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Abstract: Based on daily precipitation data from 1960 to 2017 in the rainy season in east China, to
a given percentile threshold of one observation station, the time that precipitation spends below
threshold is defined as quiet time τ. The probability density functions τ in different thresholds follow
power-law distributions with exponent β of approximately 1.2 in the day, pentad and ten-day period
time scales, respectively. The probability density functions τ in different regions follow the same
rules, too. Compared with sandpile model, Γ function describing the collapse behavior can effectively
scale the quiet time distribution of precipitation events. These results confirm the assumption that for
observation station data and low-resolution precipitation data, even in China, affected by complex
weather and climate systems, precipitation is still a real world example of self-organized criticality in
synoptic. Moreover, exponent β of the probability density function τ, mean quiet time τq and hazard
function Hq of quiet times can give sensitive regions of precipitation events in China. Usual intensity
precipitation events (UPEs) easily occur and cluster mainly in the middle Yangtze River basin, east of
the Sichuan Province and north of the Gansu Province. Extreme intensity precipitation events (EPEs)
more easily occur in northern China in the rainy season. UPEs in the Hubei Province and the Hunan
Province are more likely to occur in the future. EPEs in the eastern Sichuan Province, the Guizhou
Province, the Guangxi Province and Northeast China are more likely to occur.

Keywords: quiet time; extreme events; climate change; precipitation events; power-law distribution;
self-organized criticality

1. Introduction

China is located in the subtropical and midlatitude regions of the Northern Hemi-
sphere. Due to the influence of the East Asian monsoon and global warming, extreme
precipitation events occur frequently. Flood-oriented disasters occur frequently and pose
serious threats to China’s ecological environment, economic culture and social life [1–5].
Therefore, it is important to study the spatiotemporal evolution characteristics of pre-
cipitation events with different intensities and explore the internal nonlinear dynamics
mechanism. Numerous studies have focused on the distribution and evolution of pre-
cipitation in China regarding intensity, frequencies, duration and recurrence period [6–9].
Although the spatial variation and trend analysis of precipitation can help us to better un-
derstand the variability in precipitation, the connections between the dynamic mechanisms
of precipitation remain unclear yet [10–12].

Precipitation is the coupling result of multiscale (spatiotemporally) nonlinear complex
systems, which has a decisive influence on the spatial and temporal distribution of regional
water resources and the evolution of the ecological environment. In recent years, studies
have shown that meteorological elements, such as temperature and precipitation, have
a long-term statistical memory. The occurrence time of extreme events has a significant
long-term correlation, and it is related to the clustering of extreme events [13–15]. Fisher
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et al. [16] reported that the frequencies of extreme events are independent of each other
and follow a Poisson distribution. In addition, there is no internal connection between
them, and they do not represent a cluster feature. He et al. [17] also confirmed the long-
term sustainable characteristics of natural phenomena, such as precipitation, by analyzing
hydrological data from a nonlinear perspective.

In addition to the above characteristics of precipitation events, statistical measures
present strong statistical regularities [18–20], supporting the hypothesis that atmospheric
convection and precipitation may be a real-world example of self-organized critical-
ity [21–26]. Self-organized criticality was first proposed by Per Bak et al. in 1987 [27],
who showed the dynamical system with spatial degrees of freedom naturally evolve into
self-organized critical point. It is widely used to explain the power-law frequency distri-
bution of many nonlinear dynamical systems, such as population distribution in human
society [28], species extinction and viral spread in biology [29,30], and plate motion and seis-
mic activity in geophysics [31,32]. At present, there is no unified definition of self-organized
criticality, and the necessary conditions for the occurrence of self-organized criticality are
still unclear. With previous research work [33–35], we give a summary and descriptive
definition. Self-organized criticality describes non-linear or complex dynamical systems
independent of external parameters, which are driven by energy and evolve into self-
organized critical points. Once the dynamical systems reach critical points, “avalanches”
of energy release will happen along with scale-free property and power-law distribution.
The sandpile model as a prototypical self-organized criticality system is usually used to
investigate the characteristics [33,36]. In meteorology and hydrology, Deluca et al. [37,38]
compared the intensities across different climates from the atmospheric radiation mea-
surement database of high-resolution (1-min) with a sandpile model. The results indicate
high-resolution precipitation data is in agreement with self-organized criticality hypothesis.
“Episodic” precipitation events decided by a certain threshold, similar to avalanches in
self-organized criticality sandpile models, can be defined as an additive effect of the pre-
cipitation over a certain time period. That is, occurrence of precipitation events, subject
to threshold, can be regarded as “collapse” actions of the self-organized criticality system.
Then, (1) for observation station data and low-resolution precipitation data (daily), is pre-
cipitation still a self-organized criticality system? (2) In China, affected by complex weather
and climate systems, is precipitation still a self-organized criticality system? Here, inspired
by the concept of self-organized criticality, a key variable “quiet time” is defined as the
time that precipitation spends below threshold, i.e., the interval of the adjacent precipi-
tation events for a certain threshold. Accordingly, based on low-resolution precipitation
data (daily), we studied the characteristics of probability density function of quiet time in
different thresholds in China and focused on the questions above, and tried to find out the
underlying dynamics mechanism of precipitation.

