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Abstract: In the real atmosphere, the development of large-scale motion is often related to the
baroclinic properties of the atmosphere. So, it is necessary to discuss the stability condition of
baroclinic flow. It is advantageous to use a layered model to discuss baroclinic instability, not only to
apply the potential vortex equation directly, but also to deal with shear of basic flow. The stability
and oscillatory shear ability of Rossby waves are studied based on the two-layer Phillips model in
the β plane; then, we summarize the baroclinic instability of time-dependent zonal shear flows. The
multiscale method is used to eliminate some terms of natural frequency oscillations of nonlinear
operators in the third-order expansion, thus generating an equation about the amplitude of the
lowest-order Rossby wave in the long-time variable. The large amplitude perturbation begins to
decrease, which produces the desired behavior. After the amplitude decreases for some time, the
amplitude of Rossby waves can still be found to oscillate periodically with the time variable.

Keywords: baroclinic instability; zonal basic flow; multiscale method

1. Introduction

Baroclinic instability theory is one of the mechanisms for the occurrence and devel-
opment of large-scale atmospheric motion in middle and high latitudes. It is another
important scientific advance in atmospheric dynamics after long wave theory. In most
literature, researchers often idealize the basic flow as zonal westerly wind, which is quite
different from the actual atmospheric state. In the real atmosphere, although zonal mean
westerly winds are an important feature, in general, the atmospheric fundamental flow
is not purely zonal and sometimes the meridional fundamental flow can be strong. Baro-
clinic instability of ocean currents can produce features of Gulf Stream vortices of orders
of magnitude.

Pedlosky and Thomson [1] pointed out that in macroscopic background flows, the
initial conditions for vortex development are described by the rapid growth of infinitesimal
orthogonal mode disturbances, which can effectively obtain energy from large-scale back-
ground states due to their spatial and temporal structure. Drazin and Reid [2] reported that
large-scale instability of mid-latitude westerly winds is an important problem in meteo-
rology. This has been simulated in the laboratory using the instability of shear flows in a
differentially heated rotating annulus. It is called baroclinic instability because it essentially
depends on the difference between a constant density surface and a constant pressure
surface in the fluid. Chen and Kamenkovich [3] outlined the effect of topography on baro-
clinic instability. The conditions of instability, the bounds of growth rates, and the phase
velocities of unstable modes have been well-defined; even the theory of finite amplitudes
has been greatly developed. Nevertheless, even small changes in the fundamental problem
can produce substantial changes in the stability problem, and thus, give new characteristics
to the dynamics of the waves and eddy current activity generated by such instability. In this
paper, we study one form of this variation—the baroclinic instability of time-dependent
zonal shear flow.

Flierl and Pedlosky [4] proposed the Baroclinic instability of subcritical fundamental
stream functions with time through the Phillips [5] two-layer model on the β plane. How-
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ever, when the governing equation of perturbation is given in his thesis, the basic stream
function does not consider the time dependence, which is not ideal. The classical theory of
zonal flow instability in the β plane has given a clear critical value for instability, but when
the shear force is below the classical critical value, the time-dependent flow will exhibit in-
stability. Parametric instability occurs when the frequency of the fundamental flow matches
the multiple characteristic frequencies of other stable disturbances. This paper focuses on
the nonlinear behavior of disturbance caused by parametric instability. We investigate the
dynamics of the baroclinic instability of the Phillips [5] two-layer model in the β plane and
consider appropriate parametric values so that the basic state of the model is well below the
critical value of the model instability. In the context of the shallow-water theory of disks,
Umurhan [6] analyzed the dynamic normal mode response of thin annular disks with two
strong local potential vorticity gradients and proved that baroclinic instability is feasible
for astrophysical disks and has the characteristics of mixed baroclinic type. Moon et al. [7]
studied the planetary scale fluctuations in the large-scale atmosphere by considering the
parameterization of the planet-scale baroclinicity on the synoptic-scale heat flux based on
the vortex memory effect.

