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Abstract: Many studies in the last few years have been dedicated to the increasing temperatures and
extreme heat in Europe since the second half of the 20th century because of their adverse effects on
ecosystems resilience, human health, and quality of life. The present research aims to analyze the
spatio-temporal variations of extreme heat events in Southeastern Europe using daily temperature
data from 70 selected meteorological stations and applying methodology developed initially for the
quantitative assessment of hot weather in Bulgaria. We demonstrate the suitability of indicators based
on maximum temperature thresholds to assess the intensity (i.e., magnitude and duration) and the
tendency of extreme heat events in the period 1961–2020 both by individual stations and the Köppen’s
climate zones. The capability of the used intensity-duration hot spell model to evaluate the severity
of extreme heat events has also been studied and compared with the Excess Heat Factor severity
index on a yearly basis. The study provides strong evidence of the suitability of the applied combined
approach in the investigation of the spatio-temporal evolution of the hot weather phenomena over
the considered domain.

Keywords: maximum temperature thresholds; extreme heat event; Excess Heat Factor; Southeastern
Europe; Köppen’s climate zones

1. Introduction

Recent reports by the Intergovernmental Panel on Climate Change (IPCC) and the
World Meteorological Organization (WMO) confirm that the global temperature has con-
tinued to increase in the past decade and has already halved the distance to the upper
limit of 2 °C, compared to the pre-industrial period, above which the risk of irreversible
climate change increases rapidly [1–3]. Numerous studies suggest that rising temperatures
and most extreme heat events in the recent decades would not have occurred without
human-induced climate change (e.g., [4–8]). Although heatwaves represented around 2%
of the weather- and climate-related disasters recorded worldwide from 1970 to 2019, they
have been accountable for 8% of disasters’ caused deaths [9]. In addition to higher rates
of thermal stress and mortality [10–12], high temperatures and prolonged hot weather are
related to reductions in productivity [13,14], substantial agricultural losses [15,16], wildfires,
damage to transport infrastructure, power failures, and sharp jumps in water and energy
consumption [17–20].

Europe has experienced several intense heatwaves since the beginning of the 21st cen-
tury [8,21–24], which have been associated with about 90% of deaths and 4% of economic
losses from disasters after 1970 [9]. The severity of the heatwaves is expected to increase in
the second half of the century due to the increasing magnitude and variability in summer
temperatures [1,25]. The rise in extreme heat events under the intermediate and high GHG
emissions scenarios could affect the countries of Mediterranean and Eastern Europe signifi-
cantly, even by the middle of the century, where the heat-related mortality could increase
by a factor of 1.8 and 2.6, respectively, compared to the 1971–2000 period [4]. Generally, the
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region around the Mediterranean basin, including Southeastern Europe, appears to be one
of the most vulnerable to climate change, with an increasing intensity of extreme weather
and heat events [1,21,26,27] and a further increase in the previously observed summer
heatwaves’ frequencies and durations [28–30]. In southern Europe, prolonged hot weather
periods are a typical summertime phenomenon due to the warmer climate and larger-scale
atmospheric dynamics that favor the thermodynamic processes and land-atmosphere feed-
back [26,31]. According to the updated Köppen–Geiger classification [32], the European
part of the Mediterranean region mostly belongs to the mid-latitude temperate climate zone,
comprising not only Mediterranean climate types with a dry hot/warm summer (Csa/Csb)
and large areas with no dry hot/warm summer (Cfa/Cfb), but also areas with humid or
dry continental climates with hot/warm summer (Dfa/Dfb or Dsa/Dsb, respectively) in
the north [33].

Despite the rise in extreme heat events worldwide, there is still no universal definition
of them, but the common agreement is that they are prolonged periods unusually hotter
than normal. All definitions consider at least one air-temperature characteristic (daily
minimum, maximum or average) and require a certain number of consecutive days where a
particular threshold is exceeded, and most of these thresholds revolve around the upper tail
of temperature distributions [34]. Three heat event characteristics—magnitude, duration,
and frequency—are generally accepted, but there is no consensus about the thresholds
or the event’s spatial and time extent. Definitions based on fixed-temperature thresholds
are of essential importance in assessing many socio-economic and environmental impacts.
Percentile-based thresholds, corresponding to the local climatology, facilitate a comparison
of different climates and regions, but percentile-based analyses are deprived of the physical
intuition of actual temperatures [31]. The development of monitoring and early-warning
systems has further expanded the set of heat event definitions [22,35–38].

The anthropogenic influence on the climate, as well as the natural fluctuations of the
Earth’s climate system, are distinguished by substantial regional variations in the different
time scales [1]. Therefore, it would be inappropriate to restrict the definitional diversity,
as it reflects the various physical mechanisms proposed as the proximate and underlying
drivers of heat events [31]. Even a small change in the definition could have a considerable
impact on the results of climate analyses or risk assessments [39,40]. The heat event indices
suitable for both public and research applications should be easily understood, useful
as impact indicators, seamlessly interpretable by climate records, and predictable with
reasonable accuracy [37].

The WMO Expert Team on Climate Change Detection and Indices (ETCCDI) has de-
fined 27 internationally agreed indices of climate extremes, including heat-related extremes,
to facilitate the regional climate change analyses (http://etccdi.pacificclimate.org/list_27
_indices.shtml) (accessed on 16 July 2022). Later, the WMO Expert Team on Sector-specific
Climate Indices (ET-SCI) enlarged the list of indices designed for heat event analysis based
on a new definition, accounting for excessive heat accumulation and short-term thermal
acclimatization (https://climpact-sci.org/indices/) (accessed on 16 July 2022). The indices
developed on health-based definitions receive increasing attention, especially for early-
warning purposes in large cities [41,42]. Numerous gridded datasets of climate extremes
indices at global or regional scales, with different spatial resolutions, are already freely
accessible (e.g., [43–48]). The ETCCDI/ET-SCI indices are defined and computed on annual
or monthly time scales, which can lead to ambiguous results or the impossibility of being
used in some climate applications requiring different time steps. Moreover, the recently
developed indices of extreme heat events are not yet included in the gridded datasets. The
thermal comfort indices usually refer to an “average” healthy person, thus excluding large
groups of people with different or impaired thermoregulation, who are most vulnerable to
extreme heat [49].

