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Abstract: With the exponential growth in the amount of available data, traditional meteorological
data processing algorithms have become overwhelmed. The application of artificial intelligence in
simultaneous prediction of multi-parameter meteorological data has attracted much attention. How-
ever, existing single-task network models are generally limited by the data correlation dependence
problem. In this paper, we use a priori knowledge for network design and propose a multitask model
based on an asymmetric sharing mechanism, which effectively solves the correlation dependence
problem in multi-parameter meteorological data prediction and achieves simultaneous prediction of
multiple meteorological parameters with complex correlations for the first time. The performance of
the multitask model depends largely on the relative weights among the task losses, and manually
adjusting these weights is a difficult and expensive process, which makes it difficult for multitask
learning to achieve the expected results in practice. In this paper, we propose an improved multitask
loss processing method based on the assumptions of homoscedasticity uncertainty and the Laplace
loss distribution and validate it using the German Jena dataset. The results show that the method can
automatically balance the losses of each subtask and has better performance and robustness.

Keywords: homoscedasticity uncertainty; meteorological data; correlation dependency; multitask
learning; Laplace loss distribution

1. Introduction

Changes in meteorological factors (such as wind speed, temperature, humidity, pre-
cipitation, etc.) have a profound impact on human life. Accurate prediction of future
meteorological elements can be widely used in people’s daily life, transportation, agricul-
ture, forestry and animal husbandry, disaster-causing weather avoidance, and other fields.
At the same time, accurate prediction of meteorological elements can provide forward-
looking guidance for extreme weather warnings, military analysis, and future investment,
thus helping various departments to make advance coordination arrangements according
to weather changes [1].

In the early stage, scholars used statistical algorithms and model prediction methods
to predict meteorological elements [2,3], i.e., using weather science, dynamics, and other
meteorological theories to investigate the changing patterns of the corresponding elements
under the initial and boundary conditions. Since the construction of such models generally
requires the application of a large number of assumptions, there are many limitations
and discrepancies with the actual situation. Therefore, some scholars have introduced
statistical-based algorithms [4,5]. Such algorithms infer the probability of occurrence of a
phenomenon in a future period by counting the frequency of a phenomenon in a specific
situation in a past period. However, such algorithms are subject to some errors brought
about by statistics itself, making the accuracy of the prediction suffer to some extent. In the
last decade, with the continuous upgrading of relevant meteorological observation facilities,
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the amount of data and the types of meteorological parameters obtained from observations
have increased geometrically [6]. The huge amount of data and the wide variety of data
types have led to the fact that traditional algorithms such as statistical algorithms and
model prediction methods can no longer meet the demand for real-time prediction of multi-
parameter meteorological data. In contrast, with the great breakthroughs in information
technology and intelligent algorithm techniques, artificial intelligence (AI) technologies
have produced quite mature results in the fields of machine learning, image recognition, and
big data analysis. Therefore, researchers are also actively exploring new ideas for applying
AI techniques to the field of multi-parameter meteorological data prediction [7–11].

Single-task learning methods have been widely used in previous research on multi-
parameter meteorological data prediction [12,13]. The idea of using single-task learning
for meteorological data prediction is to decompose a complex meteorological problem into
simple and mutually independent subproblems solved individually and then combining
the results to obtain the results of the initial complex problem. This may seem reasonable,
but it is inappropriate. On the one hand, the subproblems of the meteorological prediction
problem are often interrelated and linked by some common factors or common represen-
tations [14]. If the multi-parameter meteorological data prediction problem is treated as
multiple independent single tasks, the rich information such as associations, conflicts, and
constraints between parameters will be ignored. On the other hand, in previous studies
using single-task learning methods for prediction multi-parameter meteorological data,
artificially selected meteorological parameters with strong correlations are usually used
for forecasting to guarantee the prediction results. This operation discards the correla-
tion information between the selected parameters and other parameters, which weakens
the generalization performance of the model. When the prediction task contains multiple
weakly correlated meteorological parameters, the single-task learning approach is no longer
applicable. We refer to this phenomenon as the correlation dependence problem of the
prediction parameters.

