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Highlights:
• Long-term precipitation chemistry data from professional Czech Hydrometeorological Institute
stations were analysed.
• We examined the behaviour of SO4

2−, NO3
− and NH4

+ concentrations from wet-only samples.
• Daily concentrations were reconstructed from cumulative samples of different exposure time length.
• Useful for study of systematic annual and seasonal changes and other analyses.
• We integrated Nested Laplace Approximation, a useful, novel tool for exploiting complicated
large-scale data.

Abstract: It is important to study precipitation chemistry to comprehend both atmospheric and
environmental processes. The aim of this study was the reconstruction of daily concentration patterns
of major ions in precipitation from samples exposed for longer and differing time periods. We
explored sulphates (SO4

2−), nitrates (NO3
−) and ammonium (NH4

+) ions measured in precipitation
within a nation-wide atmospheric deposition monitoring network in the Czech Republic during
1980–2020. We visualised the long-term trends at selected individual years for four stations, Praha
4-Libuš (LIB), Svratouch (SVR), Rudolice v Horách (RUD) and Souš (SOU), differing in geographical
location and reflecting different environments. We found anticipated time trends reflecting the
emission patterns of the precursors, i.e., sharp decreases in SO4

2−, milder decreases in NO3
− and

steady states in NH4
+ concentrations in precipitation. Statistically significant decreasing time trends

in SO4
2− and NO3

− concentrations in precipitation between 1990 and 2015 were revealed for the LIB
and SVR sites. Spring maxima in April were found for all major ions at the LIB site and for NO3

− for
the SVR site, for both past and current samples, whereas no distinct seasonal behaviour was recorded
for NH4

+ at the RUD and SO4
2− at the SVR sites. By applying Bayesian modelling and the Integrated

Nested Laplace Approximation approach, we were able to reconstruct the daily patterns of SO4
2−,

NO3
− and NH4

+ concentrations in precipitation, which might be further utilised for a wide range of
tasks, including comparison of magnitudes and shapes between stations, grouping the decomposed
daily data into the ecologically motivated time periods, as well as for logical checks of sampling and
measurement reliability.

Keywords: precipitation chemistry; Central Europe; long-term trends; time series; data disaggregation;
Bayesian modelling; INLA
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1. Introduction

Wet deposition is a crucial mechanism in which substances are removed from the
atmosphere and deposited on Earth’s surface, contributing to cleaning the air on one hand
and polluting and/or fertilising the terrestrial and aquatic ecosystems on the other [1,2].
Hence, precipitation chemistry is observed and studied widely at different temporal and
spatial scales: global, regional and national [3–8]. Knowledge of chemical composition
of precipitation is of the utmost interest for two main reasons: (1) it reflects the composi-
tion of the atmosphere and changes in atmospheric chemistry [1,9], and (2) it enables the
estimation of deposition fluxes, important for the assessment of environmental impacts,
including acidification and eutrophication [10,11]. Therefore, long-term monitoring in
particular [6,12,13] provides valuable information for large-scale modelling and can con-
tribute to a better understanding of the processes taking place both in the atmosphere and
various ecosystems [14].

In this context, sulphates (SO4
2−), nitrates (NO3

−) and ammonium ions (NH4
+) are

routinely measured worldwide and studied in detail because of their environmental rel-
evance [15–18]. They are major players in acidification and eutrophication processes
seriously affecting both terrestrial and water ecosystems, which manifested in former
Czechoslovakia in the 1970s and 1980s [19,20]. That is the main reason why we have
selected precisely these ions for our detailed analysis.

In the atmosphere, they are formed from precursors, i.e., sulphur dioxide (SO2),
nitrogen oxides (NOx) and ammonia (NH3), emitted in gaseous forms in numerous natural
processes and anthropogenic activities [1]. SO2 and NOx are emitted by burning processes,
and NH3 mainly by agriculture [21]. In Europe, precipitation chemistry is generally
controlled by anthropogenic influences [22]. Sulphur (S) and nitrogen (N) belong to
the biogenic elements, i.e., they are essential for living organisms [23], though in excess
amounts, they affect ecosystems and the environment negatively, and natural S and N
biogeochemical cycles are disturbed with serious consequences [24–27].