The deathly heatwaves during the last two decades changed the focus of research on
heat extremes from pure climatology to impact assessment and event attribution. After
the exceptionally hot summer of 2007 in Southeastern Europe, heatwaves have been an
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object of many regional studies that used different approaches and indicators. Founda
and Giannakopoulos [50] placed summer 2007 in the climatology of the previous century
and examined similarities with the Mediterranean summers of the future. Pecelj et al. [51]
assessed the bioclimatic conditions in Serbia during the summer heatwave events defined
by the daily thresholds of the Universal Thermal Climate Index (UTCI) and the maximum
air temperature. Urban et al. [52] concluded that the cumulative Excess Heat Factor
explains the magnitude of excess mortality during heatwaves in the Czech Republic better
than other characteristics such as heatwave duration or daily mean temperature. Tolika [30]
used the Excess Heat Factor (EHF) index to detect, identify, and describe heatwaves in
Greece. Piticar et al. [53] found a substantial change in EHF-based indices and a statistically
significant increase in the number, frequency, and duration of heatwaves in Romania. Using
a city-specific heatwave hazard index, Morabito et al. [21] revealed a significant increase
in heatwave hazards in the southeastern European capitals. Katavoutas and Founda [54]
proposed a new indicator of urban heat stress intensity, with a focus on a vulnerable area of
the eastern Mediterranean, defined as the difference between urban and non-urban thermal
stress levels based on the UTCI and Humidex indices.

The present study further develops previous research [55,56] in the context of the
suitability of developed criteria and indicators for the quantitative assessment of hot
weather in Bulgaria for an overall climate analysis of heat events in Southeastern Europe.
The ability of the proposed hot spell indicator to detect extreme heat events has also been
studied and compared with the Excess Heat Factor (EHF) index.

2. Data Sources and Data Pre-Processing

We selected a domain over Southeastern Europe (SEE) with latitudinal and longitu-
dinal boundaries of 35° N–50° N and 15° E–30° E, respectively (Figure 1, red-line frame).
This area almost entirely falls into the Mediterranean region, defined by the Mediterranean
Experts on Climate and Environmental Change (MedECC) [4], which includes parts of
central and eastern European countries with a continental climate.

Daily maximum and minimum air temperature data from 70 selected meteorologi-
cal stations, which covered the study area relatively evenly, were used to investigate the
spatio-temporal variations of extreme heat events (EHEs) in the period 1961–2020. Data
from 12 Bulgarian meteorological stations, included in our previous research [56], were
provided by the National Institute of Meteorology and Hydrology (NIMH)—Figure 1,
represented by grey triangles.Data from stations outside Bulgaria were downloaded from
three freely accessible sources: the European Climate Assessment and Dataset (ECA&D)
project [57], the U.S. National Climatic Data Center (NCDC) Global Historical Climatology
Network daily dataset (GHCNd) [58], and the U.S. National Centers for Environmen-
tal Information (NCEI) Global Surface Summary of the Day (GSOD) dataset [59]. These
sources are used in many applications requiring daily data (e.g., [60–62]). The providers
of the first two datasets apply strict procedures to ensure high-quality data that consist of
the detection of outliers, data consistency, and other checks on the main meteorological
elements [63,64]. The quality control procedures in GSOD are more limited, but daily
summaries are supplemented by useful attributive information about the processed in-
put data (https://www.ncei.noaa.gov/data/global-summary-of-the-day/doc/readme.txt)
(accessed on 16 July 2022). ECA&D implements a two-step testing procedure for evaluating
time series homogeneity [63]. GHCNd and GSOD do not support this type of information
about time series homogeneity.

ECA&D is the primary source of observational data for the European region, but the
number of stations in Southeastern Europe with freely accessible data and complete time
series by 2020 is limited. Therefore, the GHCNd and GSOD datasets were used to complete
a sufficiently dense set of stations for presenting the EHEs climatology.

The structure of the GHCNd dataset includes a source attribute, which indicates that
hourly and daily data from different sources such as the Global Climate Observing System
(GCOS), ECA&D and Global Summary of the Day (NCDC DSI–9618) are merged in the

https://www.ncei.noaa.gov/data/global-summary-of-the-day/doc/readme.txt
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time series available for the SEE domain. The latter source’s daily maximum and minimum
temperatures are included in GHCNd, only when provided as a nominal 24 h climatological
summary as indicated in the SYNOP messages [64].

Figure 1. Location of meteorological stations used in the study on the background of the map of
Köppen–Geiger classification (1951–2000) [32], data source: http://koeppen-geiger.vu-wien.ac.at/
present.htm (accessed on 16 July 2022); the selected stations are marked as follow: grey triangles—
12 stations from the NIMH network; blue and red dots—16 stations from GHCNd and one from
GSOD datasets, respectively; asterisks—41 stations from ECA&D database.

GSOD data have been available generally since 1929, but the time series are suffi-
ciently filled from 1973 to the present. In addition, when readings of the maximum or
minimum thermometer are missing, the daily maximum/minimum temperature in GSOD
is determined by the dry-bulb temperature from synoptic reports. If we separate the data
by forming new samples of measured maximum/minimum temperatures (GSOD-m) and
substituted maximum/minimum temperatures (GSOD-s), the comparison by stations indi-
cates that the GSOD-s maximum temperatures are cooler while the minimum temperatures
are warmer than GSOD-m (Appendix A, Figure A1). Due to these biases, we excluded all
minimum/maximum temperatures obtained from incomplete 24 h observations. Moreover,
we restricted the use of GSOD data mainly to auxiliary time series due to the large data
gaps before 1973.

