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Abstract: Long-term hour-specific air pollution exposure estimates have rarely been of interest in
epidemiological research. However, this can be relevant for studies that aim to estimate the residential
exposure for the hours that subjects mostly spend time there, or for those hours that they may work
in another location. Here, we developed a model by spatially predicting the long-term diurnal curves
of nitrogen dioxide (NO2) in Tehran, Iran, one of the most polluted and populated megacities in the
Middle East. We used the statistical framework of functional data analysis (FDA) including ordinary
kriging for functional data (OKFD) and functional analysis of variance (fANOVA) for modeling. The
long-term NO2 diurnal curves had two distinct maxima and minima. The absolute minimum value
of the city average was 40.6 ppb (around 4:00 p.m.) and the absolute maximum value was 52.0 ppb
(around 10:00 p.m.). The OKFD showed the concentrations, the diurnal maximum/minimum values,
and their corresponding occurring times varied across the city. The fANOVA highlighted that the
effect of population density on the NO2 concentrations is not constant and depends on time within
the diurnal period. The provided estimation of long-term hour-specific maps can inform future
epidemiological studies to use the long-term mean for specific hour(s) of the day. Moreover, the
demonstrated FDA framework can be used as a set of flexible statistical methods.

Keywords: air pollution; spatio-temporal modeling; functional data analysis; geo-statistics; Tehran;
nitrogen dioxide (NO2)

1. Introduction

Air pollution is one of the main health and environmental problems of the new
civilized world at the global level [1,2]. It is revealed that air pollution has a serious
toxicological effect on human health [3,4]. Transportation, power plants, and natural
processes have led to humans and ecosystems faced with serious air quality issues [4,5].
Many acute and chronic impacts on human health and even death may be caused by
exposure to high levels of air pollutants [6,7]. The World Health Organization (WHO)
reported around 4.2 million yearly deaths due to exposure to air pollution worldwide [8].

Nitrogen oxides are a group of highly reactive gases and important air pollutants that
affect acids, the formation of photochemical oxidants, and the concentration of hydroxyl
radicals [9]. Nitrogen dioxide is one of the nitrogen oxides that are primarily released into
the air from combustion [3]. Its main emission sources are power plants, cars, trucks, and
buses [10,11]. The exposure to its high concentration can cause cardiovascular diseases and
irritation in the human respiratory system, particularly asthma and respiratory symptoms
such as difficulty breathing, coughing, and wheezing [12,13].
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In different studies, the concentration of air pollution has been assessed by measuring
or predicting at monitoring stations using various modeling methods [5–12]. The accurate
prediction of air pollution improves the protection strategy of the affected population
and helps manage the air quality control system effectively. Spatial interpolation tools
such as kriging methods have been widely used to estimate the spatial distribution of
pollutants and predict airborne pollutant concentrations using geo-statistical analysis in
previous studies [1,8,10,14]. These methods estimate the air pollutant concentrations at
unmonitored locations by considering the information on the geographic positions of the
recorded data points and the correlation between the measurement points [14]. Various
geo-statistical methods have been applied in the literature such as regression kriging for
ozone and NO2 in Japan [15]; mapping occurring of high concentrations of air pollution
with indicator kriging for PM10 and CO in Tehran [1]; modeling the spatial distribution
of two-year averages of several air pollutants using ordinary kriging, universal kriging,
and co-kriging with Gaussian semi-variogram in Tehran [16]; and the spatio-temporal
modeling of daily fine particulate matter in the megacity of Tehran [17]. However, all of the
aforementioned geo-statistical studies are for modeling scalar observations and not curves
or functions that result from successive measurements of data [18,19]. Functional data
analysis (FDA), which was introduced to model the so-called functional data, generally
made of curves indexed over the time domain, has been used to model and predict this type
of data by smoothing methods since the beginning of the 1990s. This technique has been
applied in different fields of spatial statistics such as air quality studies. Goulard and Voltz
proposed a functional kriging approach for predicting curves at unmeasured locations.
Ignaccolo carried out kriging with external drift to predict the curves of particulate matter
concentration in the Piemonte region (Italy) where they employed a multivariate functional
principal component analysis for air quality zoning [20,21]. Furthermore, Wang et al. used
a functional spatio-temporal model to study the intra-day variation of the diurnal ozone
pollutant in Beijing, China [22].