In the Czech Republic, a region with a long history of ambient air pollution [28–34],
long-term monitoring of precipitation chemistry has generated valuable data series [35],
which were used previously for the evaluation of aggregated coarse time trends of sulphur
and nitrogen deposition fluxes [36–38]. This time, however, we are conducting another,
much more detailed type of analysis, enabling us to explore the “inside” of the concentration
data series, providing a reconstruction of information hidden in data on precipitation
concentration of SO4

2−, NO3
− and NH4

+ collected as monthly, weekly or daily samples.
One complicating feature is that the collection length changes as the monitoring network
evolves, which gives a generally inconsistent and phase-shifted picture (the collection
periods might start, for example, on different days of a month, etc.) of the reality among
the stations on finer-than-year time scales. To this end, we estimate time series in the same
(daily) resolution to obtain compatible values (comparable both in time and across stations).
The estimates correspond to the conditional values given the rain event, i.e., concentrations
that are or would be recorded when raining. These reconstructed daily data series provide
the basis for the comparison and interpretation of both shapes and magnitudes of the
SO4

2−, NO3
− and NH4

+ concentrations measured in precipitation at different time periods
and different stations. For this task, we used the Integrated Nested Laplace Approximation
(INLA) [39] as a useful, novel tool for exploiting complicated large-scale data, including
precipitation chemistry samples via computationally efficient Bayesian analysis.

The aim of the study is firstly to reconstruct daily concentration patterns of sulphates,
nitrates and ammonium ions in precipitation from samples exposed for longer and differing
time periods, and secondly to use reconstructed data series to describe trends over time
and to compare between time periods and between different stations. Bayesian inference
with the INLA computational method used for the presented analysis is a modern, highly
flexible and general approach suitable in many different application fields. For instance,
it was employed in some recent air pollution studies [40,41]. However, its use for the
exploration of precipitation chemistry is, to the best of our knowledge, uncommon. Hence,
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we comment on this INLA approach in detail in this study, to draw attention to its abilities
and benefits.

2. Methods
2.1. Measuring Sites

For our study, we used records obtained within a nation-wide monitoring of precipita-
tion chemistry run by the Czech Hydrometeorological Institute (CHMI), retrieved from the
nation-wide database ISKO (Air Quality Information System) operated by the CHMI [35].
We benefitted from long-term records of SO4

2−, NO3
− and NH4

+ concentrations measured
in precipitation in the period 1980–2020.

Though we have explored the data series for 17 Czech stations, the reconstructed
daily ion concentration time series in this manuscript are visualised and commented on
for four selected stations: Praha 4-Libuš (LIB), Svratouch (SVR), Souš (SOU) and Rudolice
v Horách (RUD); other results are available from the authors upon request. The selection
criteria were (i) the length of the record and (ii) our intention to have representative sites
for contrasting qualitatively different environments. Whereas LIB is a typical residential
suburban site with a motorway within a distance of 50 m, the three others represent rural
areas. SOU and RUD are middle-elevated mountain sites, both situated in the former
infamous dirty, air-polluted “Black Triangle” [30], the region where both the Krušné hory
Mountains and Jizerské hory Mountains were deforested in the past due to acid rain as
one of the influencing co-factors. Currently, both areas are reforested again, and the area’s
ambient air quality has improved substantially. SVR is located in the Czech-Moravian
Uplands, in a hilly agricultural area, the station itself being at the top of the hill, affected
occasionally by the plume from the Chvaletice coal power plant. Some metadata for these
sites, situated in different geographical regions and reflecting different environments, are
presented in Table 1.

Table 1. Measuring stations’ characteristics.