2. Data and Method
2.1. Data

The daily precipitation data from 1960 to 2017 from April to September (Chinese rainy
season) from 194 international exchange stations in China are considered. The dataset
is provided by the Chinese Meteorological Data Service Center (CMDC), China Meteo-
rological Administration (CMA). After validating the data by screening and eliminating
suspicious and missing records to ensure their continuity and consistency, 174 meteorologi-
cal observation stations data remained. Considering the evenness of the spatial distribution
of observation stations, the east area of 105◦ E China is chosen. Figure 1 shows the locations
of observation stations in this study.
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Figure 1. Locations of observation stations in the study.

2.2. Method

Compared to concepts of self-organized criticality and precipitation systems, to a
given threshold, the occurrence of precipitation events is considered as the collapse of a
precipitation system. The time that precipitation spends below threshold is quiet time. In
detail, quiet time is defined as follows:

The precipitation events threshold q is determined by the nonparametric percentile
method defined by Bonsal [39]. Sorting precipitation observed data {x(j), j = 1, 2, · · · , N}
in ascending order as x1, x2, · · · , xm, · · · , xn, the probability (P) of any value less than or
equal to xm is obtained as Equation (1),

P = (m− 0.31)/(n + 0.38) (1)

Considering the daily precipitation data for April to September at every station in every
year, n = 183 and the threshold for the 90th percentile is obtained by linear interpolation
between x165 (P = 89.8%) and x166 (P = 90.4%). The rest of the percentile thresholds can be
obtained in a similar way.

For the given threshold q, the first to last daily precipitation value exceeding the
threshold is regarded as one precipitation event, and the interval between two adjacent
precipitation events for the same threshold q is defined as the quiet time τ. Figure 2 shows a
schematic diagram of the quiet time for a certain time period. Once the percentile threshold
q is set, the corresponding number of precipitation events Nq and quiet time sequence
can be obtained. According to the physics implication of quiet time as shown in Figure 2,
a longer quiet time corresponds to a longer waiting time required for the occurrence of
precipitation events. Additionally, such precipitation events are more dispersed in time,
and the chances of clustering are weaker. In contrast, shorter quiet times indicate that
such precipitation events occur more frequently, and therefore, clustering possibilities are
stronger. To examine the variation in precipitation events with different intensities, the
percentiles 30, 40, 50, 60, 70, 80 and 90 are selected in this study. For the corresponding
sub-percentile threshold of q, the quiet time series under the corresponding percentile
threshold is denoted as

{T30(j), T40(j), T50(j), T60(j), T70(j), T80(j), T90(j)}, (j = 1, 2, 3, · · ·).

The high q thresholds are corresponded to extreme precipitation events, and “recur-
rence period” is commonly used to represent the occurrence probability of such events.
In fact, the recurrence period represents a probabilistic turning period that provides the
average time interval over a long period of time [40] for the occurrence of precipitation
with the same intensity. The recurrence period definitely depends on the threshold cho-
sen. However, it cannot be used to explain the relationship between different extreme
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precipitation events with different thresholds. It cannot describe the internal dynamic
mechanism from the perspective of nonlinear characteristics, either. Quiet time is defined
from the concept of self-organized criticality system. It presents the inherent property of
self-organized criticality system. From this point of view, the definition of quiet time has a
more practical physics value.
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To compare the clustering precipitation characteristics for the same intensity, the
average quiet time (τq) of precipitation events is defined. If the sample size of N → ∞ ,

then ∑
Nq
i=1 τq(i) ≈ N. The average quiet time (τq) can be defined as follows:

τq =
∑

Nq
i=1 τq(i)

Nq
∼=

N
Nq

(2)

The smaller average quiet time corresponds to more precipitation events occurring.
In such cases, precipitation is observed more frequently as an indication of cluster-
ing characteristics.