The Middle Eastern megacity of Tehran is the capital of Iran and has serious air
pollution due to urbanization, high traffic, and emissions from industrial production
activities [17,23,24]. The average monthly, seasonal, and annual concentrations of NO2 in
Tehran have been spatially modeled and reported in previous studies [23,25]. However,
a spatiotemporal model for the long-term NO2 concentrations that capture the intra-day
fluctuation has not been developed yet.

To date, the majority of epidemiological studies on the long-term health effects of
air pollution, has overlooked the intra-day variation of long-term air pollution. More
commonly, studies have used exposure estimates for the annual averages of pollutants
or daily averages over one or several years [2,26–34]. However, people spend time in
different locations, mostly at home and work. Thus, it might be better to limit the long-
term exposure estimates for each geographical location to the corresponding time that
people mostly spent there. Furthermore, the intra-day changes in pollutant concentrations
may vary between different geo-locations in the study area, which means that the spatial
distribution of exposure can change during the day [22]. Hence, models that overlook the
intra-day variation of long-term air pollutants in epidemiological studies could potentially
result in exposure misclassification.

Here, we developed a flexible statistical model that considers the intra-day changes of
long-term nitrogen dioxide in the megacity of Tehran. The developed model could benefit
future epidemiological studies in this highly populated and polluted Middle Eastern
megacity. We benefited from the statistical framework of functional data analysis that
enables flexibility in modeling the intra-day variation. Furthermore, due to the possible
effect of population density on the NO2 concentrations [35], we also studied its effect on
the intra-day variation of long-term NO2 concentrations.
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2. Materials and Methods
2.1. Study Area

Tehran is the capital of Iran with a populated area of about 613 km2 and a residential
population of about 8.2 million and a daytime population of more than 10 million due to
diurnal migration. There are towering mountains in its north and in the central desert
of the country in its south. Tehran’s weather is typically sunny with an annual daily
temperature of 18.5 ◦C that increases to around 40 ◦C in July and decreases to around
−10 ◦C in January [23,24,36,37].

2.2. Data

We obtained hourly NO2 concentrations (in ppb) for one calendar year from March
2014 to March 2015 from 33 air quality monitoring stations administered by the Tehran Air
Quality Control Company (AQCC) and the Iranian Department of Environment (DOE).
At the monitoring stations, chemiluminescent analyzers (model AC 32 M of Environment
SA, France) were used to measure the NO2 concentrations. The long-term hourly means of
NO2 concentrations were calculated by averaging the data over the calendar year for each
hour. The data of 26 monitoring stations were used for model development and the extra
seven stations were used for model validations that are indicated by star signs and square
signs in Figure 1, respectively. Moreover, the geographical coordinates of the monitoring
stations (longitude and latitude) in decimal degrees were obtained from the same two
governmental agencies.

Atmosphere 2022, 13, x FOR PEER REVIEW 3 of 15 
 

 

2. Materials and Methods 
2.1. Study Area 

Tehran is the capital of Iran with a populated area of about 613 km  and a residential 
population of about 8.2 million and a daytime population of more than 10 million due to 
diurnal migration. There are towering mountains in its north and in the central desert of 
the country in its south. Tehran’s weather is typically sunny with an annual daily temper-
ature of 18.5 °C that increases to around 40 °C in July and decreases to around −10 °C in 
January [23,24,36,37]. 

2.2. Data 
We obtained hourly NO  concentrations (in ppb) for one calendar year from March 

2014 to March 2015 from 33 air quality monitoring stations administered by the Tehran 
Air Quality Control Company (AQCC) and the Iranian Department of Environment 
(DOE). At the monitoring stations, chemiluminescent analyzers (model AC 32 M of Envi-
ronment SA, France) were used to measure the NO  concentrations. The long-term 
hourly means of NO  concentrations were calculated by averaging the data over the cal-
endar year for each hour. The data of 26 monitoring stations were used for model devel-
opment and the extra seven stations were used for model validations that are indicated 
by star signs and square signs in Figure 1, respectively. Moreover, the geographical coor-
dinates of the monitoring stations (longitude and latitude) in decimal degrees were ob-
tained from the same two governmental agencies. 

 
Figure 1. The study area (the Middle Eastern megacity of Tehran) in the left panel and the locations 
of 33 ambient NO  monitoring stations (26 training and seven validation stations) in the right panel. 