Station Acronym Latitude Longitude Altitude
[m a.s.l.] Region EoI

Classification

Praha4-Libuš LIB 14◦26′49.401′′ N 50◦0′28.400′′ E 301 Capital Prague B/S/R-NCI

Svratouch SVR 49◦44′6.304′′ N 16◦2′3.109′′ E 735 top of the hill B/R/NA-REG

Souš SOU 50◦47′22.726′′ N 15◦19′10.859′′ E 771 Jizerské hory
Mountains B/R/N-REG

Rudolice v Horách RUD 50◦34′47.402′′ N 13◦25′10.222′′ E 840 Krušné hory
Mountains B/R/N-REG

Note: B/R/N-REG—background/rural/natural, regional; B/R/NA-REG—background/rural/natural agricul-
tural, regional; B/S/R-NCI—background/suburban/residential, near-city.

2.2. Precipitation Sampling and Chemical Analysis

In this study, we worked exclusively with wet-only samples, collected by automated
devices exposed only during the precipitation events, preventing an undefined portion
of dry deposition from entering. The automated samplers were operated on a weekly or
monthly basis at individual sites [35]. With respect to chemical analysis, SO4

2− concen-
trations were measured by ion chromatography. The long-term mean of detection limit
was 0.030 mg·L−1, the calibration range was to 21 mg·L−1 and the standard uncertainty
(combined for chemical analysis and sampling) was 25%. The concentration of NO3

− was
determined by ion chromatography, the detection limit of which was 0.024 mg·L−1, the
calibration range was to 21 mg·L−1 and the standard uncertainty (combined for chemical
analysis and sampling) was 30%. The concentration of NH4

+ was determined by spec-
trophotometry (flow injection analysis with indophenol, Berthelot reaction), the detection
limit of which was 0.016 mg·L−1, the calibration range was to 4 mg·L−1 and the standard
uncertainty (combined for chemical analysis and sampling) was 26%.
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2.3. Statistical Modelling

In order to model the concentration of selected ions in samples of precipitation water,
we formulated a general non-parametric (hence flexible) statistical model. In order to
reflect skewed distributional properties and to deal with occasional wild outliers in the
ion concentrations, we work with natural (i.e., e-based) logarithms of the concentrations
and assume normality and an additive model on the log scale. Effectively, this means
that we postulate a log normal distribution [42] and multiplicative model for the original
concentrations. Our model is motivated by standard multiplicative decomposition—annual
trend times the seasonal component on an original scale (log annual trend plus log seasonal
component)—which is frequently used in standard applied time series analysis [43]. Nev-
ertheless, since the measured ion concentrations span dozens of years and show dramatic,
qualitative changes in dynamics, e.g., due to profound changes in emission control policies,
it is clear that log trend plus log fixed-shape-seasonal component is insufficient to describe
possible deformations of seasonality over the years. Therefore, we expand and formulate
the model more generally on the log scale as trend plus seasonality plus (parsimonious)
interaction of trend and seasonality. The interaction allows for changes in seasonal patterns
over the years (or, equivalently, changes in annual trends for different parts of the year).
In other words, our model allows for the deformation of intra-annual dynamics over the
years. Formally, the model amounts to a generalisation of the generalised additive model
(GAM) [44,45] to incorporate parsimonious (i.e., non-saturated) interaction.

When formulating the strategy for the reconstruction of the fine time resolution of
the concentration time series from irregularly aggregated raw data (with temporarily and
spatially varying collection interval lengths), we work in two steps. The first step is to
create the model in the desired fine time resolution (time step of one day). The second step
is to relate the fine resolution model to the actual data. It is the second step that is the actual
principled correction for the varying collection interval length. The approach is completely
general and can easily be adapted both to various collection lengths and different from
one-day fine resolutions. It can also be modified in a straightforward way if the first-
step model needs to be more complicated, e.g., when it contains explicit covariates in
addition to the seasonal and annual components with interaction, or when the observations
would correspond to weighted averages with known weights (motivated, e.g., by a known
decay dynamics).

Our model for the logarithm of concentration of a specific ion at a given station in
precipitation water sample collected on day t is:

Yt = µ + sannual(year(t)) + sseasonal(day_within_year(t))+
sinteraction(year(t), day_within_year(t)) + εt = Pt + εt

(1)

where:

• t is the time in daily resolution indexed from the beginning of the data available from
the station modelled.

