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Abstract: The Huaihe River basin (HRB) is an important economically developed and grain produc-
tion region in China, which is severely affected by rainfall anomalies, especially extreme rainfall
events (EREs). It is crucial to the features of interdecadal change in EREs and the contribution of
EREs to summer-mean total rainfall amount (TRA) over the HRB. Using the observational 24-h
ac-cumulated rainfall and the reanalysis products from the European Center for Medium-Range
Weather Forecast (ECMWF), as well as the methods of composite analysis and Mann–Kendal and
running t tests, we revealed that the EREs experienced a significant interdecadal increase from the
period 1990–1999 to the period 2000–2009. The EREs, particularly long persistent extreme rainfall
events (LPEREs), occurred more frequently over the HRB during the latter period and dominated the
interdecadal increase in the summer mean TRA. An anomalous high-pressure ridge and associated
anomalous anticyclone appeared around Lake Baikal during the latter period, which led to anoma-
lous northeasterlies along the eastern flank of the anomalous anticyclone, inducing the southward
intrusion of cold air flow from higher latitudes and associated anomalous ascent and more active
convection over the HRB. As such, more EREs and LPEREs occurred during the latter period. The
higher pseudo-equivalent temperatures also support more active convective ascent and relevant
more EREs. The results may shed light on further understanding the effect of large-scale atmospheric
circulation on the interdecadal variability of EREs over the HRB, helping mitigate the disastrous
impacts of EREs on local ecosystems, agriculture, soil erosion, and societies.

Keywords: extreme rainfall events; interdecadal variability; Huaihe River; atmospheric circulation

1. Introduction

The Huaihe River basin (HRB) is an important economically developed region in
China and has a population of more than 178 million, accounting for 13% of the total
population in China [1]. The HRB is also an important grain production area, with a
cultivated land area of approximately 190 million mu, accounting for approximately 12%
of the cultivated land area in China. The commodity grain production of the HRB accounts
for 25% of that of China [2]. Clearly, the HRB is a key region in the food security system in
China [1]. This region is located in the transition zone from subtropical to warm temperate
areas [2–5] and possesses rapidly changing climate conditions, such as drought-flood
abrupt alternation [6]. Hazardous climate events (e.g., extreme rainfall, floods, associated
soil erosion, and landslides) often occur over the HRB, which severely affects human
activities, ecosystems, agriculture, transportation, and societies [4–9], and therefore may
result in catastrophic consequences [10] and severe economic losses [1]. For example, floods
affected the area of 401,600 km2 in the HRB in 1991, resulting in direct economic losses of
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approximately 34.0 billion RMB [1]. In 2003 (2007), the area of 259,100 (158,700) km2 in
the HRB was hit by floods, which caused economic losses of 28.6 (15.5) billion RMB [1].
In 2013, economic losses in the HRB and the Huang River basin caused by floods was up
to 60 billion RMB [11]. Additionally, the HRB is an area that is experiencing severe soil
erosion [12]. As reported by the Ministry of Water Resources of the People’s Republic of
China, in 2020 the area of soil losses in the HRB reached 20,500 km2. A better understanding
of the variability of rainfall anomalies, particularly extreme rainfall events (EREs), may
improve the capabilities to mitigate the disastrous impacts of climate events on agricultural
production [13], soil erosion [14,15], and the sustainable economic development [16,17]. The
interdecadal variability is a main contributor to the variation in summer rainfall in eastern
China [18]. Therefore, it is crucial to study whether the interdecadal variability of EREs can
dominate the interdecadal variability of summer rainfall over the HRB. Furthermore, the
atmospheric circulation responsible for the interdecadal variability of EREs over the HRB
deserves further exploration.