The population density variable was categorized into three groups: less than 10,000 
persons per square kilometers (low population density), between 10,000 and 20,000 per-
sons per square kilometers (moderate population density), and more than 20,000 persons 
per square kilometers (high population density). In Figure 1, the green monitoring stations 
are located in areas with low population densities (seven monitoring stations), yellows 
are in medium population densities (13 monitoring stations), and reds are located in high 
population densities (13 monitoring stations). Tehran regions with low population densi-
ties are those in -predicted maps inserted in results section with labels of 1, 9, 21, 22; re-
gions with moderate population densities are those with labels of 2 to 6, 12, 16, 18, 19; and 
regions with high population densities are those with labels of 7, 8, 10, 11, 13 to 15, 17, and 
20. 

2.3. Kriging for Functional Data 
Let χ (t) be a curve or a functional random variable that is observed at location s 

defined over the interval of T as its time domain (e.g., the NO  diurnal curve). 

Figure 1. The study area (the Middle Eastern megacity of Tehran) in the left panel and the locations
of 33 ambient NO2 monitoring stations (26 training and seven validation stations) in the right panel.

The population density variable was categorized into three groups: less than 10,000 per-
sons per square kilometers (low population density), between 10,000 and 20,000 persons
per square kilometers (moderate population density), and more than 20,000 persons per
square kilometers (high population density). In Figure 1, the green monitoring stations
are located in areas with low population densities (seven monitoring stations), yellows
are in medium population densities (13 monitoring stations), and reds are located in high
population densities (13 monitoring stations). Tehran regions with low population densities
are those in -predicted maps inserted in results section with labels of 1, 9, 21, 22; regions
with moderate population densities are those with labels of 2 to 6, 12, 16, 18, 19; and regions
with high population densities are those with labels of 7, 8, 10, 11, 13 to 15, 17, and 20.
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2.3. Kriging for Functional Data

Let χs(t) be a curve or a functional random variable that is observed at location s
defined over the interval of T as its time domain (e.g., the NO2 diurnal curve).{

χs(t); t ∈ T, s ∈ D ⊆ Rd} (1)

Assume that we observe a sample of curves χsi(t) defined for t ∈ T, si ∈ D ,
i = 1, . . . , n. In order to predict a curve at an unmonitored site, s0, initially, the curves are
pre-processed by fitting a set of spline basis functions. After that, the spatial dependence
among curves was estimated using the trace-variogram function. Finally, the parameters
for performing prediction by ordinary kriging at unmonitored locations were estimated by
solving a linear system based on the estimated trace-variogram. This approach defines the
best linear unbiased predictor (BLUP) for χs0(t) given by

χ̂s0(t) =
n

∑
i=1

λiχsi
(t) , s.t.

n

∑
i=1

λi = 1 (2)

where the λi coefficients satify E
(
χ̂s0(t)− χs0(t)

)
= 0 and minimize the below equation∫

E
(
χ̂s0(t)− χs0(t)

)2dt =
∫

Var
(
χ̂s0(t)− χs0(t)

)
dt (3)

Hence, the optimization problem of the OKFD method was as follows

min(λ1,...,λn)

∫
Var

([
n

∑
i=1

λiχsi
(t)

]
− χs0(t)

)
dt, s.t.

n

∑
i=1

λi = 1 (4)

2.3.1. Expressing Functional Data Using Basis Functions Set

We assumed that each observed functional data can be expressed in terms of a set of
basis functions, β1(t), β2(t), . . . ,βK(t), by

χsi
(t) =

K

∑
l=1

ailβl(t) = aT
i β(t), i = 1, . . . , n (5)

where ai = (ai1, . . . , aiK) and β(t) = (β1(t), β2(t), . . . ,βK(t)). We used the splines as the
underlying set of basis functions to estimate functional data (i.e., diurnal curves of NO2
concentrations) from the discrete annual means of hourly NO2 concentrations in each
station [21,38].

2.3.2. Estimating the Trace-Variogram

In order to account for auto-correlations in geo-spatial modeling, the trace-variogram
was used. The definition of the trace-variogram function for the modeling of spatial
functional data is

γ(h) =
1
2

E
[∫ (

χsi
(t)− χsj

(t)
)2

dt
]

, h = ‖si − sj‖ for all si, sj ∈ D (6)

An adaptation of the classical moment method (MoM) gives the following estimator
for this quantity:

ˆγ(h) =
1

2|N(h)| ∑
i,j∈N(h)

∫ (
χsi

(t)− χsj
(t)
)2

dt (7)

N(h) =
{(

si, sj
)

: ‖si − sj‖ = h
}

(8)

where |N(h)| is the number of distinct elements in N(h). Once the trace-variogram was es-
timated for a sequence of distance values of h by the moment method, we fitted parametric
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models including spherical, Gaussian, exponential, and Matérn by using the ordinary least
squares (OLS) method [20].