Multitask learning is an important class of machine learning paradigms that aims
to improve the generalization of the main task with other related tasks. In simple terms,
multitask learning is an integrated learning approach that allows multiple tasks to influence
each other by training several tasks simultaneously. Usually, this influence is achieved by
sharing parameters, i.e., multiple tasks share a feature-sharing layer, and the parameters
in this feature-sharing layer are influenced by all tasks at optimization time [15]. By
designing different feature-sharing layers for subtasks, the parameter-sharing process
between different features can be artificially intervened, which is called the asymmetric
sharing mechanism of multitask learning. Compared to single-task learning, multitask
learning has the advantages of reduced computational resource usage, faster inference,
and improved overall performance and generalization capabilities. At the same time,
the asymmetric sharing mechanism endows multitask learning with higher flexibility.
Therefore, we believe that the neural network design based on prior knowledge and the
asymmetric sharing mechanism is expected to solve the correlation dependence problem of
prediction parameters in single-task learning and provide a new solution for the prediction
of complex correlation meteorological data.

Currently, only a few studies in the field of meteorological data prediction have
used multitask learning methods. Lucas Borges Ferreira et al. [16] evaluated different
approaches based on temperature and relative humidity and temperature estimation of
ETo using multitask models and single-task models. Yang Han et al. [17] proposed a
multitask machine learning model to re-estimate official air quality data during the recent
BSD using PM data reported by the U.S. Embassy in Beijing and proxy data covering
aerosol optical depth (AOD) and meteorology. Qiang Zhang et al. [18] combined deep
learning with multitask learning to propose a hybrid model for air quality prediction
and proved experimentally that the model has good temporal stability and generalization
ability. The introduction of multitask learning methods in the field of meteorological
data prediction is novel and efficient, but due to the nature of meteorological data and
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multitask learning, there are still problems such as over-sensitivity to outliers, failure of
simultaneous convergence of the tasks, and degradation of multitask learning to single-
task learning. This is due to the following reasons: Simultaneous prediction tasks for
multi-parameter meteorological data involve the joint learning of multiple regression tasks
with different numerical scales, which creates an interesting multitask learning problem.
Previously, multitask learning methods used simple loss-weighted summation, where
the loss weights for each task were uniform or manually adjusted. Recently, it has been
found that the performance of multitask models is highly dependent on the selection of
appropriate weights for the losses of each task. The optimal weight for each task depends
on the numerical scale and, ultimately, on the magnitude of the task noise [19]. In this
case, manually adjusting these weights is a difficult and expensive process, which makes it
difficult for multitask learning to achieve the desired results in practice.

To address this problem, Sener et al. [20] transformed a multitask model into a multi-
objective optimization problem to find a Pareto optimal solution. Kendall et al. [19] achieved
better results on a multitask model for joint semantic segmentation, instance segmentation,
and depth regression of monocular input images in the field of computer vision based
on the uncertainty of Bayesian deep learning [21]. Compared with the field of computer
vision, meteorological data have special characteristics. Specifically, there are many outliers
in meteorological data, which are related to the prediction of extreme meteorological
phenomena and cannot be eliminated artificially. Such data characteristics dictate the need
to design a multitask learning loss function that can facilitate simultaneous convergence
of the subtasks without being too sensitive to outliers in the data. It is well known that
MAE losses exhibit better robustness than MSE losses due to different loss distribution
assumptions based on them. Therefore, replacing the Gaussian loss distribution assumption
with the more robust Laplace loss distribution assumption, interpreting the homoscedastic
uncertainty as the basis for task-related weight assignment, and using it as noise for weight
optimization in multitask learning are expected to improve the multitask loss treatment
method based on uncertainty measures. We have reason to believe that the novel multitask
loss function derived based on this approach can both learn how to best balance various
regression losses and have better robustness.

In this study, we aim to propose a multitask model for simultaneous prediction of
multiple meteorological parameters with complex correlations. The objectives of this study
include: (1) proposing an improved regression loss function that can learn multi-scale
data simultaneously based on the assumptions of the Laplace loss distribution and ho-
moscedasticity uncertainty; (2) designing a network structure based on multitask learning
and an asymmetric sharing mechanism for simultaneous prediction of multi-parameter
meteorological data and verifying whether the multitask model based on the asymmetric
sharing mechanism can effectively solve the problem of the correlation dependence of mete-
orological parameters in single-task learning; (3) taking the simultaneous prediction task of
multi-parameter meteorological data as an example to explore the method of applying the
asymmetric sharing mechanism of multitask learning in meteorological data prediction and
verifying the importance of loss weighting in multitask deep learning through experiments.