Previous studies have explored the reasons for the variability in summer rainfall
over the HRB on interdecadal and interannual time scales. On interdecadal time scales,
some previous studies have indicated that the summer rainfall over eastern China had
interdecadal shifts around the 1970s [19–21], the early 1990s [22–25], the mid-1990s [26],
and the late 1990s [16,18,27]. Accompanying the interdecadal shift around the late 1990s,
summer rainfall increased over the Yellow River and HRB regions and decreased to the
south of the Yangtze River [18,28,29]. Different studies have emphasized that different
atmospheric circulation anomalies are responsible for this interdecadal shift. For example,
Zhu et al. [18] attributed the interdecadal increase in summer rainfall over the Yellow River
and HRB to the strengthened ascending motion and slightly increased air humidity in
situ. Huang et al. [30] also reported that summer rainfall over eastern China experienced
a notable interdecadal change around the late 1990s and suggested that the weakened
and poleward-shifted East Asian westerly jet played an important role in causing this
interdecadal change by inducing changes in Silk Road, East Asia/Pacific, and Eurasia
patterns. Zhang and Guo [31] suggested that the high-pressure anomalies around Lake
Baikal, the weaker East Asian westerly jet, and anomalous circulations over the Southern
Hemisphere modulated this shift and caused more (less) rainfall over the HRB (Yangtze
River) during the period 2000–2007. During the period 2000–2012, the WPSH became
weaker and moved eastward, which suppressed the southwesterly moisture transport,
and accordingly led to more rainfall over the Yellow River and HRB regions and South
China [28]. During the Hiatus period (1998–2013), the summer rainfall belt shifted from
the Yangtze River to the Yellow River and HRB region, which can be attributable to the
northward displacement of the East Asian westerly jet [32].

On interannual time scales, Hu et al. [33] suggested that an anomalous atmospheric
circulation pattern, with anomalous high-pressure ridge over the Sea of Okhotsk and
anomalous low-pressure trough over Lake Baikal, can induce the southward intrusion of
cold air. Meanwhile, the west Pacific subtropical high (WPSH) is stronger and extends
northward. The ridge-trough pattern and the stronger and northward-extended WPSH
synergistically lead to more rainfall over the HRB, to the north of the Yangtze River [33].
Ping et al. [34] indicated that an anomalous ridge to the east of Lake Baikal and a stronger
and westward-extended WPSH contribute to more rainfall over the HRB. The above
studies on the interannual variability of the summer HRB rainfall showed, to some extent,
discrepant results, which may be due to the different time periods focused by these studies.

The aforementioned studies primarily focused on the variability of summer mean
rainfall over eastern China. Relatively few studies have investigated the variability of
extreme rainfall events, especially for the interdecadal variability of extreme rainfall events
over the HRB. The interdecadal abrupt of summer heavy rainfall (exceeding 50 mm day−1)
over eastern China occurred around the early 1990s, which is related to the stronger East
Asian summer monsoon, the stronger and northward-displaced WPSH, the eastward-
extended South Asian High, and the anomalous anticyclone around Mongolia [25]. This
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anomalous circulation pattern is different from the composite results for persistent extreme
rainfall events over central and eastern China [35]. The latter revealed that both a double-
blocking high type (two blocking highs near the Ural Mountains and the Sea of Okhotsk)
and a single-blocking high type (a blocking high to the south of Lake Baikal) facilitate
persistent extreme precipitation over the Yangtze River and the HRB [35].

The interdecadal variability of EREs over the HRB needs further study. In particular,
the characteristics of the interdecadal variability of EREs may differ from that of sum-
mer mean rainfall over the HRB. Also, the background of relevant circulation anomalies
causing the interdecadal variability of EREs may differ from those causing the interan-
nual/interdecadal variability of summer mean rainfall over the HRB. The aims of the
work as follows: (1) to identify when the interdecadal shift of summer EREs over the
HRB occurred; (2) to indicate that the interdecadal change in EREs appear over a broad
area or only individual stations in the HRB region; (3) to detect whether the interdecadal
change in EREs can lead to that in summer mean rainfall over the HRB; and (4) to reveal
the corresponding atmospheric circulation anomalies for the interdecadal change in EREs
over the HRB and how these circulation anomalies affect the interdecadal change. This
work is expected to provide further understanding of the effect of large-scale atmospheric
circulation on the interdecadal variability of EREs over the HRB, which may mitigate the
disastrous impacts of climate events on local ecosystems, agriculture, and societies.