2. The Small H Limit Model

Take the two-layer Phillips model on the β plane as reference. Setting channel width
L, we consider zonal flow without horizontal shear. For the sake of simplicity, the thickness
of each layer is assumed to be D when there is no movement. ψn is the geostrophic stream
function for each layer, where n = 1 represents the upper layer and n = 2 represents the
lower layer. The nondimensional governing equations are [8]

∂qn

∂t
+ J(ψn, qn) + β

∂Ψn

∂x
= −µqn, n = 1, 2. (1)

where
qn = ∇2ψn + (−1)nF(ψ1 − ψ2), (2)

F =
f 2
0 L2

g′D
, (3)

β =
βdimL2

Uscale
. (4)

Define the nondimensional parameter F as the ratio of channel width to deformation
radius, and β is the ratio of planetary vorticity gradient to the characteristic value of relative
vorticity gradient, all set to O(1). J is the Jacobian operator. A dissipative mechanism with
a rate constant µ is introduced on the right side of (1) as the deboost of potential vorticity.
The basic flow of disturbance is φ(x, y, t), The total steamfunction is

ψn = (−1)ny
Us

2
+ φn. (5)

The governing equations for the perturbations are

[∇2φn + (−1)nF(φ1 − φ2)] +
∂φn

∂x
[β− (−1)nFUs] + J[φn,∇2φn + (−1)nF(φ1 − φ2)]

−(−1)nFy(
∂Us

∂t
+ µUs) = 0.

(6)

In the absence of dissipation, if Us is time-independent, then the critical value required
for perturbation growth will be β

F [1]. Due to the potential vorticity deboost in (6), the
critical value will be slightly higher than O(µ). We are concerned with the case where the
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fundamental shear changes over time and is always less than this critical value. Consider
the basic form of shearing as follows:

Us =
β

F
(G + H cos(ωt)). (7)

when G + H < 1 the shear force at every moment is below the critical value. The baroclinic
model and baroclinic model of disturbed field are used to reformulate the problem. The
following definitions describe the baroclinic and baroclinic modes

ψt =
φ1 + φ2

2
, (8)

ψc =
φ1 − φ2

2
. (9)

It can be obtained, respectively, according to (6)

(
∂

∂t
+ µ)(∇2φc − 2Fφc + FUsy) +

Us

2
∂

∂x
(∇2φt + 2Fφt) + β

∂φc

∂x
+ J(φt,∇2φc − 2Fφc) + J(φc,∇2φt) = 0, (10)

(
∂

∂t
+ µ)∇2φt +

Us

2
∂

∂x
∇2φc + β

∂φt

∂x
+ J(φt,∇2φt) + J(φc,∇2φc) = 0. (11)

Consider the case where there is no average shear force when G = 0. For H << 1, the
flow at every moment is much less than the critical value β

F [1]. According to Flierl and
Pedlosky’s research [4], we set β

F = 1. This defines the scaling speed of the shear, which

is the Rossby long wave velocity βdim(g′D)

f 2
0

. Assume that the amplitude expansion of each

flow function is
φc,t = a[φ(0)

c,t + aφ
(1)
c,t + ...], (12)

The slow time scale is T = Ht, Assuming that a = O(H
1
2 ) and µ = O(H), we define

µ̃ = µ
H . A geostrophic flow function can be both a function of T and t. Therefore, the time

derivatives in (10) and (11) can be converted to

∂

∂t
⇒ ∂

∂t
+ H

∂

∂T
, (13)

The amplitude expansion solution for the lowest-order baroclinic and baroclinic Rossby
modes is

φ
(0)
t = Bt(t, T)eikxe−ikt cc+ct

2 sin ly + ∗, (14)

φ
(0)
c = Bc(t, T)eikxe−ikt cc+ct

2 sin ly + ∗. (15)

where an asterisk denotes complex conjugation, and

ct = −
β

K2 , (16)

cc = −
β

K2 + 2F
, (17)

k2 = k2 + l2, (18)

l = mπ. (19)

where the asterisk indicates complex conjugate. In order to conform the situation that
there is no normal current at the channel boundary, the wave number y needs to be an
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integer multiple of π. In the following, we will choose m = 1, which is the lowest and most
unstable mode. Then, the governing equation of amplitude variable has the following form