The selection of stations was organized as follows. Firstly, we explored the data
sources looking for stations with available maximum and minimum temperature data
since 1961 that fall into the defined above SEE domain. Next, we selected stations with no
more than 20% of their data missing in the whole observational period and altitudes below
800 m, thus focusing the study’s scope on the non-mountainous areas. Then, we reduced
the number of stations with overlapping observational periods to one within a radius of
50 km to preserve a sufficiently high density of stations. The exclusion criteria accepted
were the availability of data by 2020 and the homogeneity of the time series.

http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm
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We selected 17 stations from the ECA&D blended dataset with homogeneous time
series and 24 more stations for additional testing, assuming that inhomogeneities could be
triggered by local or regional climate variations [63].

Generally, the merging of time series was avoided in our study except for Istanbul and
Tirana stations when long enough, partially overlapping observational periods, available in
the used data sources, were adjusted by simple linear scaling. The only case of extrapolation
of time series over a large historical period (from 1961 to 1973), in order to preserve the
relatively evenly spread of stations in the domain, concerned the Skopje International
Airport station accessible by the GSOD dataset. Data reconstruction was made under the
missing values imputation process before calculating the EHEs indices, using the R-package
‘missMDA’ [65]. For most stations in the southern part of the domain, the “no more than
20% missing data” selection criterion was not met, and several time series with 21–37%
of their values missing, especially for minimum temperature, were used because of the
above-mentioned reason.

The missing values were filled in by an iterative principal component analysis (PCA)
imputation technique, which takes into account both the internal structure of data and the
links between time series (Appendix B). The PCA-based spatio-temporal reconstruction
of time series in data-sparse periods using periods with good data coverage and regional-
ization of time series with similar climatological characteristics is successfully applied by
Tveito et al. [66]. In our study, the Köppen–Geiger climate classification and correlation
between station data were used as regionalization criteria. The enhanced global dataset
for the land component of the fifth generation of the European Centre for Medium-Range
Weather Forecasts (ECMWF) atmospheric reanalysis ERA5-Land [67] was used as a ref-
erence dataset to improve the quality of the infilling of time series with medium to large
data gaps.

ERA5-Land shows higher skill than other reanalysis products across geographically-
diverse regions, which suggests that not only improvement in data assimilation but higher
spatial resolution is critical to accurately reproducing extreme events observed from surface
weather stations [68]. Although reanalyses contain some uncertainties, they are effectively
used in gaps-filling procedures, even on sub-daily timescales [69]. The 2 m air temperature
raw data from ERA5-Land were pre-processed in order to obtain daily maximum and
minimum temperatures, as described in [70]. Since the ERA5-Land data are stored in
netCDF files, all netCDF operations were performed by means of the software ‘climate data
operators (CDO)’ [71].

Four homogeneity tests included in the R-package ‘trend’, Bartels test (a rank version
of von Neumann’s ratio test), a Standard Normal Homogeinity Test (SNHT), a Buishand
U-test, and Pettitt’s test [72], were applied to the time series of annual maximum and
minimum temperatures from the reconstructed time series and abovementioned stations
with problematic or missing homogeneity testing. The accepted rejection criterion was
three or four failed tests at a 1% significance level.

Finally, in addition to the 12 stations from the NIMH network, 41 stations from the
ECA&D database (Figure 1, asterisks), 16 stations from GHCNd, and one from GSOD
(Figure 1, blue and red dots) were chosen to obtain a good enough coverage of the study
area. The average distance between neighbour stations is 118 km. Most stations are located
below 500 m a.s.l. Moreover, 17% of stations are located at airports, and 24%—are in
urban areas (Appendix A, Table A1). The stations included in the study fall into three
main groups of the Köppen–Geiger climate classification [32]—59% are characterized by
temperate climates without a dry season (Cfa and Cfb), 21% have Mediterranean climates
(Csa), and 20% of the stations have continental climates (Dfb).

3. Methodology

The shortcomings of threshold-based indices are well-known, but they are often more
suitable when assessing the immediate impacts of temperature extremes on ecosystem
resilience, human health, and quality of life. Depending on the research scope and aims,
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temperature thresholds can reflect either biophysical constraints or local conditions de-
rived from local climatology. The latter ones are generally inappropriate for larger-scale
analyses. Using a definition of EHEs that only identifies extremely hot days may under-
estimate the risks associated with extreme heat, and inversely a less stringent threshold
may overestimate the risks [73]. Although the risk assessment of extreme heat was not
among the aims of the study presented in [55], the proposed approach may be helpful in
sector-specific climate assessments. The main idea was to improve the methodology of
hot spell analysis in order to reveal EHEs’ climatic features in the non-mountainous part
of Bulgaria, given its climatic diversity. Later, we propose three hot weather indicators
and demonstrate their applicability based on data from 115 NIMH stations and the E-OBS
dataset [56]. The present study aims to test the suitability of the developed indicators for
an overall analysis of hot weather and EHEs in Southeastern Europe, bearing in mind that
the share of Köppen’s subtypes (Cfa and Cfb) prevailing in Bulgaria is almost 50% in the
whole domain. The ability of the proposed hot spell indicator to detect extreme heat events
has also been studied and compared with already proven climate indices, such as EHF.

3.1. Climatologically Justified Threshold Indicators for Bulgaria

The threshold indicators proposed in [56] were developed on daily maximum air tem-
perature data (tx) from 36 meteorological stations representative of the non-mountainous
regions in Bulgaria using statistical modeling (Appendix C). In accordance with the ob-
tained estimates, three climate indicators of hot weather were defined, as shown below.