2. Data and Methods
2.1. Data

In this study, we used the 24-h accumulated observational rainfall at 2419 gauge
stations in China (Figure 1), which were obtained from the National Meteorological Infor-
mation Centre of the China Meteorological Administration. In the HRB region (32◦–35◦ N,
110◦–121◦ E; see the red box in Figure 1) there are 189 stations where observational rainfall
is available from June 1 to August 30 during the period 1979–2014. The daily 0.25◦ × 0.25◦

grid rainfall data generated using the method of optimal interpolation were also used in this
study. The monthly atmospheric circulation data with a horizontal resolution of 0.5◦ × 0.5◦

were acquired from the European Centre for Medium-Range Weather Forecasts (ECMWF)
Interim reanalysis [36,37]. The data include geopotential heights, winds, vertical speeds,
relative humidity, and air temperatures, which were used to explain the link between
extreme rainfall events and atmospheric circulation anomalies. The above datasets were
extracted for the period from 1979 to 2014.
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Figure 1. Spatial distribution of rain gauge stations in China, in which the red box denotes the HRB
where there are 189 stations.

2.2. Methods

Extreme rainfall events (EREs) can be measured using the percentiles of precipita-
tion [38,39]. Daily rainfall from 1 June to 31 August for each year are ranked in ascending
order (x1, x2, x3, . . . , xn). The probability p that a random value is less than or equal to the
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rank of that value xmy is estimated using Equation (1) [40]. Following Bonsal et al. [40], the
extreme rainfall thresholds are calculated as follows.

p =
m − 0.31
n + 0.38

, (1)

xym =
∑

y
t=1 xmt

y
(2)

xi ≥ xym (3)

where p is the 95th percentile; 0.31 and 0.38 are the empirical coefficients [38–42]; n is
the number of samples (n = 92 days from June 1 to August 31); y is the number of years
(30 years from 1981 to 2010); m is the record number within the sample size n; xmt is the
value of the rainfall that is specified by percentile rank p [38–40]; and xym is the 30-year
mean value of xm. Folland and Anderson [43] suggested this formula can be applied to
any ranked series of continuously distributed measurements, and it is useful for an initial
assessment of changing percentiles for a wide range of underlying data distributions and
makes no assumptions about underlying distributions. Bonsal et al. [40] used this formula
to determine the threshold of extreme temperatures in Canada. Zhai and Pan [39] used this
formula to calculate the threshold of extreme rainfall over northern China. Li et al. [38]
used this formula to obtain the threshold of extreme rainfall events over eastern China. The
above thresholds obtained using this formula are reasonable, indicating that the formula
should be suitable for many regions, including the HRB. For each station, the 95th percentile
(p = 95%) of the daily rainfall distribution is estimated from June 1 to August 31 for 30 years
(1981–2010). When the daily rainfall (xi) for each station exceeds this threshold (xym), it is
called an ERE.

The station-averaged total rainfall amount (TRA) is the summer mean rainfall averaged
for 189 stations in the HRB. The rainfall amount (RA) contributed by the EREs over the
HRB is hereafter abbreviated as RA-ERE. A long persistent rainfall event (LPRE) is defined
as the rainfall over 1 mm day−1 persisting for 3 days or longer [16,44]. The RA contributed
by the LPRE s over the HRB is abbreviated as RA-LPRE. When an extreme rainfall event
occurs during a LPRE, it is called a long persistent extreme rainfall event (LPERE). Similarly,
the RA contributed by the LPERE s over the HRB is abbreviated as RA-LPERE.