2.3.3. Choosing the Optimum Number of Basis Functions

The number of basis functions to express the functional data was chosen by cross-
validation. Consider the case that the functional data χsi

(t), i = 1, . . . , n, observed at
time points of t1, . . . , tM, and we wish to approximate them through explanation using a
basis functions set. A simple way of establishing an appropriate K, the number of basis
functions, can be by calculating the cross-validation SSE in a classical nonparametric sense.

Let χ̃(j)si

(
tj
)

be the estimated functional data at tj by using some basis functions set when
the datum χsi

(
tj
)

has been temporarily suppressed from the sample. Then for each K, the
cross-validation SSE is calculated by

NPCV(K) =
n

∑
i=1

M

∑
j=1

(
χ̃
(j)
si

(
tj
)
− χsi

(
tj
))2

(9)

The strategy was to minimize the NPCV(K) statistic with respect to the K to find the
optimum number of basis functions [38,39].

2.3.4. Goodness-of-Fit Criteria

To assess the spatial prediction capability of the developed model, we considered
four assessment metrics that were the root mean square error (RMSE), the correlation
coefficient between the measured values and the corresponding predicted values, the
normalized mean bias factor (NMBF), and the weighted normalized mean square error of
the normalized ratios (WNNR) [39].

2.4. Functional Analysis of Variance

We assigned monitoring stations into three groups based on their region’s population
density (high, moderate, and low) and compared the mean diurnal curves of NO2 between
these three areas using a functional analysis of variance (FANOVA) [40].

2.5. Software and Packages

The R statistical environment version 4.1.2 [41] that was created by R core team at
Vienna, Austria at 2021 was used for data analysis. The “geofd” R package was used for
geo-spatial functional modeling and prediction [42]. The “fda” R package was used for
general functional data analysis methods including smoothing by expansion using a set of
basis functions, and the functional analysis of variance [43].

3. Results

The smoothed diurnal curves of NO2 in 26 model-training stations are presented
in Figure 2. They show that the long-term yearly average of NO2 concentrations varied
between 13.28 to 91.46 ppb during a diurnal time period. Moreover, it highlights the
heterogeneity in the values and shapes of the NO2 diurnal curves.

According to Figure 2, the curves changed abruptly at hours of about 5, 10, 16, 22,
thus, we placed four knots at these time points in the smoothing stage. On the other hand,
we chose an order of four splines (a cubic spline basis system), so that the number of
basis functions was 8. Descriptive statistics (mean and standard deviation curves) of the
smoothed NO2 diurnal curves are presented in Figure 3.
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Based on the results presented in Figure 3a, one can see that there were two minima
and two maxima in the NO2 mean diurnal curve, which was calculated across all mon-
itoring stations, during. These maxima occurred in the morning between 9:43 a.m. and
10:22 a.m. (local maximum was 50.09 ppb at 10.02 a.m.) and in the late night between
9:54 p.m. and 10:28 p.m. (absolute maximum was 51.97 ppb at 10:12 p.m.). The local
minimum concentration of NO2 across all monitoring stations occurred in the morning
between 4:47 a.m. and 5:24 a.m. (42.87 ppb at 4:59 a.m.) and the absolute minimum concen-
tration occurred in the evening between 3:35 p.m. and 4:14 p.m. (40.61 ppb at 3:55 p.m.).
The standard deviation curve (Figure 3b) mostly followed the trend of the mean curve
(Figure 3a). However, the absolute minimum value occurred in the early morning (around
5 a.m., which coincided with the local minimum of the mean curve) and its local minimum
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occurred in the afternoon (around 4 p.m., which coincided with the absolute minimum
of the mean curve). Hence, one could expect a more homogenous situation between NO2
diurnal curves in different areas of Tehran in the early mornings.

The results of the trace-variogram fitted models are shown in Table 1. Based on
the RMSE metric, we can observe that the best model for spatial auto-correlations (the
model with the lowest RMSE value) was the spherical model. Hence, the equation of the
trace-variogram is:

γh =

{
5083.0897 + 8314.3153

(
1.5 h

0.0864

)
, 0 < h ≤ 0.0864

8314.3153 , h > 0.0864

}
(10)

Table 1. The results of the fitted trace-variogram models using various auto-correlation structures.