3. Self-Organized Critical Characteristics of Precipitation Events

The probability density distribution of quiet time τ for different intensity precipita-
tion events will be examined. The results showed that the probability density of quiet
time for different thresholds approximately follows the power-law distribution function
(Equation (3)).

Pq(τ) ∼
1

τβ
(3)

To exclude the possible influence of time series length on the power-law exponent of
quiet time, the observations of Beijing Station are considered as an example. Every five-year
data point is extended to form 11 time series, i.e., 1960–1965, 1960–1970 . . . , and 1960–2016.
The average exponent β of the probability density function is calculated about the quiet
time for 11 time intervals. Intervals 1–11 are used to denote each time series. Figure 3
shows the change in β with the 11time intervals. As shown in Figure 3, the trend coefficient
is −0.1, and it is not significant at the 5% level. The mean value of all β values is 1.2. Thus,
the length of the time series has little influence on the exponent β of quiet time. Therefore,
it is feasible to select 1960 to 2017 precipitation data to analyze the characteristics of the
probability density function of quiet time.
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Figure 4a shows the probability density function considering the quiet time of precip-
itation events with different thresholds using the double-logarithmic coordinate system
for Beijing Station. The fitting curve under each threshold is close to the power-law dis-
tribution with an exponent β of 1.2. Among them, the probability density distribution of
precipitation events within the 30–70 percentile thresholds is basically consistent; that is,
when the threshold does not exceed the 70th percentile, the probability density distribution
of quiet time has nothing to do with the threshold. Moreover, there is a faster decay at the
tail, which deviates far from 1

τ1.2 . This result may be caused by the finiteness of the length
of the time series. For extreme precipitation events with a threshold exceeding the 70th
percentile, the probability density functions agree with the power-law function. In the tail
part, there is also a faster decay. However, the decay is obviously weakened. These results
are consistent with the previous assumption that the occurrence of extreme precipitation
events conforms to the collapse characteristics of the self-organized critical model. Once
the quiet time follows a power-law distribution, its probability density function can be
represented by a scale law independent of the threshold, as shown in Equation (4):

Pq(τ) '
1

τβ
f0(τ/a) (4)

where a is the scale parameter related to percentile threshold q and f0 is the scale equation. f0
is constant when τ is small; otherwise, it corresponds to a fast decay or exponential equation.
When it is around the critical point or it is independent of the length of the time series, a is
divergent, f0 tends to be constant, Pq(τ) is a power-law distribution, and β is the true critical
exponent. For 1 < β < 2, 〈τ〉 ∝ a2−β,

〈
τ2〉 ∝ a3−β, and a ∝

〈
τ2〉/〈τ〉, aβ ∝ 〈τ2〉2/〈τ〉3.

Therefore, the axes in Figure 4a can be rescaled [38,41] so that quiet time is dimensionless,
as shown in Figure 4b. The probability density functions of quiet time in precipitation
events with different thresholds are very similar without the influence of the length of
the time series. This finding theoretically demonstrates the scale-free property. Figure 4c
shows that the probability density distributions of quiet time are also similar with three
different time scales (day, pentad and ten-day periods) of the precipitation events with
30 percentile thresholds. This finding further shows the precipitation event time scale-free
property. In addition, six observation stations distributed in different regions of eastern
China are selected. Nanjing (NJ), Wanyuan (WY) and Hefei (HF) are at approximately
the same latitude. Quzhou (QZ), Leting (LT) and Ganyu (GY) are at approximately the
same longitude. The probability density functions in different regions also follow power-
law distributions with β1.2 nearby (Figure 4d). This finding shows the spatial scale-free
property of precipitation events. All the results are consistent with the assumption that
precipitation is a real-world example of self-organized criticality.
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Figure 4. Probability density functions τ of precipitation events: (a) in different thresholds; (b) after
rescaling; (c) in different time scales; (Beijing Station) (d) in different stations (Quzhou, Leting,
Nanjing, Ganyu, Wanyuan, Hefei).