This study used composite analyses [45] to examine atmospheric circulation anomalies
responsible for the interdecadal variability of extreme rainfall events. The Mann–Kendall
and running t tests are applied to detect the abrupt change point of the interdecadal
shift [16,46]. For the Mann–Kendall test, two statistics sequence curves (UF and UB) were
drawn on the same figure. If there is an intersection point with the UF and UB curves falling
in between the positive and negative critical lines, this intersection point is the beginning
time of the interdecadal change. One can refer to the literature by Li and Sun [47] for details
of the Mann–Kendall test. Statistical significance was assessed using the Student t test. All
the significances are at the 90% confidence level, unless otherwise stated.

3. Results
3.1. Interdecadal Variability of EREs over the HRB

Figure 2 presents the time series of summer station-averaged RA-ERE over the HRB
during the period 1979–2014, which clearly shows an interdecadal shift around the late
1990s. Furthermore, Figure 3 also show that the year of the abruptly change is 1999,
that is, the interdecadal shift of the summer RA-ERE significantly occurred in 1999. The
comparison between the 10-year mean RA-ERE before 1999 and that after 1999 (see the red
dashed lines in Figure 2) further reveals that the JJA RA-ERE remarkably increased after
1999, with the RA-ERE during the period 2000–2009 (300 mm) significantly higher than
that during the period 1990–1999 (231 mm).
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crease can be clearly detected in the composite difference in the summer TRA during the 
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anomalies appear over the HRB, with a maximum anomaly above 250 mm centered 
around 33° N, 115° E. Significantly negative anomalies appear over the Yangtze River ba-

Figure 2. Time series of the summer (JJA) station-averaged rainfall amount (unit: mm) contributed
by extreme rainfall events (RA-ERE, the black line with hollow circle) averaged from 189 stations
over the HRB during the period 1979–2014. The two red dashed lines denote the 10-year averaged
RA-ERE during the periods 1990–1999 and 2000–2009, respectively.
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Figure 3. Mann−Kendall (a) and running t (b) tests for the time series of the summer RA−ERE over
the HRB during the period 1979−2014. The two black dashed lines indicate the 90% confidence
level of the two tests. In (a), the black line denotes the sequential statistical curve UF, and the red
line denotes the re-verse statistical curve UB. The black line in (b) denotes the sequential statistical
curve t.

Actually, the summer station-averaged TRA also experienced a significant interdecadal
increase from the period 1990–1999 to the period 2000–2009. This interdecadal increase
can be clearly detected in the composite difference in the summer TRA during the period
1990–1999 and that during the period 2000–2009 (Figure 4). Significantly positive anomalies
appear over the HRB, with a maximum anomaly above 250 mm centered around 33◦ N,
115◦ E. Significantly negative anomalies appear over the Yangtze River basin (Figure 4).
This result indicates the northward shift of summer rainfall from the Yangtze River basin to
the HRB during the latter period, which is also supported by previous studies, which re-
ported that the obvious change in summer rainfall over central and eastern China occurred
in the late 1990s with an interdecadal increase in rainfall over the HRB [18,28,32,48].
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Since both the summer RA-ERE and TRA over the HRB experienced an interdecadal
increase, one may wonder whether the interdecadal increase of RA-ERE can contribute
most to that of TRA. Furthermore, we also compare the interdecadal changes of RA-LPRE
and RA-LPERE and their contributions to the summer TRA. As shown in Table 1, from the
earlier period (1990–1999) to the latter period (2000–2009), the summer TRA significantly
increased by 98 mm. The summer RA-ERE significantly increased by 69 mm, accounting
for 70.4% of the increase of the TRA. Also, the summer RA-LPRE (RA-LPERE) significantly
increased, accounting for 71.4% (52.0%) of the increase of the TRA. The above results reveal
that the EREs and LPREs play an important role in dominating the interdecadal increase of
TRA over the HRB, in which the LPEREs contribute to more than half of the interdecadal
increase of the TRA.

Table 1. The summer TRA, RA-ERE, RA-LPRE, and RA-LPERE over the HRB for the periods
1990–1999, 2000–2009, and the associated differences between the two periods. The superscript “*”
indicates that the differences are statistically significant at the 90% confidence level.