2. Data and Model
2.1. Data Description and Data Preprocessing

In this paper, the German Jena dataset was used for relevant research, which is com-
monly used in the field of meteorology and is recorded by the weather station of the Max
Planck Institute for Biogeochemistry in Jena, Germany. Since 2003, this weather station has
collected meteorological data every 10 min and records a summary containing 14 different
characteristics such as relative humidity, atmospheric pressure, daily precipitation, water
vapor concentration, air density, wind speed, wind direction, global radiation, photosyn-
thetically active radiation, Earth’s net radiation, carbon dioxide concentration, surface
temperature, and soil temperature. This paper used data collected from this weather station
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between 2009 and 2016, and the dataset was obtained from the following URL on 15 October
2021: https://s3.amazonaws.com/keras-datasets/jena_climate_20-09_2016.csv.zip.

2.1.1. Data Standardization

In deep learning, data normalization facilitates initialization, avoids numerical prob-
lems for gradient update, facilitates adjustment of learning rate, optimizes the search
trajectory, and improves optimal solution search speed. Standardization methods include
min–max standardization, z-score standardization, atan inverse tangent function standard-
ization, and log function standardization, among which min–max standardization and
z-score standardization are the two most common methods in structured data processing.
The standardized expression of min–max and the z-score is shown in Equations (1) and (2).

x∗ =
x−min

max−min
(1)

x∗ =
x− µ

σ
(2)

Usually, if the sample is less noisy and not heavily contaminated, it is preferable to use
min–max normalization, with strictly the same dimensional proportions and comparable
impact of distance calculation. If the mean information is meaningful, z-score normalization
is recommended, which has different, but very similar dimensions and can retain more
information from the original data. The distribution of meteorological data is highly regular,
and some features have strong physical correlations. The mean value of each feature is
important for prediction work. Therefore, it is reasonable to use the z-score normalization
method for the dataset.

2.1.2. Correlation Analysis

Correlation analysis is the process of quantifying the correlation between variables [22],
which describes quantitatively the strength of the correlation between two or more variables
by calculating the correlation coefficients between the variables. In this paper, we used
Pearson product-moment correlation coefficients to characterize the strength of correlation
between meteorological parameters. An absolute value of the correlation coefficient close
to 1 means that two or more variables have a strong relationship with each other, while an
absolute value of the correlation coefficient close to 0 means that the variables have almost
no correlation.

By calculating the covariance and standard deviation of the samples, the Pearson
product-moment correlation coefficient r of the two variables samples X and Y can be
obtained as shown in Equation (3).

r =

n
∑

i=1
(Xi − X̄)(Yi − Ȳ)√

n
∑

i=1
(Xi − X̄)

2

√
n
∑

i=1
(Yi − Ȳ)

2
(3)

Taking the Jena dataset as an example, the correlation coefficients between the me-
teorological parameters contained in the Jena dataset were calculated and the results are
shown in Table 1.

https://s3.amazonaws.com/keras-datasets/jena_climate_20-09_2016.csv.zip
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Table 1. Correlation coefficients between the parameters in the Jena dataset.

Correlation
Coefficient

T P RHO RH WV SH H2OC

T 1.0000 −0.0453 −0.9634 −0.5724 −0.0046 0.8668 0.8671
P −0.0453 1.0000 0.3076 −0.0183 −0.0057 −0.0697 −0.0698

RHO −0.9634 0.3076 1.0000 0.5142 0.0032 −0.8533 −0.8537
RH −0.5724 −0.0183 0.5142 1.0000 −0.0050 −0.1508 −0.1509
WV −0.0046 −0.0057 0.0032 −0.0050 1.0000 −0.0094 −0.0095
SH 0.8668 −0.0697 −0.8533 −0.1508 −0.0094 1.0000 0.9999