1. The annual number of hot days (nhd32)—i.e., the annual count of days when tx > 32 °C.
2. The maximum number of consecutive hot days (chd32)—i.e., the longest continuous

calendar period when tx > 32 °C.
3. The hot spell duration at different thresholds (hsd32/34/36/38/40)—i.e., the annual

count of days when tx ≥ 32, 34, 36, 38, and 40 °C for at least 6, 5, 4, 3, and 2 consecutive
days, respectively.

The first indicator represents a general measure of unfavorable daytime thermal
conditions; its long-term increase is related to the increasing frequency of prolonged hot
spells. The second indicator delineates the upper bound of hot weather persistence. Finally,
the third indicator allows a combined (intensity-duration) evaluation of EHEs in five
categories. Although the hsd indicator is defined on a yearly basis, the technology of
calculations allows the separation of events and their analysis. Thus, each category can
be described by the EHE’s intensity (low/moderate/elevated/high/extreme) and corresponding
metric (hsd32/34/36/38/40).

The significance and magnitude of trends in the threshold indicators were assessed
through the non-parametric Mann–Kendall’s test and Sen’s Slope Estimator (see refs. [74,75]
for details) using the R-package ‘trend’.

3.2. Excess Heat Factor (EHF)

As an operative heatwave index, the EHF was first used in Australia. The EHF
definition was proposed in 2009 as an improvement of the previous absolute or relative
heatwave indices on a national level. The EHF measures the heatwave intensity at each
location with an additional component to account for adaptation (Appendix D). Later, the
EHF was utilized to examine the frequency, intensity, and duration of heatwaves on a global
scale [34,36]. Moreover, the EHF provides public health stakeholders with a simple but
efficient method to estimate excess heat exposure levels compared to other extreme-heat
metrics or bio-climatic indices (e.g., [52,76]). The EHF’s severity (EHFsev) metric permits
the comparison of heatwave events and their impacts across the world and can be readily
implemented within heatwave early warning systems [37,76]. For a given day i, the EHF
severity (EHFsevi) is defined as follow:

EHFsevi =

{
EHFi/EHFp85, if EHFi > 0 and
0, if EHFi ≤ 0,

(1)
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where EHFp85 denotes the 85th percentile of all positive EHF values calculated for a 30-year
historical period.

Nairn et al. [37] defined three levels of EHEs severity as:

− L1 (low intensity): when 0 < EHFsev < 1;
− L2 (severe): when 1 ≤ EHFsev < 3;
− L3 (extreme): when EHFsev ≥ 3.

The annual summaries of EHFsev characteristics, such as mean and maximum mag-
nitude, were calculated for the SEE domain based on daily maximum and minimum
temperatures from complete time series. The results are presented via the zones of the
Köppen–Geiger climate classification.

3.3. Software Products Used in the Research

All calculations completed on observational data were made in the free software
environment R, version 3.6.2 [77], and RStudio 1.2 [78]. The maps shown in figures were
prepared using QGIS 3.4.9-Madeira [79].

4. Results and Discussion

Many studies in the last few years have been dedicated to the increasing temperatures
in Europe since the second half of the 20th century. As stated in [80], the increase rate
is almost twice as rapid from 1985 to 2020 as in the whole period after 1951 (0.027 and
0.051 °C/year, respectively). The warming intensities depend on the season, with the largest
summer warming of around 0.060 °C/year recorded in Central and Southern Europe. These
findings are consistent with our results about trends in annual mean temperatures in the
considered SEE domain obtained from the complete data series for the periods 1961–2020
and 1985–2020 (0.032 and 0.055 °C/year, respectively). As far as the focus of this research is
on applying threshold indicators for EHEs analysis in a climatically diverse region, such as
SEE, we additionally explored the maximum temperature features through zones of the
Köppen–Geiger climate classification. The box plots in Figure 2 present the distribution
of the calculated upper percentiles of the daily maximum temperatures at stations in the
four climate zones. One can see that only the higher percentiles, usually used in EHEs
definitions, fall into the range of the above-stated tx-thresholds.

Figure 2. Medians (p50); 80th, 85th, 90th, 95th, and 99th percentiles (p80, p85, p90, p95, and p99) and
absolute maxima (max) of daily maximum temperature tx time series for the period 1961–2020 by
climate zones; the range of values used in threshold indicators is shown in light orange.

Table 1 shows the magnitudes of the trends in annual mean (Ta), annual mean maxi-
mum (Tmx), and annual maximum (Tx) temperatures in the period 1961–2020 by climate
zones. The largest average magnitudes are obtained for Cfb, followed by the Dfb, Cfa, and
Csa climate zones.

Most stations with maximum trend magnitudes are located in the central part of the
SEE domain, including one station (S10) in the hottest region of Bulgaria along the Struma
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River valley. Unlike Ta and Tmx, which have statistically significant trends for all stations,
the percentage of stations with a significant Tx trend varies between 40% (Csa) and 92%
(Cfb). We demonstrated in [56] the suitability of estimated tx-thresholds (32, 34, 36, 38, and
40 °C) and corresponding duration thresholds (6, 5, 4, 3, and 2 consecutive days) to classify
EHEs in the period 1961–2019. Consequently, our expectation is to obtain an accurate
enough picture of EHEs that changes both by individual stations and climate zones in the
SEE domain by applying the threshold indicators.

Figure 3 illustrates the long-term variation of the averaged-by-climate-zone indicators
nhd32 and chd32 (calculated separately for each station), which reveals a clear upward,
although not monotonic, tendency.

Table 1. Average/maximum values of Sen’s slope estimates (unit: °C/10 years) of statistically
significant linear trends (p < 0.05, Mann–Kendall method) of the Ta, Tmx, and Tx temperatures in the
period 1961–2020 by zones of the Köppen–Geiger climate classification; stations’ IDs are shown in
brackets (see Appendix A, Table A1), in which maximum values are reached; percentage of stations
with statistically significant trends is also shown.