• year(t) is a function that extracts the year from a given time position t.
• day_within_year(t) is a function that extracts the position of the day within a year

from a given time position t.
• Yt is the natural logarithm of the ion concentration.
• µ is the overall mean (unknown constant to be estimated from data).
• sannual(.) is the annual component. That is, a (potentially nonlinear) concentration

trend in years. It is an unknown smooth function of no pre-assumed functional form
(to be estimated from data). It is implemented non-parametrically as the random
walk of second order; i.e., for an integer j, we assume sannual(j)− 2.sannual(j− 1) +
sannual(j− 2) = ηj, where ηj ∼ N

(
0, σ2

η

)
.

• sseasonal(.) is the seasonal component. That is, an unknown smooth function of no
pre-assumed functional form (to be estimated from data) describing a smooth within-
year concentration pattern common for all years with available data. In order to be
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physically realistic, this component is periodic (the 31 December value has to smoothly
match the 1 January value). It is implemented non-parametrically, as the first-order
cyclic random walk.

• sinteraction(., .) is the component describing the potential interaction between the annual
and seasonal parts. It is this term that allows for smooth deformation of the seasonal
part over the years. The presence of this term generalises the overly restrictive standard
annual plus seasonal decomposition. This is necessary, as it is clear both from previous
knowledge and from even a crude look at the data that the seasonal concentration
profile can change quite profoundly over the years (standard decomposition would
insist that it does not change systematically, hence it would provide a potentially
highly distorted picture of the reality). The term is, in fact, an unknown function of
two variables (to be estimated from the data) assumed to be smooth. Beyond that, no
particular functional form is assumed. Formally, this is a parsimonious interaction
term (not a full, saturated interaction as in standard ANOVA models [46]). It is
implemented non-parametrically, as a smooth Gaussian random field [47] with Matérn
covariance structure (with smoothness parameter ν = 1). This allows for a rather
flexible modelling of departures from the fixed annual plus seasonality model.

• Pt is the systematic part of the model (linear predictor).
• εt is the measurement error (assuming εt ∼ N

(
0, σ2)).

Typically, we do not have access to the (log) concentrations in the desired fine (e.g.,
daily) resolution. The data are obtained as (log) concentrations from time-aggregated
samples; we must aggregate the daily values accordingly. In fact, the collection interval
length can change over time. That is, for the i-th observation of the ion concentration
logarithm (say, Zi) in the precipitation sample which is collected during the time interval
(Li, Ui] (of collection length li = Ui − Li), we have:

Zi = ∑Ui
u=Li

Yuεi , with εi ∼ N(0, σ2) (2)

Note that this is a completely general formulation, which allows for arbitrary collection
interval lengths. It can easily be expanded even for the case when the weight of a given
day’s contribution would decay with the time elapsed from the collection interval end.

If we take the previous two steps together and write them as (aggregated) regression
in matrix form, we derive, simultaneously for all observations:

Z = A.P + ε = A.(µ.J + Annu + Seas + Inter) + ε, (3)

where:

• Z is the nx1 vector of available observations (where n is the number of measurements
available).

• ε is the nx1 vector of measurement errors.
• A is the nxT matrix specifying the time aggregation invoked by the non-trivial collec-

tion lengths. In our application, it is a matrix of zeros and ones (generally, it can contain
zeros and non-negative weights when considering decays). Its i-th row has ones at
column positions corresponding to days over which the i-th sample was collected, and
zeros otherwise.