H2OC 0.8671 −0.0698 −0.8537 −0.1509 −0.0095 0.9999 1.0000

From the data in Table 1, it can be seen that wind speed and barometric pressure show
obvious weak correlations with most of the parameters, and other parameters have more
obvious strong correlations with each other. In the next experiments, water vapor content,
specific humidity, wind speed, and air pressure were selected as a set of experimental
parameters to demonstrate the advantages of multitask learning models in predicting
multiple complex correlated meteorological parameters. Among them, water vapor content
and specific humidity share a feature-sharing layer due to the obvious strong correlation.
To prevent the learning from falling into local optima, two new feature-sharing layers
were designed based on the strength of correlation for wind speed and air pressure to
specify water vapor content and specific humidity as intermediate variables, respectively,
when dealing with the prediction problem of wind speed and air pressure. To demonstrate
the importance of loss weighting in multitask learning and to prove that the Laplace loss
function has better performance and robustness, temperature (T), atmospheric density
(RHO), specific humidity (SH), water vapor content (H2OC), relative humidity (RH), and
atmospheric pressure (P) were selected as another set of experimental parameters in this
paper. When using this set of experimental parameters, three feature-sharing layers need
to be constructed for each model based on the results of the correlation analysis, and the
feature-sharing layer structures are shown in Figure 1.

Figure 1. Schematic of the asymmetric shared layer structure.

2.1.3. Time Sliding Window Processing

Time sliding window processing is the main means of transforming time series data
into a supervised learning problem, and the mechanism of action is to process the data for
each period in chronological order to obtain the features contained in the target for each
period, then to obtain the trend of the data from successive time segments by analyzing
the same features in different time dimensions [23]. To convert the time series problem
into a supervised learning problem, a time sliding window is required for the original Jena
dataset. First, the designed time window is used to intercept the historical meteorological
data, and the processing process is shown in Figure 2. In this paper, time windows of
sizes 72 and 24 were taken to process the dataset, respectively, and finally, multiple sets of
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multidimensional feature data with 72 samples as a group and multidimensional target
data with 24 samples as a group were generated. Then, the transformed data were manually
divided into training and testing sets using a ratio of 8:2, and 25% of the total data in the
training set were used as the validation set.

Figure 2. Schematic diagram of data time sliding window processing.

2.2. Multitask Loss Processing Method Based on Homoscedasticity Uncertainty Weighting

Multitasking can improve model representation and task performance compared to
single-tasking. However, multitask learning often faces an important challenge: How do
we define a uniform loss function for multitask learning? In general, the gradient size
during the convergence of different subtasks is different, and the sensitivity to different
learning rates is also different. Most articles, reviews, or journals on multitask learning
focus on iterations and innovations in network structure, hoping to capture the correlation
between different tasks. However, this paper argues that optimization and design for
multitask learning loss are also very important. Most of the previous applications of
multitask learning use a simple linear weighted summation approach to integrate the losses
of different tasks, as in Equation (4).

Ltotal = ∑
i

ωi Li (4)

This approach has some shortcomings, such as some subtasks performing better when
the model converges, while others do not perform as well. The reason behind this is that
although this approach allows us to manually adjust the importance of each task, the
fixed weights stay with the training cycle, and since different tasks are learned at different
levels of difficulty and different tasks may be at different learning stages at the same time,
such fixed weights may limit the learning of a task at a certain stage. Therefore, a better
weighting approach should be dynamic. In this paper, we want to find a more convenient
method to automatically learn the optimal weights.

Uncertainty includes perceptual uncertainty, which is caused by incomplete training
and can be addressed by using more training data to compensate for the lack of existing
model knowledge, and chance uncertainty, which describes the randomness originating
from the data generation process itself [24,25] and is essentially noise that cannot be
eliminated simply by collecting more data. Homoscedasticity uncertainty is a type of
chance uncertainty that does not depend on either the input data or the output results
of the model. It is an identical constant for all input data, and it is a different variable
for different tasks. In multitask learning, the corresponding uncertainty between tasks
reflects the inherent uncertainty between regression or classification tasks, influenced by
aspects such as the magnitude between tasks and the form of the representation. Therefore,
homoscedasticity uncertainty can be used as the basis for a polynomial loss function based
on a weighted formula.