Model Range Nug Sill SSE

Spherical 0.0864 8314.3153 5083.0897 10,041 × 103

Exponential 0.0248 7231.8342 6038.3758 10,081 × 103

Gaussian 0.0444 6973.2334 6452.3365 10,049 × 103

Matérn with fixed kappa = 1 1554.782 8184.138 12943.076 10,131 × 103

Based on Table 1, the value of spatial structure criteria was Sill
(Sill+Nug) =

12,943.076
(12,943.076+8184.138) = 0.612, so there was a notable spatial auto-correlation between the
data (the criteria were more than 0.5).

Table 2 shows the goodness-of-fit metrics in seven validation-monitoring stations. Pre-
dictions were generally good with a slight overestimation in three out of seven monitoring
stations (see NMBF). The correlation coefficient between the predicted and the observed
data in the validation stations were in the range of 0.614 to 0.903 with an average of 0.781.

Table 2. The goodness-of-fit metrics at the validation-monitoring stations.

Station Name NMBF RMSE WNNR Correlation Coefficient

Beheshti 0.134 7.24 0.0276 0.649
Darous −0.030 4.65 0.0004 0.846
Ghaem 0.033 5.51 0.0029 0.839

District 10 0.001 2.49 0.0096 0.903
District 11 0.142 6.52 0.0517 0.614
District 15 0.130 6.17 0.0165 0.739
District 16 −0.066 3.45 0.0080 0.877

Figure 4 presents the prediction of the NO2 diurnal curve at two validation-monitoring
stations with the worse and best prediction based on the correlation coefficient between the
observed and predicted values. It shows that the predicted values were consistent with the
observed data, and the behavior of the predicted curves was similar to the corresponding
smoothed curves.

Figure 5 displays the results of FANOVA for comparing the mean of diurnal NO2
concentration in areas with low, medium, and high population densities. We can see that
the population density effect was more complicated than a constant increase or decrease in
the mean value during the time. Only areas with low population density had a negative
mean difference with respect to the grand mean NO2 diurnal curve. Actually, the low
populated areas were less polluted about 8 ppb in the early morning (between 6 a.m. and
7 a.m.), 2 ppb in the afternoon around 4 p.m., and 6 ppb from 9 p.m. to 4 a.m. The areas
with a moderate population density generally were more polluted (about 1 to 1.5 ppb) with
respect to the Tehran averages and had approximately the same value from 9 a.m. to 9 p.m.,
but was about 3.5 ppb more polluted in the early morning (between 5 a.m. and 6 a.m.).
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The areas with high population density were at most times more polluted with respect to
the Tehran averages but had higher NO2 mean values, especially in the morning between
6 a.m. and 10 a.m. and had lower values in the afternoon around 4 p.m.
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To achieve better interpretability, the predictions of mean NO2 diurnal curves in areas
with low, moderate, and high population densities are depicted in Figure 6. According
to this figure, the shapes of the NO2 diurnal curves were different at most times in areas
with different population densities. The values of the NO2 concentrations in areas with low
population densities were notably lower than areas with moderate and high population
densities with the exception of times around 4 p.m. The NO2 concentrations were slightly
lower in areas with moderate population density with respect to areas with high population
density, but with the exception of times between 1:25 p.m. and 6:24 p.m. The absolute
minimum of the mean NO2 diurnal curve in areas with a low population density was
around 5 a.m., which was a bit later than the time of the local minimums of the mean NO2
diurnal curves in the moderate and high population densities.
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The predicted maps of NO2 concentrations at the starting time point of each hour,
from 1 to 24, are presented in Figure 7. According to the predicted maps, the central and
east parts of Tehran (i.e., districts 7, 8, 10, 11,13,14,15, and 20 had the highest long-term
concentration of NO2 (upper 45 ppb) for almost all days). The north and northwest districts
of Tehran in general have the lowest concentrations, which were almost lower than 34 ppb.
Interestingly, this matrix of the predicted maps revealed the existence of different patterns
of the NO2 changes during the day. For example, the north and northwest parts had their
cleanest conditions approximately the hours from 4 a.m. to 6 a.m., while it seems that the
rest of Tehran had less polluted conditions from midday to 5 p.m.
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4. Discussion and Conclusions

In this study, we presented the results of a functional kriging model for the long-term
NO2 diurnal curves in the Middle Eastern megacity of Tehran. Moreover, we investigated
the effect of population density on the shape and values of the NO2 diurnal curves using a
functional analysis of variance.