• P is the Tx1 vector of linear predictors from model (1) for the T days covering the
time interval of interest between the start of the first (I = 1) sample and end of the
last (I = n) sample available in the data. P arises as a sum of overall mean vector
(µ.J, where µ is a scalar and J is the Tx1 vector of ones). Annu is an annual compo-
nent (Tx1 vector of sannual from model (1) evaluated at T days’ stretch of interval of
interest), Seas is a seasonal component (Tx1 vector of sseasonal from model (1) evaluated
at T days of interval of interest) and Inter is an interaction component (Tx1 vector of
sinteraction from model (1) evaluated at T days of interval of interest).
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To regularise, the model is formulated in the Bayesian way, with complexity priors
on structural parameters [48]. It is then identified or fitted (i.e., posterior distribution is
obtained) using the numerically highly effective Integrated Nested Laplace Approximation
(INLA) [39]. The use of INLA avoids the need for computationally costly Markov chain
Monte Carlo sampling. The computational efficiency and flexibility of the INLA lead to
its quickly increasing popularity [49]. For the computations, we use R [50] and the INLA
library [39], utilising the elegant connection between the Matérn Gaussian random field and
appropriate stochastic partial differential equation (SPDE) [51] to acquire computationally
effective approximation for the interaction term. One substantial advantage of using INLA
SW in this context is that the implicit aggregation from which data arise can be easily
specified through a user-specified predictor matrix (available as one of many INLA flexible
features). Apart from point estimates, we also assessed the uncertainty using 95% credible
intervals. The model was fitted for each station separately, i.e., with stratification on station.

3. Results

Simple descriptive statistics characterising the measured values used as input data
for modelling analysis are presented in Supplementary Table S1. The data are shown as
annual sampling period-length-weighted geometric means. The principal results for SO4

2−,
NO3

− and NH4
+ concentrations in precipitation obtained from model (1) are shown in

Figures 1–3. In order to enable an easy visual comparison, we tried to adhere to the same
scales for both axes for all ions as much as possible, except for the range for NH4

+, where
we used a different minimum concentration (2 µg·m−3) than for two other ions (6 µg·m−3).
A comparison of the general trends indicated that there are substantial differences between
the three ions studied. Whereas the SO4

2− and NO3
− data series show a clear decline over

time, though being more pronounced for SO4
2− than NO3

−, the NH4
+ course is rather

steady on larger time scales, evincing neither a decrease nor an increase over time.
The courses of SO4

2− concentrations in precipitation (Figure 1) indicated the max-
ima reached at the turn of the 1990s at both the SVR and LIB sites, with a consequent
steady decrease at LIB, showing interestingly amplifying ranges of concentrations towards
recent years. At the SVR site, the decrease in SO4

2− concentrations was interrupted at
the beginning of the 2000s for a short period of some five years, showing a steady state
with subsequent further decrease until now. The SO4

2− courses at the RUD and SOU
sites are shorter, nevertheless indicating similar decreases over the entire measurement
period, though within much narrower ranges than the two previous sites, retaining a
similar concentration spread for the entire period.

The courses of NO3
− concentrations (Figure 2) indicated a decrease over time as well,

though much milder than in the case of SO4
2−. The ranges of daily concentrations are

similar for all four sites, unlike for SO4
2−. The SVR site showed a certain interruption in

decrease in 2005–2008, similarly as for SO4
2−. The LIB site shows a kind of undulated

decreasing trend of NO3
−3, with an abrupt drop in the last two years. The RUD and SOU

NO3
− concentration patterns evince similar decreases.
In contrast to the above ions, NH4

+ concentrations in precipitation (Figure 3) have
more or less steady courses over time, with unprecedented broad ranges at the SVR site,
the daily concentrations showing a very irregular pattern. Broad ranges—however, not as
broad as for the SVR site—are found also for the RUD site, whereas the NH4

+ concentration
pattern is much tighter for the LIB, and for the SOU site in particular.

Detailed views at individual ion courses over individual selected years, reflecting
the air pollution levels in the past and present, are presented in Figures 4–6. The overall
one-year courses for SO4

2− for LIB show very similar patterns with clear spring maxima
in April both in 1990 and 2015, with the 2015 curve clearly situated much lower than the
1990 curve. SO4

2− concentrations in SVR showed different patterns in 1990 and 2015, but
dissimilar from the LIB site. The SO4

2− concentrations in 2015 are much lower than those
in 1990 (Figure 4).
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In contrast, the NO3
− concentration courses were very similar both at LIB and SVR

and for both selected years of 1990 and 2015, with clear spring maxima in both selected
years. The NO3

− patterns were shifted lower for 2015 as compared to 1990 for both LIB
and SVR. The credible intervals were narrower for NO3

− than for SO4
2− concentrations

(Figure 5). For NH4
+ ions in LIB, the curves for both 2000 and 2015 were nearly identical

with respect to both concentration values and shape with spring maxima in April, but
very dissimilar in RUD, exhibiting oscillations over both years, with much wider credible
intervals than LIB (Figure 6).