To balance the losses of each meteorological data prediction task, this paper introduces
homoscedasticity uncertainty in the field of multi-parameter meteorological data prediction
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and transforms the loss function of simple weighted summation into an uncertainty loss
function. In this section, we assume that the losses of meteorological data prediction tasks
conform to the Laplace distribution and derive a multitask loss function based on ho-
moscedastic uncertainty and Laplace likelihood maximization, which treats homoscedastic
uncertainty as noise to optimize the weights in multitask learning. Let the output of a
neural network be with input x and weight value W. For the regression task, the probability
model can be defined as a Laplace distribution function whose mean value is given by the
model output:

p(y| f w(x)) = La( f w(x), λ) (5)

Under the observed noise scalar, to match the classification task, the model output is
processed using the softmax function and sampled from the generated probability vector:

p(y| f w(x)) = So f t max( f w(x)) (6)

In the presence of multiple outputs y1, . . . ,yk and assuming independent identical
distribution among tasks, define f w(x) as a sufficient statistic. The multitask likelihood is
estimated as:

p(y1, . . . ,yk| f w(x)) = p(y1| f w(x)) . . . p(yk| f w(x)) (7)

Maximize the log-likelihood of the model in maximum likelihood inference for the
regression task with the following log-likelihood estimates:

logp(y| f w(x)) ∝ − 1
λ
||y− f w(x)|| − log λ (8)

For a Laplace likelihood function, this paper defines the noise observation parameter
of the model, which is used to capture the amount of noise in the model output.

Based on the above theoretical derivation, for the two regression tasks, the loss function
can be defined:

− logp(y1,y2| f w(x)) ∝
1

λ1
||y1 − f w

1 (x)||+ 1
λ2
||y2 − f w

2 (x)||+ log λ1λ2 (9)

In the above equation, λ1 and λ2 can be regarded as the weight relationship factors of
the loss functions of the two regression tasks, respectively, and log λ1λ2 can be regarded
as the regular term of the weight relationship factors λ1 and λ2. Let L1(w) = ||y1 −
f w
1 (x)||, L2(w) = ||y2 − f w

2 (x)||; the process of minimizing the relationship between losses
and λ1 and λ2 can be interpreted as adaptively learning the relative weights of the losses
L1(w) and L2(w) based on the data. When λ1 (the noise parameter of variable y1) increases,
the weight of L1(w) decreases. Conversely, the weight of the corresponding target increases
when the noise decreases. The last term as a regularized noise term can effectively ignore
the data and, thus, suppress excessive noise increase.

2.3. Multi-Parameter Meteorological Data Synchronization Prediction Model

In this paper, a multitask architecture that allows simultaneous learning of multiple
meteorological parameters is proposed, which allows designers to design the network
structure based on the correlation between variables using the asymmetric sharing mech-
anism of multitask learning and solves the problem of single-task model design, which
relies heavily on the correlation of variables. From the pre-experiments, it is shown that
the LSTM-GRU stacked network as the underlying structure has better performance and
smaller computational overhead in dealing with the weather data prediction problem.
Therefore, in this paper, multiple LSTM-GRU stacking structures were used as the un-
derlying structure, which generates multiple asymmetric shared representations at the
merge layer based on parameter correlation and then connects the corresponding number
of several subtasks at the time-distributed and fully connected layers. A summary of the
model structure is given in Figure 3.
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Figure 3. Architecture of simultaneous multi-parameter meteorological data prediction. The total
loss of the network is generated by the backbone layer, weighted by the Laplace multitask loss layer,
and the gradient updates the parameters of the Laplace multitask loss layer while back propagating.

2.3.1. RNN Layer

Recurrent neural networks are mnemonic and parameter sharing and have Turing
completeness and, therefore, have an advantage in learning nonlinear features of sequences.
LSTM and GRU are two variants of the common RNN that can effectively solve the gradient
disappearance problem. LSTM adds three gates: input gate, forget gate, and output gate.
The input gate handles the input of the current sequence position and consists of two parts,
the results of which are multiplied to update the cell state; the forget gate controls whether
to forget the hidden cell state of the previous layer with a certain probability; the output
gate is updated by the calculation results of the previous forget gate and the input gate;
the GRU structure is similar to the LSTM, but simpler than the LSTM, containing only
two gates: the reset gate and the update gate. The reset gate controls the information of
the previous moment with a certain probability, which is helpful to obtain the short-term
dependency in the temporal data; the reset gate decides whether to discard the past implicit
states that are not related to the latter, i.e., the reset gate controls the forgetting proportion of
the historical information; the update gate substitutes the state information of the previous
moment into the current state to update all the candidate implicit states, which is helpful to
obtain the long-term dependency in the temporal data. Compared with GRU, the LSTM
model is more parameterized, more powerful, and more expressive, but it is slower to train
because of its complex structure.