The simulation of the formation and characteristics of the self-organization critical state
is studied with a sandpile model. The specific distribution of the quiet time in the model can
be described with the first-order approximation of Γ distribution Equation (5) [42,43]. For
m ≥ 0, it is the minimum quiet time of the distribution, and γ is the scale parameter, where
if m = 0, γ > 0, and if m > 0,−∞ < γ < +∞, and a is the scale parameter greater than zero
(increasing with threshold). The standard parameter Γ

(
γ, m

a
)

is a high-order incomplete
Γ distribution determined by Γ(γ, z) =

∫ ∞
z xγ−1e−xdx. Through the parameterization,

the exponent β = 1 − γ of the power-law distribution can be determined. Thus, the
theoretical probability density of quiet time Equation (6) for precipitation events can be
obtained as shown in Figure 5. Compared with Figure 4a, the theoretical characteristics
of the probability density distribution of quiet time are consistent. For the low percentile
threshold, there is rapid decay in the tail, while the distribution pattern is close to the
power-law distribution function with a high percentile threshold. Therefore, the above
results provide a certain theoretical foundation for the predictability of precipitation.

1
Γ
(
γ, m

a
) ' { 1/Γ(γ), γ > 0

−γ
(m

a
)−γ, γ < 0

(5)

Pq(τ) =
1

aΓ
(
γ, m

a
)( a

τ

)1−γ
e−τ/a (6)
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4. Practical Application of Self-Organized Critical Precipitation Events
4.1. Variables β and τq

The precipitation quiet time with different thresholds follows a power-law distribution
and scale-free characteristics. To obtain the full view, the data of other stations in eastern
China are similarly explored. Figure 6 shows the spatial distribution of the mean power-
law exponent β for the probability density of precipitation quiet time data with different
thresholds. β changes from 1.05 to 1.20 (scale-free features are also consistent, and details
are not given here). The larger β, the faster Pq(τ) decays, and the slope −β of Pq(τ) in
the double-logarithmic coordinate system is smaller. For the same probability, the larger β,
the smaller τ is and the clustering of precipitation is stronger. That means precipitation
events occur more easily. As shown in Figure 6, the regions with high values are mainly
concentrated in the Changjiang-Huaihe River basin, indicating that precipitation events
more easily occur in clusters. Therefore, these regions are sensitive to precipitation events
and deserve more attention. In fact, precipitation in these areas has shown a significant
increasing trend in recent years [11,12,44,45]. In particular, these areas are located in the
economically developed Yangtze River Delta area and become very concentrated in flood
season precipitation forecasts. The regions with low β values were mainly concentrated in
central Inner Mongolia and northeast and southwest China, where precipitation events do
not easily occur.
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According to Equation (2), τq demonstrates that q-percentile precipitation events easily
occur. Then, the distribution of τq can show the clustering characteristics of precipitation
events (Figure 7). The above analytical results (Figure 4a) indicate that quiet time PDFs
for 30–70 percentile precipitation events are consistent, while quiet time PDFs for extreme
precipitation events exceeding the 70th percentile are closer to the power-law distribution.
Therefore, defining 30-percentile precipitation events is representative of usual intensity
precipitation events (UPEs), and 90-percentile precipitation events are extreme intensity
precipitation events (EPEs). UPEs easily occur and cluster mainly in the middle Yangtze
River basin, east of the Sichuan Province and north of the Gansu Province in approximately
1.5–2.0-day intervals (Figure 7a). UPEs are relatively concentrated in these regions. In these
regions, UPEs are common. The high-value regions of UPEs are mainly in eastern Inner
Mongolia, the Liaoning Province and the Shandong Province, which indicates that UPEs
are relatively sporadic. However, the τq of EPEs is high in the south and low in the north.
Rainy season in south China begins early and ends late, which could result in EPEs being
relatively dispersed. In north China, EPEs more easily occur in the rainy season. EPEs in
the north are usually affected by northeastern cold vortices, whose life cycles are 5–7 days.
This phenomenon may cause strong clustering in the north [46–48].
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4.2. Warning Information for Precipitation Events Based on the Hazard Function

Considering that the conventional precursory pattern-recognition method requires
a large amount of data and cannot capture long-term clustering [49–51], we use hazard
function Hq to study the probability prediction of precipitation events. The hazard function
is sensitive to both clustering and repelling of events. Equation (7) gives the probability
per unit time that the quiet time for events defined by a threshold given by percentile q
terminates between tw and tw + dtw, given that it has exceeded tw.