Cfa Cfb Csa Dfb

Ta
+0.29/+0.43 (S1)

100%
+0.39/+0.55 (S18)

100%
+0.24/+0.37 (S45)

100%
+0.34/+0.44 (S60)

100%

Tmx
+0.36/+0.50 (S10)

100%
+0.43/+0.63 (S21)

100%
+0.27/+0.43 (S56)

100%
+0.38/+0.50 (S66)

100%

Tx
+0.41/+0.66 (S10)

70%
+0.49/+0.74 (S28)

92%
+0.38/+0.63 (S48)

40%
+0.45/+0.70 (S60)

86%

Figure 3. Long-term variations of nhd32 (left) and chd32 (right) indicators averaged by Köppen–
Geiger climate classification zones.

Both indicators show statistically significant positive trends in most stations and a
stronger worsening of daytime thermal conditions in the areas with hot summers (Table 2).

The average magnitudes of the nhd32 trends ranged between +1.0 and +3.8 days/10 years
(in Dfb and Cfa, respectively), and the maximum magnitude of +8.0 days/10 years was reached
in the Csa climate zone. The nhd32 maxima by stations vary between 4 and 97 days, with lower
values occurring in coastal and northern stations. Almost all maxima were recorded between
2003 and 2017 (59% in 2012, 21% in 2015, 7% in 2003, 6% in 2007, and 3% in 2017).

The average magnitudes of the chd32 trends varied between +0.3 and +1.3 days/10 years
(in Dfb and Csa, respectively), and the maximum magnitude of +3.2 days/10 years was
obtained in the Csa climate zone. The chd32 maxima by stations varied between 2 and
62 days, with lower values occurring again in coastal and northern stations. The distribution
of maxima by years was more heterogeneous compared to the nhd32 (23% in 2012, 21% in
2015, 14% in 1994, 10% in 2007, 9% in 2010, 3% in 2002 and 2003, and few single cases), but
EHEs in these years were confirmed by many regional studies [30,33,51,52].

The comparison of multiyear means of nhd32 and chd32 for periods 1961–1990 and
1991–2020 is shown in Figure 4.
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Table 2. Average/maximum values of Sen’s slope estimates (unit: days/10 years) of statistically
significant linear trends (p < 0.05, Mann-Kendall method) of threshold indicators in the period
1961–2020 by zones of the Köppen–Geiger climate classification; the values < 0.1 days/10 years are
not presented; stations’ IDs (see Appendix A, Table A1) are shown in brackets, in which maximum
values are reached; percentage of stations with statistically significant trends is also shown.

Cfa Cfb Csa Dfb

nhd32 +3.8/+7.8 (S10)
100%

+2.4/+5.6 (S24)
100%

+3.7/+8.0 (S56)
93%

+1.0/+3.9 (S57)
93%

chd32 +0.9/+2.8 (S10)
100%

+0.6/+1.3 (S24 and
41) 100%

+1.3/+3.2 (S55)
80%

+0.3/+0.9 (S66)
93%

hsd32 +2.1/+8.7 (S10)
82%

+0.5/+4.4 (S41)
83%

+4.0/+8.1 (S56)
73%

hsd34 +0.9/+5.6 (S10)
59%

+0.1/+1.6 (S41)
67%

+2.0/+6.2 (S55)
47%

hsd36 +0.3/+1.7 (S10)
35%

+0.9/+2.7 (S55)
20%

hsd38
hsd40

Figure 4. Multiyear means of nhd32 (left panel) and chd32 (right panel) indicators for periods
1961–1990 and 1991–2020 and percentage changes relative to 1961–1990 by zones of the Köppen–
Geiger climate classification.

The number of hot days increased by 12–13 during the second period in the warmer
climate zones, reaching about 27–30 days. This result can be viewed in the context of the
rapid increase in summer temperatures in Europe, which can lead to month-long spells or
even entire seasons with abnormally high temperatures [80]. The largest change for chd32
in absolute terms (+4.3 days) was registered in the Csa climate zone. Regarding percentage
changes, the number of hot days in the cooler climate zones shows the highest increase of
about 1.5–2 times during the second period.

Figure 5 presents the evolution of the hot spell duration (hsd) indicator by categories,
averaged by climate zones. As a whole, the larger hsd32 is, the higher intensity hot spells
can be expected to be, but short, very intense EHEs are also frequent. The highest values
for hsd32 in all climate zones were reached in 2012, followed by 2015; for hsd34—in 2012,
followed by 2015 (in Cfb and Dfb) and 2007 (in Cfa and Csa); for hsd36—2012 (in Cfa and
Dfb) and 2007 (in Cfb and Csa); for hsd38/40—2007, followed by 2012, 2017, and 2000 (only
for hsd40). Except for the Mediterranean climate zone Csa, all hot spells at higher categories
hsd38/40, and almost 90% of the others, emerge after 1985. The average trend magnitudes
calculated by the hsd categories ranged between +0.1 and +4.0 days/10 years (in Cfb and
Csa, respectively), while the maximum magnitude of +8.7 days/10 years was obtained for
hsd32 in the Cfa climate zone (Table 2).

As seen in Table 2, the maximum-trend magnitudes for all indicators were recorded
in one or two stations in each climate zone, associated with climate transitions and EHEs’
“hot spots” in SEE [33,81]. These areas are distinguished by a significant increase in the
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duration and frequency of hot spells in recent decades. Figure 6 illustrates the detection of
“hot spots” by comparing hsd32 values for the periods 1961–1990 and 1991–2020 by stations.

Figure 5. Long-term variations of hsd32/34/36/38/40 (unit: days) averaged by Köppen–Geiger climate zones.
In the upper right corner of each panel is shown the 3-letter code of the respective climate zone.