The long-term mean NO2 concentrations in Tehran were typically above about 40 ppb
(~75 µg/m3), which would be about 7 times higher than the 2021 World Health Orga-
nization’s recommended guidelines [44,45]. We found two peaks defining the maxima
concentrations in the mean NO2 diurnal curve: the local maximum occurred at 10:02 a.m.
and the absolute maximum occurred at 10:12 p.m. Since the most important source of NO2
emissions is road transport, the maxima concentrations of NO2 may have occurred due to
heavier traffic congestions at these special times of the day. In particular, most truck trans-
port operates late at night in order to distribute goods from storehouses to small stores in
the city. Therefore, the major increase in NO2 concentrations late at night can be attributed
to local regulations that allow for trucks and heavy vehicles to commute only between
10 p.m. and 6 a.m. Moreover, two minima were observed on 4:59 a.m. (local minimum)
and 3:55 p.m. (absolute minimum). This trend in Tehran’s hourly NO2 concentrations were
also reported in other studies, for example, Masoudi reported descriptive statistics for the
NO2 hourly means of four monitoring stations in Tehran from 2009 to 2010 [36]. Taheri also
reported that black carbon and PM2.5 in Tehran had a similar trend [46]. In accordance with
our study, bimodal diurnal NO2 curves with the absolute minimum value in the afternoon
and the absolute maximum in the night were reported by Cichowicz in central Poland, and
by Moreno in Madrid, Spain [47,48].

Furthermore, we showed that the population density was positively associated with
the NO2 concentration. The prediction of NO2 diurnal mean curves in areas with low
population density was notably lower than that in areas with medium or high population
densities. There was one exception where NO2 concentrations remained the same at all
population densities and that the time point coincided with the time of the overall minimum
value. In line with our study, Zoest et al. showed a strong relationship between the NO2
concentrations and population density in the city of Eindhoven, The Netherlands where
they included population density as a covariate in a spatio-temporal regression kriging
model [35]. Kaplan et al. also confirmed this relationship by investigating the correlation
between the NO2 concentrations and population densities [49]. We studied the relationship
of the NO2 concentrations and population densities over a diurnal time. The observed
differences between the shapes and values of the predicted mean curves may be due to
changes in the intensity of traffic over diurnal time and can also be associated with a
difference in the working time of industrial activities in each area. In line with this result,
as expected, the estimated NO2 concentrations were higher at the central and eastern parts
of Tehran that have a high population density.

To conclude, we presented here a model for long-term hourly NO2 concentrations in
the megacity of Tehran. Our results could benefit epidemiological studies of long-term
exposure to nitrogen dioxides in the Middle Eastern megacity of Tehran. Examples of
such epidemiological studies are the effect of long-term exposure to air pollutants on the
incidence of lung cancer, the air pollutants’ long-term effects on low birth weight, and the
effect of exposure to long-term multiple pollutants on the incidence of leukemia [50–52].
Our long-term exposure model provided not just an updated estimate for the long-term
exposure to nitrogen dioxide, but it also provides for the long-term means across all times
of the day. Future epidemiological studies of the effect of long-term air pollutants in Tehran
could assign the exposure to each person based on a collection of locations such as the
participants’ houses, workplaces, schools, etc., and the corresponding time that they spent
at each location. This could be important because we revealed in our analysis that the trend
in the changes in the concentrations of the pollutants was not consistent in all regions of
Tehran. For example, regions 21 and 22 in the west of Tehran had less polluted conditions
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in the morning between 5 a.m. and 6 a.m., while the cleanest condition of regions 10 and 11
in the center of Tehran was in the afternoon between 3 p.m. and 5 p.m. (Figure 7).

From the statistical point of view, we used ordinary kriging for functional data (OKFD)
where the functional data in our study were NO2 long-term diurnal curves. This technique
is a counterpart to conventional spatiotemporal models. The advantage of using the OKFD
is its ability to predict the NO2 concentrations over a continuous time scale because it first
employs smoothing techniques to estimate curves from the observed discrete values of
successive measurements and then spatially predicts these time indexed curves. Another
advantage of the OKFD technique is its flexibility in modeling the temporal dimension of
the spatiotemporal model, which is gifted by using non-parametric smoothing techniques
using basis function expansion, while in the conventional spatiotemporal models, usually
a temporal structure is imposed on the data. Luckily, this statistical framework for the
spatiotemporal modeling of air pollutants is coded and is ready to use in the R “geofd”
package [42]. However, the current version of the “geofd” package does not support simul-
taneous modeling of several pollutants using a multivariate OKFD method. Hence, there is
still room for improvement in developing tools with more advanced functional geospatial
techniques such as multi-response spatial modeling, which could help to simultaneously
model several pollutants to achieve better spatial/temporal predictions.
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