Period (Years) TRA
(mm)

RA-ERE
(mm)

RA-LPRE
(mm)

RA-LPERE
(mm)

1990–1999 411 231 162 100
2000–2009 507 300 232 151
difference 98 * 69 * 70 * 51 *

We further compared the number of various rainfall events between the two periods
(Table 2). During the period 1990–1999 (2000–2009), the EREs appeared approximately
761 (955) times. From the earlier period to the latter one, the number of EREs significantly
increased by 194. Similarly, the LPREs (LPEREs) occurred more frequently during the latter
period, with the significant increases in the number of the LPREs (LPEREs) by 103 (70).
Accompanying the interdecadal increase in the number of rainfall events, the number of
total days when the rainfall events occurred also significantly increased (not shown).
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Table 2. As in Table 1, but for the numbers of EREs, LPREs, and LPEREs, as well as the associated
differences between the two periods. The superscript “*” indicates that the differences are statistically
significant at the 90% confidence level.

Period (Years) ERE LPRE LPERE

1990–1999 761 402 224
2000–2009 955 504 294
difference 195 * 103 * 70 *

The aforementioned results signify that from the period 1990–1999 to the period 2000–
2009, the EREs, LPREs, and LPEREs over the HRB occurred more frequently and hence
occupied more days in summer, resulting in, to a large extent, the interdecadal increase in
the summer mean TRA over the HRB. Figure 5a presents the numbers of stations where
LPREs occurred for different times during the two periods. In this figure, we can find
that the number of stations where LPREs occurred for only 1–2 times clearly decreased
from the earlier period to the latter period. The number of stations where LPREs occurred
for three and more times increased during the latter period. The same is true for the
LPEREs (Figure 5b). The above results further reveal that more frequently LPREs and
LPEREs occupied more stations and larger areas over the HRB during the period 2000–
2009 than during the period 1990–1999. In contrast, occasional (less than three times)
rainfall events occupied fewer stations and smaller areas during the period 2000–2009.
In other words, the interdecadal change of these rainfall events can be considered as a
large-range phenomenon.
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3.2. Atmospheric Circulation Anomalies for the Interdecadal Change

Extreme rainfall events, such as heavy rainfall, are modulated by various scale systems,
e.g., meso- and mircro-scale systems [49] and large-scale circulations [50]. Given that the
interdecadal change of LPEREs is a large-range phenomenon over the HRB, the contribution
of large-scale atmospheric circulation anomalies to this interdecadal change should be
explored. Figure 6a shows the composite difference in summer 500-hPa geopotential
heights between the periods 1990–1999 and 2000–2009. Significantly positive anomalies
appear around Lake Baikal, with a center of exceeding 15 gpm (Figure 6a), which reflects
an interdecadal increase in geopotential heights from the period 1990–1999 to the period
2000–2009. Relative to the earlier period, stronger high-pressure ridge governed Lake Baikal
during the latter period (Figure 6b), inducing the southward intrusion of mid-tropospheric
cold air into the HRB (Figure 7a).



Atmosphere 2022, 13, 1189 8 of 13Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 6. (a) Composite difference (unit: gpm) in summer 500-hPa geopotential heights between the 
periods 1990–1999 and 2000–2009, in which black dots denote the anomalies significant at the 90% 
confidence level. (b) Summer geopotential heights (unit: gpm) averaged for the periods 1990–1999 
(blue contours) and 2000–2009 (red contours). 

 
Figure 7. As in Figure 6a, but for anomalous winds (unit: m·s−1) at the 500- (a) and 850-hPa (b) levels. 
Shadings denote anomalous winds significant at the 90% confidence level. 

Actually, significant anomalies over Lake Baikal also appeared at the upper- (200-
hPa) and lower-tropospheric (850-hPa) levels (figure omitted), manifesting a quasi-ba-
rotropic structure with a thick high pressure around Lake Baikal. Corresponding to the 
anomalous high pressure, an anomalous anticyclone appeared around Lake Baikal and 
the Mongolian Plateau in the lower troposphere (Figure 7b). Along the eastern flank of 
the anomalous anticyclone, anomalous northeasterlies prevailed. The anomalous north-
easterlies can guide the southward intrusion of the lower-tropospheric cold air from 
higher latitudes to the HRB and therefore facilitate more LPREs and LPEREs and associ-
ated ARA over the HRB during the period 2000–2009. 