Figure 6. Left panel: Box plots of the hsd32 statistics for the periods 1961–1990 and 1991–2020 by
stations grouped by the Köppen–Geiger climate classification zones. Right panel: Location and
ID (Appendix A, Table 1) of meteorological stations used in the study on the background of the
Köppen–Geiger classification for SEE (see Figure 1).
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During the second period, a significant shift in hsd32 statistics is revealed, mainly along
the coastal zone in Croatia, Albania, Northern and Central Greece, the Aegean Region
in Turkey, and the central part of the Balkan Peninsula. The hottest place in Bulgaria
is that between the Struma River Valley and the Kresna Gorge (presented here by S10,
Sandanski), where the hsd indicator reached maxima for all categories—96 days for hsd32
and 76/46/19/11 days for hsd34/36/38/40. The duration of individual heat events with
tx ≥ 40 °C reached 6–8 consecutive days [56].

Comparison between EHF Severity and Categories of hsd Indicator

The tx-thresholds that underlie the proposed method for detecting and classifying
EHEs by intensity--duration combinations coincide or are very close to some proven
physiological thresholds, the crossing of which for a certain time could have significant
adverse health and economic consequences. Many regional and worldwide studies have
linked the range of daily maximum temperatures of 32–40 °C with an increased risk of
worsening and mortality in cardiovascular, respiratory and other illnesses (e.g., [11,12]);
agricultural losses [15]; and disruptions in energy production and supply [18]. On the other
hand, EHF severity has been shown to be useful as an exposure index that scales well against
the human health impact [37], as well as an EHEs indicator in climate studies [82]. Therefore,
we choose the EHFsev for the suitability assessment of the proposed threshold indicators.

Figure 7 presents the summary estimate of the hot weather in SEE by the mean EHFsev,
calculated for 1961–1990 and 1991–2020 on a yearly basis over all periods of at least 6 days
with tx ≥ 32 °C (thus being synchronized with the lowest intensity hot spell category
hsd32). The obtained results show that, despite increasing in EHEs in recent decades, the
overall warm-season severity remains relatively low in SEE. Percentage changes indicate
that the Cfa and Cfb climate zones are more prone to regional warming.

Figure 7. Left panel: Mean EHFsev across SEE by severity levels according to Nairn et al. [37] for
periods 1961–1990 and 1991–2020 by climate zones. Right panel: Percentage change in the mean
EHFsev for 1991–2020; L0—no extreme heat.

A detailed comparison between the categories of the hsd indicator and the levels of
the yearly maximum EHF severity demonstrated good spatio-temporal conformity, as seen
in Figure 8. For clarity, hot spell categories are denoted by C1 through to C5. Although
the correspondence between the categories and the EHFsev levels is not straightforward,
the percentage distribution of different categories by severity levels shows that the hsd
indicator significantly underestimates the severity of low-intensity hot spells (C1 category)
but tends to overestimate the severity of high-intensity events (C4 category). The me-
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dian and minimum value of the averaged hsd32 metric increase relative to the prevailing
severity level.

Figure 8. Left panel: Spatio-temporal variation of yearly maximum EHEs intensity represented by
categories of hsd indicator and EHFsev levels. Right upper panel: Distribution of hsd32 values by
EHFsev levels. Right lower panel: Percentage of different hot spells categories (C1–C5) associated
with EHFsev levels (L0–L3).

5. Conclusions

In this study, daily maximum and minimum air temperature data from 70 selected
meteorological stations, which cover the SEE domain relatively evenly, were used to in-
vestigate the spatio-temporal variations of extreme heat events in the period 1961–2020.
Three threshold-based indicators, quantifying the unfavorable daytime thermal condi-
tions (nhd32), the hot weather persistence chd32, and the intensity of EHEs in five cate-
gories (hsd32/34/36/38/40), were analyzed and summarized using the zones of the Köppen–
Geiger climate classification. All three indicators show statistically significant linear trends
(p < 0.05, Mann-Kendall method) in the period 1961–2020. The number of hot days in-
creased by 12–13 during the period 1991–2020 in the Cfa and Csa climate zones, reaching
about 27–30 days. Both indicators, nhd32 and chd32, show a stronger worsening of daytime
thermal conditions in the areas with hot summers.

Many worldwide and regional studies have linked the range of the daily maximum
temperature of 32–40 °C with the increased risk of worsening and mortality in cardiovascu-
lar, respiratory and other illnesses; agricultural losses; and disruptions in energy production
and supply. We demonstrated the suitability of the tx-thresholds (32, 34, 36, 38, and 40 °C)
and the corresponding duration thresholds (6, 5, 4, 3, and 2 consecutive days) to classify
EHEs. Except for the Mediterranean climate zone Csa, all hot spells at higher categories
hsd38/40, and almost 90% of the others, emerge after 1985. During the period 1991–2020,
a significant shift in hsd32 statistics is recorded in “hot spots”, mainly along the coastal
zone in Croatia, Albania, Northern and Central Greece, the Aegean Region in Turkey, and
the central part of the Balkan Peninsula. A detailed comparison between the categories of
the hsd indicator and the levels of the yearly maximum EHF severity demonstrated good
spatio-temporal conformity.

As far as we know, such a survey on the various aspects of using threshold indica-
tors for a quantitative assessment of EHEs in the considered region of SEE has not been
conducted until now. This research also informs the direction of our next work on the pos-
sibilities of a combined application of independently defined metrics, such as the threshold
indicators and the EHF index presented here, in climate analyses and the implementation
of the obtained knowledge in early warning systems.
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Appendix A. Data

Table A1. Key information for the 12 selected stations from the NIMH network, 41 selected stations
from the ECA&D database, 16 selected stations from the GHCNd dataset, and one station from the
GSOD dataset; KGC denotes the Köppen–Geiger climate classification.

