).

50. PLANTOWER. PMS7003 Particulate Matter Sensor. 2022. Available online: http://www.plantower.com/en/content/?110.html
(accessed on 21 May 2022).

51. BOSCH BME280. Humidity Sensor Measuring Relative Humidity, Barometric Pressure and Ambient Temperature. 2022.
Available online: https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/#technical
(accessed on 21 May 2022).

52. NOM (Norma Oficial Mexicana). NORMA Oficial Mexicana NOM-025-SSA1-2014—Salud Ambiental. Secretaría de Salud. 2014.
Available online: http://www.dof.gob.mx/nota_detalle.php{?}codigo=5357042&fecha=20/08/2014 (accessed on 10 January 2022).

53. Bloise, F.; Tancioni, M. Predicting the spread of COVID-19 in Italy using machine learning: Do socio-economic factors matter?
Struct. Chang. Econ. Dyn. 2021, 56, 310–329. [CrossRef]

54. Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative
study. Chaos Solitons Fractals 2020, 140, 110121. [CrossRef]

55. Aragão, D.P.; Oliveira, E.V.; Bezerra, A.A.; dos Santos, D.H.; da Silva Junior, A.G.; Pereira, I.G.; Piscitelli, P.; Miani, A.; Distante, C.;
Cuno, J.S.; et al. Multivariate data driven prediction of COVID-19 dynamics: Towards new results with temperature, humidity
and air quality data. Environ. Res. 2022, 204, 112348. [CrossRef]

56. Malki, Z.; Atlam, E.S.; Hassanien, A.E.; Dagnew, G.; Elhosseini, M.A.; Gad, I. Association between weather data and COVID-19
pandemic predicting mortality rate: Machine learning approaches. Chaos Solitons Fractals 2020, 138, 110137. [CrossRef]

57. Keskin, G.A.; Dogruparmak, S.C.; Ergun, K. Estimation of COVID-19 patient numbers using artificial neural networks based
on air pollutant concentration levels. In Environmental Science and Pollution Research International; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 1–11. [CrossRef]

58. Wathore, R.; Rawlekar, S.; Anjum, S.; Gupta, A.; Bherwani, H.; Labhasetwar, N.; Kumar, R. Improving performance of deep
learning predictive models for COVID-19 by incorporating environmental parameters. Gondwana Res. 2022. [CrossRef]

59. Tsan, Y.T.; Kristiani, E.; Liu, P.Y.; Chu, W.M.; Yang, C.T. In the Seeking of Association between Air Pollutant and COVID-19
Confirmed Cases Using Deep Learning. Int. J. Environ. Res. Public Health 2022, 19, 6373. [CrossRef]

http://dx.doi.org/10.1007/s10661-021-09210-y
http://dx.doi.org/10.1186/s12889-021-10949-9
http://www.ncbi.nlm.nih.gov/pubmed/33980180
http://dx.doi.org/10.1016/j.bj.2021.11.006
http://www.ncbi.nlm.nih.gov/pubmed/34801766
http://dx.doi.org/10.1007/s11739-021-02834-5
http://www.ncbi.nlm.nih.gov/pubmed/34637085
http://dx.doi.org/10.1007/s10140-020-01886-y
http://dx.doi.org/10.3390/app11178227
http://dx.doi.org/10.1109/ACCESS.2021.3058537
http://dx.doi.org/10.1016/j.eswa.2020.114054
http://dx.doi.org/10.1007/s00354-021-00129-z
http://dx.doi.org/10.1002/pa.2537
http://www.ncbi.nlm.nih.gov/pubmed/33349741
http://dx.doi.org/10.1016/j.knosys.2021.107242
http://dx.doi.org/10.1007/s10796-021-10135-7
http://www.ncbi.nlm.nih.gov/pubmed/33897274
http://dx.doi.org/10.1016/j.compbiomed.2021.104348
http://www.ncbi.nlm.nih.gov/pubmed/33774272
https://development.libelium.com/gases_pro_sensor_guide/sensors#particle-matter-pm1-pm2.5-pm10-dust-sensor
http://www.plantower.com/en/content/?110.html
 https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/#technical
 http://www.dof.gob.mx/nota_detalle.php{?}codigo=5357042&fecha=20/08/2014
http://dx.doi.org/10.1016/j.strueco.2021.01.001
http://dx.doi.org/10.1016/j.chaos.2020.110121
http://dx.doi.org/10.1016/j.envres.2021.112348
http://dx.doi.org/10.1016/j.chaos.2020.110137
http://dx.doi.org/10.1007/s11356-022-20231-z
http://dx.doi.org/10.1016/j.gr.2022.03.014
http://dx.doi.org/10.3390/ijerph19116373

	Introduction
	Materials and Methods
	Area of Study
	Data Collection
	Statistical Analysis

	Results
	Statistic Analysis
	Dataset Analysis
	Clustering Analysis
	Prediction Model

	Discussion
	Conclusions
	References