∂Bc
∂t − ik ct−cc

2 Bc = 0,
∂Bt
∂t + ik ct−cc

2 Bt = 0.

}
⇒ Bt = Bt0(T)eiσt, Bc = Bc0(T)eiσt (20)

where σ = k ct−cc
2 . Frequency σ is the critical frequency that defines the parametric insta-

bility of oscillating shear resonance. In the first order of a, these waves propagate as free
Rossby waves. As we will see, parametric instability occurs at a node of frequency 2σ,
where the amplitude is still an arbitrary function of the long time variable T. In the next
order of a, the nonlinear term applies force only in (10), and the force has no connection
with x. At this point,

φ
(1)
t = 0, (21)

and
φ
(1)
c = Φ(y, t, T). (22)

Φ satisfies

∂

∂t
(∇2Φ− 2FΦ)− 2iklF sin 2ly(BtB∗c − BcB∗t ) + Fy

∂

∂t
Us = 0. (23)

The solution of Φ can be obtained as

Φ = P(t, T)(
−lF

2l2 + F
)

(
sin 2ly− 2l√

2F

sinh
√

2F(y− 1
2 )

cosh
√

2F

)
+

Us

2

y− 1√
2F

sinh
√

2F(y− 1
2 )

cosh
√

F
2

 (24)

and
P(x, y) =

−k
2σ

(Bt0B∗c0e−2iσt + B∗t0Bc0e2iσt). (25)

The solution can be obtained by using boundary conditions ∂Φ
∂y = 0, y = 0, 1 [8]. We

corrected the oscillation frequency of the average flow to 2σ, and no time average is
included in the oscillation period. In the absence of a time average of the fundamental
shear force, the shear flow does not exist in the y direction. Then, we do not expect the
thickness flux of baroclinic flow to be changed in the unstable wave, and can choose the
direction of the integral flux that can produce the time-averaged flux correction. Next,
we will examine the average flow correction in the presence of an average but subcritical
base-state shear. When expanding to the next order of a, we can obtain the linear problem
of higher-order correction of the geostrophic flow function. The time-related questions
are obtained in the form of (20), The terms on both sides of the equation oscillate at the
same natural frequency. These terms will produce more and more terms in the expansion
of a; so, we need to eliminate these terms to make them invalid in other ways. Under the
requirement of slow scale time T, the amplitude equations of Rossby waves are obtained
as follows:

(
∂

∂t
+ µ̃)Bt0 −

β

2F
ik
2

R1Bc0 +
ik
2σ

N1Bt0|Bc0|2 = 0, (26)

(
∂

∂t
+ µ̃)Bc0 +

β

2F
ik
2

R2Bt0 −
ik
2σ

N2Bc0|Bt0|2 = 0. (27)

where

R1 =
1

K2 [−2K2 − (2F− K2)
4l2

4l2 + 2F

tanh
√

F
2√

F
2

], (28)

R2 =
K2

K2 + 2F
4l2

4l2 + 2F

tanh
√

F
2√

F
2

. (29)
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The fundamental shear must oscillate at the frequency ω = 2σ = k(ct − cc) in order to
suppress terms that may resonate with the linear operator in (20). If it were not for this
frequency, the second term of (26) and (27) from the interaction between oscillating shear
and the lowest-order Rossby waves would not have occurred. Nonlinear systems (26) and
(27) control the amplitude of the Rossby waves of (14) and (15); so, (24) and (25) are also
used to describe the correction for the mean zonal flow. Where

N1 =
4l2kF

HK2(4l2 + 2F)
[
K2

2
− 2l2 +

4l2(2F + K2)

4l2 + 2F

tanh
√

F
2√

F
2

]. (30)

N2 =
4l2kF

H(K2 + 2F)(4l2 + 2F)
[
−K2

2
+ 2l2 + F− 4l2K2

4l2 + 2F

tanh
√

F
2√

F
2

]. (31)