Station ID Station
Name

Country
Code

(ISO 3166–1)
Latitude (N) Longitude

(E) Altitude (m) Data Source KGC Environment

S1 Belgrade
(Obs.) RS 44.8 20.4667 132 ECA&D Cfa urban

S2 Tulcea RO 45.1831 28.8167 4 ECA&D Cfa suburban
S3 Sulina RO 45.1667 29.7331 3 ECA&D Cfa rural

S4 Roşiorii de
Vede RO 44.1 24.9831 102 ECA&D Cfa rural

S5 Craiova RO 44.23 23.87 192 ECA&D Cfa rural
S6 Constanţa RO 44.22 28.63 13 ECA&D Cfa suburban

S7 Thessaloniki
Airport GR 40.52 22.97 7 GHCNd Cfa airport

S8 Edirne TR 41.67 26.57 51 GHCNd Cfa urban
S9 Sadovo BG 42.15 24.95 155 NIMH Cfa rural

S10 Sandanski BG 41.52 23.27 206 NIMH Cfa suburban

S11 Obraztsov
Chiflik BG 43.8 26.0331 156 NIMH Cfa suburban

S12 Goren
Chiflik BG 43.0094 27.6297 29 NIMH Cfa suburban

S13 Burgas BG 42.4977 27.4827 22 NIMH Cfa suburban
S14 Kardzhali BG 41.65 25.37 331 NIMH Cfa suburban
S15 Vidin BG 43.9942 22.8525 31 NIMH Cfa suburban
S16 Knezha BG 43.5 24.0831 116 NIMH Cfa rural
S17 Sevlievo BG 43.0256 25.1151 197 NIMH Cfa suburban
S18 Ihtiman BG 42.4381 23.8196 637 NIMH Cfb urban
S19 Shumen BG 43.2796 26.944 217 NIMH Cfb suburban
S20 Sliven BG 42.6776 26.3398 259 NIMH Cfb urban
S21 Zagreb- Grič HR 45.8167 15.9781 156 ECA&D Cfb urban
S22 Budapest HU 47.5108 19.0206 153 ECA&D Cfb urban
S23 Arad RO 46.1331 21.35 116 ECA&D Cfb suburban

S24
Drobeta-
Turnu

Severin
RO 44.6331 22.6331 77 ECA&D Cfb suburban

S25 Hurbanovo SK 47.8667 18.1831 115 ECA&D Cfb suburban
S26 Niš RS 43.3331 21.9 201 ECA&D Cfb suburban
S27 Sarajevo BA 43.8678 18.4228 630 ECA&D Cfb urban
S28 Pécs-Pogány HU 46.0056 18.2328 202 ECA&D Cfb airport
S29 Szeged HU 46.2558 20.0903 81 ECA&D Cfb suburban
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Table A1. Cont.

Station ID Station
Name

Country
Code

(ISO 3166–1)
Latitude (N) Longitude

(E) Altitude (m) Data Source KGC Environment

S30 Debrecen
Airport HU 47.4903 21.6106 107 ECA&D Cfb airport

S31 Gospić HR 44.55 15.3667 564 ECA&D Cfb suburban
S32 Osijek HR 45.5331 18.6331 88 ECA&D Cfb suburban
S33 Novi Sad RS 45.3331 19.85 84 ECA&D Cfb suburban

S34
Šmartno pri

Slovenj
Gradcu

SI 46.4894 15.1108 444 ECA&D Cfb rural

S35 Ogulin HR 45.2039 15.2717 326 ECA&D Cfb rural
S36 Fürstenfeld AT 47.0308 16.0806 323 ECA&D Cfb rural

S37 Gross-
Enzersdorf AT 48.1994 16.5589 154 ECA&D Cfb suburban

S38 Kisinev MD 47.02 28.87 173 GHCNd Cfb urban
S39 Přibyslav CZ 49.5828 15.7625 532 GHCNd Cfb rural
S40 Brno-Tuřany CZ 49.1531 16.6889 241 GHCNd Cfb airport

S41
Skopje

International
Airport

MK 41.9616 21.6214 238 GSOD Cfb airport

S42 Heraklion GR 35.3331 25.1831 39 ECA&D Csa airport
S43 Methoni GR 36.8331 21.7 51 ECA&D Csa rural
S44 Brindisi IT 40.6331 17.9331 10 ECA&D Csa urban
S45 Istanbul TR 40.9667 29.0831 33 ECA&D Csa urban
S46 Split Marjan HR 43.5167 16.4331 122 ECA&D Csa urban
S47 Dubrovnik HR 42.56 18.27 52 ECA&D Csa urban
S48 Corfu GR 39.62 19.92 11 GHCNd Csa urban
S49 Hellinikon GR 37.9 23.75 10 GHCNd Csa urban

S50 Cape
Palinuro IT 40.0251 15.2805 185 GHCNd Csa rural

S51 Tekirdag TR 40.98 27.55 3 GHCNd Csa urban
S52 Çanakkale TR 40.14 26.43 7 GHCNd Csa airport
S53 Balikesir TR 39.62 27.93 104 GHCNd Csa airport
S54 Larissa GR 39.65 22.45 73 GHCNd Csa airport
S55 Mugla TR 37.22 28.37 646 GHCNd Csa urban
S56 Tirana AL 41.3333 19.7833 38 GHCNd Csa urban
S57 Buzau RO 45.1331 26.85 97 ECA&D Dfb suburban

S58 Poprad-
Tatry SK 49.0667 20.2331 694 ECA&D Dfb airport

S59 Sibiu RO 45.8 24.15 444 ECA&D Dfb airport

S60 Bielsko-
Białla PL 49.8069 19.0003 396 ECA&D Dfb suburban

S61 Nowy Sa̧cz PL 49.6272 20.6886 292 ECA&D Dfb suburban
S62 Lesko PL 49.4664 22.3417 420 ECA&D Dfb suburban

S63 Miercurea
Ciuc RO 46.3667 25.7331 661 ECA&D Dfb rural

S64 Uzhhorod UA 48.6331 22.2667 124 ECA&D Dfb suburban
S65 Caransebeş RO 45.42 22.25 241 ECA&D Dfb airport

S66 Râmnicu
Vâlcea RO 45.1 24.37 239 ECA&D Dfb urban

S67 Lviv UA 49.8167 23.95 323 ECA&D Dfb urban
S68 Košice SK 48.6667 21.2167 230 ECA&D Dfb airport
S69 Vinnytsia UA 49.23 28.6 298 GHCNd Dfb airport
S70 Chernivtsi UA 48.3667 25.9 246 GHCNd Dfb rural
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Figure A1. Comparison between samples of measured maximum/minimum temperatures (GSOD-m)
and substituted maximum/minimum temperatures (GSOD-s) for the warm half year (May–October)
by stations with different climates, environments, and observational routines; tx—daily maximum
temperature, tn—daily minimum temperature.