The 95% credible intervals are not overlapping for the SO4
2− and NO3

− concentrations
for time patterns in 1990 and 2015 for the LIB and SVR sites (Figures 4 and 5), indicating
statistically significant decreases over time in these ion concentrations in precipitation. This
is not the case for NH4

+, however, for the concentrations of which the 95% credible intervals
for LIB and RUD sites in 2000 and 2015 do overlap, suggesting non-significant changes over
time (Figure 6). Hence, within one measuring station, within the same ion, there is obviously
a statistically significant decreasing trend for the SO4

2− and NO3
− concentrations, whereas

it is not true for the NH4
+ concentrations in precipitation. Furthermore, the overlapping

95% credible intervals for individual examined ions suggest that concentration levels and
time courses do not differ significantly between the measuring sites. However, we can still
notice some differences, albeit statistically insignificant. For example, NO3

− concentrations
show higher values at the LIB site and partly also at the RUD site than at other sites
(Figure 2), and SO4

2− concentrations show a faster decrease in time at the LIB and RUD
sites compared to SOU (Figure 1).
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4. Discussion
4.1. Specific Comments on the Observed Patterns

Decreasing trends in SO4
2− and somewhat lower decreases in NO3

− concentrations
in precipitation are in line with observations elsewhere and reflect the decrease in SO2 and
NOx emissions due to stringent and effective countermeasures taken in Europe [21] and
North America [16]. In contrast, NH4

+ concentrations in precipitation exhibit a more or less
steady state at the examined stations, which reflects the fact that unlike SO2 and NOx, NH3
is not a criteria pollutant required by the EU legislation in force [52], and so the emission
reductions of NH3 appear problematic in reality [53]. This is also reflected in the increasing
relative contribution of NH4

+ as compared to NO3
− to atmospheric deposition of reactive

nitrogen reported both from Europe [8,54], including the Czech Republic [38] and other
countries worldwide [55,56]. It is necessary to remark, however, that this is not the case
everywhere, and that in particular, European countries loaded with high NH3 emissions in
the past, such as Belgium/Flanders, The Netherlands and France, reported the opposite
trend [57–59].

Temporal variations in major ion concentrations with spring maxima for Europe were
noted and reported earlier, with an unclear explanation [60]. Interestingly, major ions
in precipitation frequently show similar seasonal variations though they originate from
different sources [61]. We saw spring maxima for all three ions examined at the LIB site for
both past and current measurements, though the occurrence of the spring maximum was
not the case for all stations.

The visible drop in NO3
− concentrations observed at the LIB site in the past two years

is likely to be due to the COVID-19 pandemic and related lockdowns with subsequent
decreases in NOx in ambient air (precursors of NO3

− in precipitation), which was reported
from many urban regions in Europe [62–64], including the Czech Republic [65]. A decrease
in the number of cars operated in urban areas due to people being in home offices actually
resulted in substantial NOx emission decreases in many cities, including Prague [66].
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4.2. Problems in Long-Term Assessment Arising from Changes in Monitoring with Respect to
Sampling Period Length

In the evaluation of long-term ambient air pollution trends, a general problem remains
to be solved. This problem relates to changing sampling periods over time [67]. This is of
general interest since precipitation samples for ion analysis are generally collected with
different sampling interval lengths, typically days, weeks or months, but other lengths
might arise for logistic and other practical reasons [68]. The collection length can be different
not only among different sampling sites (stations), it can also change during the course of
time even for the same station (e.g., in relationship with the development and expansion of
the nation-wide ambient air quality monitoring network, changes related to monitoring
budget fluctuations, etc). Temporal changes are obviously slow and hence they might be
perceived as not very important for studies conducted at shorter time intervals (specifically,
over months to a few years). They are of substantial importance, however, when one wants
to retrieve information on long-term trends—monitoring network maturation (in the form
of a gradual tendency toward shorter sample collection periods) definitely comes into play
as a nuisance factor.