Figure 6a shows negative anomalies over the western North Pacific and the South 
China Sea. This reflects a weaker WPSH during the period 2000–2009 than that during the 
period 1990–1999, which can also be clearly detected in Figure 6b. Relative to the WPSH 
during the period 1990–1999 (blue 5880-gpm contour), the WPSH (red 5880-gpm contour) 
was relatively weaker during the period 2000–2009 (Figure 6b). 

Corresponding to the weaker WPSH, an anomalous cyclone appeared over the west-
ern North Pacific and South China Sea, with anomalous northeasterlies prevailing over 

Figure 6. (a) Composite difference (unit: gpm) in summer 500-hPa geopotential heights between the
periods 1990–1999 and 2000–2009, in which black dots denote the anomalies significant at the 90%
confidence level. (b) Summer geopotential heights (unit: gpm) averaged for the periods 1990–1999
(blue contours) and 2000–2009 (red contours).

Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 6. (a) Composite difference (unit: gpm) in summer 500-hPa geopotential heights between the 
periods 1990–1999 and 2000–2009, in which black dots denote the anomalies significant at the 90% 
confidence level. (b) Summer geopotential heights (unit: gpm) averaged for the periods 1990–1999 
(blue contours) and 2000–2009 (red contours). 

 
Figure 7. As in Figure 6a, but for anomalous winds (unit: m·s−1) at the 500- (a) and 850-hPa (b) levels. 
Shadings denote anomalous winds significant at the 90% confidence level. 

Actually, significant anomalies over Lake Baikal also appeared at the upper- (200-
hPa) and lower-tropospheric (850-hPa) levels (figure omitted), manifesting a quasi-ba-
rotropic structure with a thick high pressure around Lake Baikal. Corresponding to the 
anomalous high pressure, an anomalous anticyclone appeared around Lake Baikal and 
the Mongolian Plateau in the lower troposphere (Figure 7b). Along the eastern flank of 
the anomalous anticyclone, anomalous northeasterlies prevailed. The anomalous north-
easterlies can guide the southward intrusion of the lower-tropospheric cold air from 
higher latitudes to the HRB and therefore facilitate more LPREs and LPEREs and associ-
ated ARA over the HRB during the period 2000–2009. 

Figure 6a shows negative anomalies over the western North Pacific and the South 
China Sea. This reflects a weaker WPSH during the period 2000–2009 than that during the 
period 1990–1999, which can also be clearly detected in Figure 6b. Relative to the WPSH 
during the period 1990–1999 (blue 5880-gpm contour), the WPSH (red 5880-gpm contour) 
was relatively weaker during the period 2000–2009 (Figure 6b). 

Corresponding to the weaker WPSH, an anomalous cyclone appeared over the west-
ern North Pacific and South China Sea, with anomalous northeasterlies prevailing over 

Figure 7. As in Figure 6a, but for anomalous winds (unit: m·s−1) at the 500- (a) and 850-hPa (b) levels.
Shadings denote anomalous winds significant at the 90% confidence level.

Actually, significant anomalies over Lake Baikal also appeared at the upper- (200-hPa)
and lower-tropospheric (850-hPa) levels (figure omitted), manifesting a quasi-barotropic
structure with a thick high pressure around Lake Baikal. Corresponding to the anomalous
high pressure, an anomalous anticyclone appeared around Lake Baikal and the Mongolian
Plateau in the lower troposphere (Figure 7b). Along the eastern flank of the anomalous
anticyclone, anomalous northeasterlies prevailed. The anomalous northeasterlies can guide
the southward intrusion of the lower-tropospheric cold air from higher latitudes to the
HRB and therefore facilitate more LPREs and LPEREs and associated ARA over the HRB
during the period 2000–2009.