Firstly, the nonlinear terms in (26) and (27) are temporarily ignored, and the stability of
Rossby waves and their capacity for change on oscillatory shear are discussed through
these linear terms. If Rossby waves are unstable, this produces the expected behavior when
small amplitude perturbations begin to grow. Suppose the form of the solution is eαT or
eαHt. We obtain the following growth rate

αH =
kβ

4F
H
√

R1R2 − µ. (32)

Thus, oscillating shear is unstable when the amplitude exceeds the critical value below

Hcrit =
4Fµ

βk

√
1

R1R2
. (33)

The short-wave cut-off of the shear is consistent with the standard stability problem. The
shear flow frequency of 2σ is not required. As described below, the frequency range for
which this parametric instability occurs is generally enlarged for larger H. After a period
of exponential growth, the nonlinear terms in (26) and (27) can no longer be ignored.
Nevertheless, nonlinear solutions of (26) and (27) can still be solved. Their solutions are
unstable and oscillate periodically with slow time scale T. The nonlinear solution has the
following form:

Bt0 = B′toeivT (34)

and
Bc0 = B′coeivT . (35)

Multiplied by the complex conjugate of the positive and baroclinic amplitudes, the real and
imaginary parts of (26) and (27) can be expressed as follows:

|Bt0|2 =
R1

R2
|Bc0|2 (36)

and
v =

k
4σ
|Bc0|2(N1 −

R1

R2
N2). (37)

After substituting (36) and (37) into (26) and (27), the amplitude of the oscillation is obtained

|Bc0|2 =
4σ

k


√

β2k2R1R2
16F2 + µ̃2

|3N1 − R1
R2

N2|

. (38)

According to (10) and (14), finite amplitude solutions can exist only when linear solutions
are unstable. In addition, the predicted final state from (32) and (38) contains a frequency
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shift proportional to the square of the equilibrium amplitude. According to the prediction
of (36)–(38), the oscillation amplitude of the solution gradually decreases, and finally, the
amplitude balances to a stable value. Figures 1 and 2 show the real and imaginary parts of
the positive and baroclinic amplitudes, respectively.

Figure 1. Asymptotically small H solutions developed on long time scales: T = Ht. Real and
imaginary parts of barotropic Rossby wave amplitude. The results in each case match the analytical
solutions of (36)–(38). The calculations are performed for µ = 0.015, F = β = 20, H = 0.05, and
k = l = π.

Figure 2. Asymptotically small H solutions developed on long time scales: T = Ht. Real and
imaginary parts of baroclinic Rossby wave amplitude. The results in each case match the analytical
solutions of (36)–(38). The calculations are performed for µ = 0.015, F = β = 20, H = 0.05, and
k = l = π.

Figure 3 shows the evolution of the absolute value of the amplitudes.
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Figure 3. The calculations are performed for µ = 0.015, F = β = 20, H = 0.05, and k = l = π.

3. Discussion

With the passage of time, the amplitude of barotropic Rossby wave oscillates and the
amplitude of oscillation gradually decreases with the increase in time, and finally tends
to be steady. With the passing of time, the amplitude of baroclinic Rossby wave oscillates
and becomes smaller and smaller with the increase in time. When the oscillation reaches
a critical point, the amplitude will be close to zero, and then gradually increases to a
steady value.

In the two-layer Phillips model, according to the classical critical value β
F of baroclinic

instability given by Pedlosky and Thomson [1], they suggest in their study that zonal
flows with shear values much less than β

F are unstable when the flow is time-dependent.
Thus, under the condition of H << 1, in Equation (7), the basic form of shear flow is
expanded to obtain the term β

F H. Therefore, although the shear value is much lower than
the traditional stability critical value at every instant, we still think that the classical steady
flow can become very unstable. Unstable waves with high energy content strongly alter the
mean flow. The results show that the time-dependence of zonal basic flow greatly affects
baroclinic instability. This has obvious implications for the problem of vortex effects in
ocean and atmospheric flow patterns.
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