Hq(tw)dtw =

∫ tw+dtw
tw Pq(τ)dτ∫ ∞

tw Pq(τ)dτ

=
Pq(tw)dtw

Sq(tw)

(7)

Sq =
∫ ∞

tw
Pq( τ)dτ (8)

where Sq is the survivor function [52], the probability that the quiet time is greater than tw.
The hazard function can be constructed numerically via the quiet time PDF and the survivor
function. Hq gives a probabilistic forecast; then, we only give the warning information
with a hazard function, and here predictive quality assessment is not involved. Quiet time
means the duration of silence between two adjacent events; once quiet time terminates, the
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event will occur. Therefore, the value Hq shows the probability per unit time of a given
q-percentile precipitation event occurring after the silence ends. Figure 8 gives the hazard
function for quiet times Hq of Beijing station precipitation for different thresholds. For the
same tw, the more extreme the event is, the less likely it is to occur in the next time, i.e.,
normal events are more likely to occur; for the same Hq in which an event is expected in
the next unit time, the more extreme the event is, the shorter the quiet time is. According to
the instruction significance, the probability of breaking the silence and the precipitation
event occurring can be obtained in eastern China in the current climate.
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Figure 8. Hazard functions Hq of quiet time in different thresholds (Beijing Station).

For different intensities of precipitation events, if the quiet time is the mean quiet time
τq in the current climate, according to Hq, we can obtain the occurring probability, which
can give some warning information about the coming precipitation events. Figure 8 shows
the occurrence probability of precipitation events. As shown in Figure 9a, for UPEs, the
large-probability regions are mainly in the Hubei Province and the Hunan Province, where
the usual precipitation events are more likely to occur at the next time. The low-probability
regions are mainly in the Huanghuai Basin, North China and Northeast China, where
ordinary precipitation events do not occur easily. For EPEs (Figure 7b), the east Sichuan
Province, the Guizhou Province, the Guangxi Province and Northeast China are mainly the
large-probability regions, where extreme events more easily occur, which is consistent with
the previous analysis (Figure 7b). These regions, prone to extreme precipitation events,
need more attention.
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5. Conclusions and Discussion

Considering existing research work, precipitation could be a real-world example of
self-organized criticality. Then, the occurrence of precipitation events is the collapse of
the self-organized criticality system. Therefore, the percentile threshold method is used
to detect different intensities of precipitation events of daily precipitation data from 1960
to 2017 in the rainy season in east China. The interval of the adjacent events is defined
as quiet time τ, which can describe the duration of the same threshold occurrence. The
probability density function of quiet time with different precipitation thresholds follows
a power-law distribution and scale-free properties. For the 30–70 percentile precipitation
events, quiet time PDFs are consistent and have nothing to do with the threshold, while for
the 70-percentile extreme precipitation events, they are closer to the power-law distribution.
Compared with the sandpile model, the Γ function describing the collapse behavior can
better scale the precipitation quiet time distribution characteristics. In other words, for
observation station data and low-resolution precipitation data, even in China, affected
by complex weather and climate systems, precipitation is still a real-world example of
self-organized criticality in synoptic scale. Because there is not enough long-time series, pre-
cipitation events on longer time scales such as month, season, year, etc., are not considered
here. Subsequently, we may consider using a weather generator to get enough precipitation
time series to study the nonlinear characteristics of precipitation at a longer scale.

In addition, several interesting variables involved in the analysis of precipitation self-
organized criticality characteristics are used. The power-law exponent β of the probability
density of precipitation quiet time indicates the clustering degree. The higher β is, the more
likely a precipitation event is to occur. The Changjiang-Huaihe River basin is prone to
precipitation events in the rainy season with high β. According to the analysis of different
percentiles of the probability density function of quiet time, 30-percentile precipitation
events are defined as UPEs, and 90-percentile precipitation events are EPEs. Combined with
the indicative meaning of the value τq, which means q-percentile precipitation events easily
occur, the middle Yangtze River basin, east of the Sichuan Province and north of the Gansu
Province are known areas in which UPEs easily occur. In addition, the northern area more
easily generates EPEs. The prediction of precipitation events based on hazard functions is
also studied. The Sichuan Province, the Hubei Province and the Hunan Province are highly
likely to experience UPEs in the next mean quiet time. The Sichuan Province, the Guizhou
Province and Northeast China are more likely to have EPEs.

Precipitation is a synergistic result of different spatial-temporal nonlinear systems, and
understanding its dynamics and mechanisms is a complex and long-term process. Here,
only the self-organized criticality characteristics of precipitation events in synoptic scale
are briefly analyzed. Furthermore, how do the interdecadal changes over time affect the
clustering features of precipitation events? How do extra-forcing signals affect precipitation
clustering? These are research questions we will continue to address.
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