Figure 6a shows negative anomalies over the western North Pacific and the South
China Sea. This reflects a weaker WPSH during the period 2000–2009 than that during the
period 1990–1999, which can also be clearly detected in Figure 6b. Relative to the WPSH
during the period 1990–1999 (blue 5880-gpm contour), the WPSH (red 5880-gpm contour)
was relatively weaker during the period 2000–2009 (Figure 6b).
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Corresponding to the weaker WPSH, an anomalous cyclone appeared over the western
North Pacific and South China Sea, with anomalous northeasterlies prevailing over south-
ern China (Figure 7a,b). Moreover, significant anomalous northeasterlies were restricted
to the south of 30◦ N. As such, the anomalous northeasterlies can cause less water vapor
transport into the Yangtze River basin and less rainfall there (Figure 4) but may not directly
affect rainfall over the higher-latitude HRB.

The pseudo-equivalent temperature, which contains gravitational potential energy,
internal energy, and latent heat energy, can reflect the energy in the air mass well. The
composite difference of vertical pseudo-equivalent temperatures (contours in Figure 8)
along 115◦E between the periods 1990–1999 and 2000–2009 shows that the maximum-
positive anomaly of 0.6 K appears between 700 and 600 hPa around 32◦–35◦ N (i.e., the
HRB). The pseudo-equivalent temperature anomaly above this positive center is relatively
smaller. This implies that the 700–600 hPa air mass has internal energy and latent heat
energy higher than the air mass with higher gravitational potential energy above it. The
air mass with higher internal energy and latent heat energy tends to ascend, causing
more active convective upward motions over the HRB, which can also be identified in
vertical circulation anomalies over this region (vectors in Figure 8). In contrast, the negative
anomalies of pseudo-equivalent temperature, which appeared to the south of the positive
anomaly over the HRB, are unfavorable for convective activities over the Yangtze River
Basin. Additionally, the positive and negative anomalies pseudo-equivalent temperature
caused a larger gradient over the HRB (contours in Figure 8), implying that the anomalous
front and associated more rainfall events appeared over this region.
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Furthermore, more active convective upward motions over the HRB may be a result
from high pressure and associated anticyclonic anomalies around Lake Baikal. Specifically,
this anomalous anticyclone around Lake Baikal may result in anomalous northeasterlies,
inducing the southward intrusion of lower-tropospheric cold air from higher latitudes to
the HRB. The composite difference of vertical circulation along 115◦ E between the periods
1990–1999 and 2000–2009 (vectors in Figure 8) further shows that the lower-tropospheric air
flow moved southward from higher latitudes, ascended and formed an anomalous upward
flow around 32◦–35◦ N (i.e., the HRB), and turned and moved southward in the upper tro-
posphere, and eventually descended around 25◦–30◦ N. Clearly, the significant anomalous
upward flow around 32◦–35◦ N can promote convective activities and therefore cause more
LPREs and LPEREs and associated TRA over the HRB during the period 2000–2009, while
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the significant anomalous downward flow around 25◦–30◦ N may suppress convective ac-
tivities and therefore lead to less rainfall over the Yangtze River Basin (Figure 4). The above
result suggests that the anomalous northerly flow induced by the anomalous anticyclone
around Lake Baikal can directly stimulate anomalous ascending motion over the HRB and
consequently lead to more LPREs and LPEREs there.

4. Discussion

Previous studies have explored the reasons for the variability in summer mean rainfall
over the HRB. Different from previous research, the present study focuses on the inter-
decadal variability in summer EREs over the HRB, rather than summer mean rainfall
amount. The results show that RA-ERE experienced a clear interdecadal variability, with
the point of change in 1999. The EREs, LPREs, and LPEREs play an important role in
dominating the interdecadal increase in summer mean rainfall amount over the HRB. The
above results can be considered as a supplement to previous studies on the interdecadal
variability of the summer-mean rainfall amount.