Appendix B. Iterative PCA Imputation Technique Using the R-Package ‘MissMDA’

The PCA-based spatio-temporal reconstruction of time series was performed over
the grouped by regions stations based on the Köppen–Geiger climate classification and
correlation between stations’ data. For each station with medium to large data gaps, the data
extracted from the ERA5-Land spatio-temporally coherent time series were also included to
improve the quality of the imputation process. Firstly, the number of principal components
that should be used to replace missing values was determined using the ‘estim_ncpPCA’
function, which applies a generalized cross-validation approach to attain the smallest mean
square error of prediction. Data were then reconstructed from the principal components
by the ’imputePCA’ function, which automates the imputation process, and the missing
values in the original data were ultimately replaced with estimates from the last PCA data
reconstruction (Figure A2). The average NRMSE (Normalized Root Mean Squared Error,
NRMSE = RMSE/SD(O), where SD(O) denotes the standard deviation of the time series
before reconstruction), for the minimum temperatures is around 13% (from 7.5% to 18.6%),
and for the maximum temperatures, it is approximately 10% (from 5.5% to 13%).
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Figure A2. Upper panel: Missing values (tn) imputation in the case of small to medium gaps number
(Edirne). Middle panel: Missing values (tx) imputation in the case of small to medium gaps number
(Edirne). Lower panel: Missing values (tx) extrapolation (Skopje International Airport). tx—daily
maximum temperature, tn—daily minimum temperature.

Appendix C. Defining Hot Spells Duration Indicator (hsd32/34/36/38/40)

Statistical modeling of hot-weather phenomena involved several steps: (1) the con-
struction of empirical distributions of maximum temperatures in July and August from
the selected 36 stations for 1931–1980 (the period is considered to be less affected by global
warming [2,4,83]); the calculation of return levels corresponds to return periods 2, 5, 10, 20,
and 50 years using the Generalized Extreme Value (GEV) distribution, (3) determination
of appropriate thresholds for tx; (4) determination of hot spell duration thresholds for the
period 1961–2019 at the different tx-thresholds; (5) validation of obtained thresholds for the
period 1961–2019. The estimated tx-threshold values are 32, 34, 36, 38, and 40 °C, and the
relevant hot spells duration thresholds are 6, 5, 4, 3, and 2 consecutive days.

In the period 1931–1980, the daily maximum temperatures (tx) of July and August
in the selected stations fall most often into the range 26–31 °C, and the absolute maxima
are typically between 38 °C and 41 °C. During the second period (1981–2019), a significant
shift of tx-distributions toward higher values is observed (Figure A3, left panel). In order
to provide a reliable analysis for the period 1961–2019, the temperature thresholds were
determined using statistical modeling, not from the upper-tail percentiles of the empirical
distributions for 1931–1980 (Figure A3, middle panel). From the estimated 2-, 5-, 10-,
20-, and 50-year return levels of maximum July–August temperatures by the GEV model,
thresholds have been chosen in such a way as to be achievable in 85–90% of stations for
the shorter return periods and in 50–60% of stations—for the longer ones. The right panel
of Figure A3 presents the percentiles of hot spell durations at different tx-thresholds in
the period 1961–2019. Hot weather lasts 1–3 days most frequently, and the 90th percentile
varies between 3 and 6 days.
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Figure A3. Left panel: Medians of calculated percentiles of tx-distributions by stations for 1931–1980
and 1981–2019. Middle panel: Median of calculated upper percentiles of tx-distributions and 2-
, 5-, 10-, 20-, and 50-year return levels (estimated by GEV model) by stations for July–August
(1931–1980). Right panel: Box plot of distributions of hot spells duration at the different tx-thresholds
for 1961–2019.

Appendix D. Description of EHF Index Calculation

The EHF is a measure of heatwave intensity, incorporating two ingredients [76,84].
The first ingredient (Esig) is a measure of how hot a three-day period is with respect to the
95th percentile of the daily mean temperature at each particular location. The percentile
is computed for a reference period of 30 years (1961–1990 in our study) using the daily
mean temperatures for all days in the year. The second ingredient (Eaccl) is a measure of
how hot the three-day period is with respect to the recent past (specifically the previous
30 days). This takes into account the idea that people acclimatize to their local climate, with
respect to its temperature variation across latitudes and throughout the year, but may not
be prepared for a sudden rise in temperature above that of the recent past. We used the
retrospective version of equations for the three-day mean temperature (over days i to i − 2):

EHIsigi = (Ti + Ti−1 + Ti−2)− T95, (A1)

EHIaccli = (Ti + Ti−1 + Ti−2)− (Ti−3 + . . . + Ti−32)/30, and (A2)

Ti = (Tmaxi + Tmini)/2, (A3)

where Ti denotes the daily mean temperature on day i, T95 represents the long-term 95th
percentile of the daily mean temperature, EHIsigi is defined as the exceeding of the previous
three-day mean temperature (starting on day i) above T95, and EHIaccli on day i is calculated
as the difference between the three-day mean temperature and a mean of the prior 30 days.
Consequently, the daily EHF was calculated using the following equation:

EHFi = EHIsigi × max(1, EHIaccli). (A4)
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