An additional problem comes with occasional missing values interspersed among
valid observations [69,70]. Indeed, looking at raw data amounts directly to looking through
a distorting filter whose properties change over time. Furthermore, even for short-term
studies, it is not unusual to have incompatibilities in the sampling period among the stations
spatially at the same time. It seems that many practical assessments lack appreciation of
the extent of the problem the sampling interval inhomogeneities bring into data analysis
and interpretation. It is a nuisance (purely artificial) factor that is not connected with the
studied process of ion concentration. Surely enough, it is of no interest. Nevertheless, it
modulates the output data in a complex way that might prevent direct compatibility of
measurements in both time and space.

Direct comparison of different collection lengths (e.g., daily and monthly data) is, of
course, impossible [71]. A simple reaction might be to reduce the resolution to the length
of the coarsest collection interval (e.g., month, if monthly and weekly data are compared).
This is not only deficient (it leads to an information loss), it might not be a feasible approach
(if there is a phase shift between the two periods). Alternatively, many published analyses
resigned to the original data resolution and compare only highly aggregated data (e.g.,
annual averages) for which the effect of sampling interval incompatibilities is small or
negligible [72,73].

Such an approach, however, inevitably results in a substantial waste of information.
This crude treatment prevents the detailed inspection inside intra-annual (seasonal) pat-
terns and their changes over the years of monitoring. It is more appropriate to remove
observational process complexities and irregularities by estimating concentration time
series in a unified finer-than-year resolution in an objective way and then compare their
properties across time and space. This amounts to the reconstruction of the concentration
at a finer time resolution for all stations of interest in a unified and principled manner.
The approach based on the statistical removal of the distorting filter is indeed possible
and relatively straightforward, as its properties (based on sampling collection length) are
known precisely.

The sub-year scale of ion precipitation concentration changes is exactly what we aim
at in this work. For this, we have to adjust first for the sampling interval inhomogeneities
both across and within stations. We achieve this adjustment by a formalised statistical
modelling that allows us to reconstruct estimated time series of ion concentration in a
unified time resolution (i.e., the same time-step for all estimates both within and across
stations). We choose the daily resolution for the estimates. Beyond presenting and interpret-
ing the concrete concentration series reconstructions, we describe a powerful but relatively
simple framework for the formalised Bayesian statistical modelling that allows reconstruc-
tion. Seen from a broader viewpoint, the reconstruction amounts to the disaggregation
of originally irregularly aggregated time series via a fully specified Bayesian model (with
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complexity penalised priors analogous to the roughness penalties customarily used in the
traditional smoothing).

4.3. Overall Evaluation

In our study, we provide insight into the daily behaviour of major inorganic ions in
precipitation samples collected on a monthly or weekly basis. This detailed insight was
achieved by decomposing the data series gained in longer-term exposures (employed as
a standard in most measuring networks) into detailed daily concentration patterns using
a relevant statistical approach to reveal the information embedded in monthly or weekly
cumulative values, hidden so far in these “averaged” data. This type of analysis is useful
for multiple purposes indicated briefly below.

First, we are able to obtain information on daily precipitation concentrations from
samples collected via longer than a day exposure—in our case, via cumulative sampling
over a month or a week. At the same time, it is important to realise the obvious fact
that what we attain is an estimate of the daily concentration trajectory. Nevertheless, it
is an optimal estimate, justified by the fact that it arises from formally derived posterior
distribution [74] formulated in an objective way that removes artefacts and inhomogeneities
of the complex sampling procedure. This appears very useful as we can gain information
in a more detailed time resolution, saving money and efforts on daily sampling, which
is usually impractical and not achievable, specifically in rural areas, where precipitation
chemistry sampling is frequently operated. These sites are mostly not easily accessible
locations in mountain areas, usually in complex forested terrain, sometimes in remote
regions. For practical purposes, it will be important to consider possible savings together
with increased imprecision of the estimates arising from longer sampling times when
creating a measurement network. The principles of statistical theory of experimental design
apply directly here [75].