Previous studies have indicated that the WPSH plays a crucial role in modulating
rainfall anomalies over central-eastern China [18,28,32,48]. On interannual time scales, the
stronger and westward- or northward-extended WPSH tends to enhance summer rainfall
over the HRB [33,34]. However, our results reveal that for the interdecadal change in the
EREs over the HRB around 1999, the WPSH did not seem to exert an important impact.
Instead, the atmospheric circulation anomalies at higher latitudes, around Lake Baikal, may
play a more important and more direct role. The high pressure and associated anticyclonic
anomalies around Lake Baikal seem to result in anomalous northeasterlies, which guides
the southward intrusion of lower-tropospheric cold air from higher latitudes to the HRB.
The anomalous northeasterlies can directly promote anomalous ascending motion over the
HRB and accordingly lead to more LPREs and LPEREs there. This explanation is different
from previous studies on summer mean rainfall [18,30]. Previous studies [18,30] revealed a
similar anomalous anticyclone around Lake Baikal, but did not attribute the anomalous
ascending motion over the HRB to the anomalous anticyclone around Lake Baikal. Our
detailed findings provide further explanation for the interdecadal variability in EREs over
the HRB based on previous research.

5. Conclusions

In this work, we investigated the characteristics of interdecadal changes in EREs,
LPREs, and LPEREs and their contribution to summer TRA over the HRB. Moreover, the
associated atmospheric circulation anomalies responsible for the interdecadal changes
were examined. The results show that the EREs experienced a significant interdecadal
increase from the period 1990–1999 to the period 2000–2009. The EREs, in particular
LPEREs, occurred more frequently during the latter period than during the earlier period.
This resulted in more ERE- and LPERE-related rainfall amounts, accounting for 70.4%
and 52.0% of the interdecadal increase in the summer TRA over the HRB, respectively.
Moreover, the interdecadal change of these rainfall events is a large-range phenomenon
over the HRB, with more frequently rainfall events occupying more stations and larger
areas and occasional rainfall events occupied fewer stations and smaller areas during the
period 2000–2009.

The high pressure and associated anticyclonic anomalies around Lake Baikal play an
important role in causing the interdecadal increase in these extreme rainfall events and
TRA. Relative to the period 1990–1999, the stronger high-pressure ridge and anticyclonic
anomalies during the period 2000–2009 may lead to anomalous northeasterlies along the
eastern flank of this anomalous anticyclone. The anomalous north-easterlies induced the
southward intrusion of lower-tropospheric cold air from higher latitudes to the HRB. The
lower-tropospheric air flow moved southward and ascended around 32◦–35◦ N (i.e., the
HRB), which contributed to more active convection and accordingly excited more EREs and
LPEREs and associated TRA over the HRB during the period 2000–2009. Correspondingly,
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the higher pseudo-equivalent temperatures over the HRB during the latter period may also
facilitate active convective upward motions and relevant rainfall events and TRA over the
HRB. Moreover, the higher pseudo-equivalent temperatures over the HRB also support
active convective ascent and relevant more EREs and TRA.

It should be noted that although this study emphasized the contribution of the atmo-
spheric circulation anomalies at higher latitudes to the interdecadal change in the extreme
rainfall events over the HRB, several issues remain unclear. For example, we can detect
that the downward motion around 25◦–30◦ N seems to originate from the upward motion
over the HRB (Figure 8). However, it should be further explored whether the downward
motion around 25◦–30◦ N can be modulated by atmospheric circulation anomalies at lower
latitudes. In addition to these atmospheric circulation anomalies, sea surface temperature
anomalies in different oceans [51], ENSO [46,52], polar sea ice [53], and snow depth over
the Tibetan Plateau [54,55] may affect interdecadal shifts of rainfall over eastern China. The
potential physical mechanisms by which these factors influence the interdecadal change
in the extreme rainfall events over the HRB through adjusting atmospheric circulation
anomalies at lower latitudes deserve further investigation in the future.
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