Second, we can explore the daily behaviour of various aspects of precipitation chem-
istry. For instance, using the daily concentration estimates, we can appreciate both the
magnitude and shape of ion concentration trajectories. Furthermore, from this type of
analysis, we gain comparable shapes and magnitudes of the concentrations, the magnitudes
being the natural logarithms of estimated daily concentrations. Third, we can consider
re-aggregation of these earlier disintegrated daily concentrations into a time series of some
lower but constant resolution of interest. Furthermore, we can easily estimate concentra-
tion averages for various practically relevant time periods, such as vegetation seasons or
phenological phases, etc., meaningful with respect to the impact of the studied substances
(in our case, sulphur and nitrogen) on vegetation and ecosystems, either via deposition or
uptake pathways.

Last but not least, this kind of analysis might serve as a valuable tool for a kind of
logical verification of measured data, as these can be assumed to follow a distinguished
pattern. In this point, we can refer to Figure 3, showing an extremely strange and messy
pattern of NH4

+ concentrations at the SVR site, quite different from NH4
+ behaviour

pattern at other sites, which might indicate some problems in measurements and provoke
a check of sampling and measuring operating procedures. In any case, such a highly
disputable precipitation chemistry pattern requires further attention and scrutinising of
possible causes, which might reveal either a systematic error in sampling or indicate a sort
of interesting feature deserving further exploration.

In particular, such an analysis is important amid an ongoing global environmental
change bringing substantial alterations in precipitation patterns [76–78], and with respect
to carrying out broader syntheses exploring possible ambient air quality impacts on the
environment and ecosystems, where the obtained results may serve as valuable inputs
describing atmospheric deposition as an important driver of air pollution.
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5. Conclusions and Outlook

We explored the long-term dynamics of sulphates (SO4
2−), nitrates (NO3

−) and am-
monia (NH4

+) ions measured in precipitation within a nation-wide precipitation chemistry
monitoring network in the Czech Republic. The raw data span dozens of years and reflect
the evolution of the measurement network; the collection periods are changing through-
out time (the collection intervals tend to shorten, overall) and are generally different for
different stations. Therefore, we formulated a Bayesian statistical model that allows for
the estimation of concentration in daily resolution. The model was fitted using the INLA
approach for each station of interest separately (formally, we are stratifying on station)
and the course of the dynamics was reconstructed as a time series with an equidistant
daily step. Using the INLA approach enabled us to reconstruct the daily courses of major
ion concentrations in precipitation sampled over different exposure time periods (weekly,
monthly). These reconstructed daily patterns are useful for numerous reasons and offer a
wide range of possibilities for further exploration, such as (1) gaining more detailed pat-
terns from longer exposure sampling periods relevant predominantly for rural and remote
regions, (2) exploration of the daily behaviour of precipitation chemistry at different sites
benefitting from the fact that both shapes and magnitudes are comparable, (3) aggregation
of the earlier disintegrated daily concentrations into selected time periods relevant with
respect to phenology or ecology and (4) logical verification of measured data.

Our detailed analysis revealed sharp decreases in SO4
2−, milder decreases in NO3

−

and steady states in NH4
+ concentrations in precipitation. With respect to within-year

courses, spring maxima in April were found for all major ions at the LIB site and for NO3
− at

the SVR site, for both past and current samples. In contrast, no distinct seasonal behaviour
was recorded for NH4

+ at the RUD site and SO4
2− at the SVR site. It will be interesting

to use in the future an approach similar to the (expanded version of the) reconstruction
presented in this paper for estimating the relationship between the concentrations of
gaseous and water concentrations of naturally related compounds (such as SO2 and NOx
on one side, and sulphates and nitrates on the other).
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