2.3.2. Laplace Multiple Loss Processing Layer

In the multitask learning process, the gradient size of different subtasks converges
differently and the sensitivity of different subtasks to different learning rates varies, which
leads to the failure of the multitask model to achieve the desired results. In this paper,
we used homoscedasticity uncertainty as the theoretical basis for deriving the weighted
polynomial loss function, assumed that the loss of each subtask obeys the Laplace dis-
tribution, and derived a class of regression loss functions that can learn multi-scale data
simultaneously, which is named the Laplace loss function. In this loss function, define the
observed noise value and let the process of minimizing the relationship between losses be
interpreted as adaptively learning the relative weights of losses based on the data. Based on
the above work, a Laplace loss processing layer is constructed in this paper. This processing
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layer updates the weight parameter of each subtask synchronously with training during
the multitask model learning process, adjusts the relative weight of each task in the loss,
and thus, promotes the simultaneous convergence of each subtask, optimizes the multitask
learning process, and obtains the multitask learning goal. The parameter update during
gradient descent is shown in Equation (10).

λj = λj − α ∂
∂λj

J(θ, λ)

θj = θj − α ∂
∂θj

J(θ, λ)
(10)

In the above equation, θ represents the weight parameter associated with each subtask,
λ represents the weight coefficient of the loss of each subtask, and the total loss J(θ, λ) is
jointly influenced by θ and λ and is adjusted simultaneously by gradient backpropagation.

2.3.3. Model Based on the Laplace Multitask Loss

LSTM and GRU share the same goal of efficiently tracking long-term dependencies
while alleviating the gradient explosion problem. GRU performs similarly to LSTM on certain
tasks in music modeling, speech signal modeling, and natural language processing [26,27]
and shows better performance on certain smaller and less-frequent datasets [28]. Therefore,
based on existing research and the pre-experiment in this paper, the LSTM-GRU stacking
structure was selected as the base structure for the multitask model.

To match the merge layer of the model with the GRU layer, a RepeatVector layer was
added to the design of the network structure to give the model the ability to change the
time step. Furthermore, a TimeDistributed layer was added before the model output layer
to give the model the ability to change the dimensionality. If only the normal dense layer
is used, only one result will be obtained at the end, which severely limits the form of the
model output. Therefore, it is necessary to use the TimeDistributed layer and dense layer
together. The TimeDistributed layer operates denselyat each time step, which increases
the dimensionality of the model and gives the model a one-to-many and many-to-many
capability, through which the transition from 2D to 3D can be realized.

Specifically, the model proposed in this paper contains six subtasks corresponding to
six meteorological parameters with complex correlations and different numerical scales
among the parameters. First, the complex correlations among the meteorological param-
eters determine that a simple single-task model is not capable of such prediction tasks.
Second, due to the large differences in numerical scales among meteorological parameters,
the subtasks often do not converge simultaneously when using traditional multitask models.
Based on these two points, there are few studies in the field of meteorology that use deep
learning for simultaneous prediction of multiple meteorological parameters with complex
correlations. In this field, the system proposed in this paper is the first system to achieve
simultaneous prediction of multiple complexly correlated meteorological parameters.

2.4. Baseline Model

In order to demonstrate the advantages of multitask learning in solving the depen-
dence of parameter correlation and to verify the impact of loss weighting and loss distribu-
tion assumptions on multitask learning, three types of models are designed in this paper.
All models use the LSTM-GRU stacking structure as the backbone structure. Class I models
are single-task learning models for multi-parameter meteorological data prediction, its
design ideas are mainly derived from Afan Galih Salman [29] and Fuyong Zhang [30], and
represent the leading single-task machine learning algorithms in this field. Such models
usually require a strong correlation between the input variables and are structured as
shown in Figure 4. Class II models are multitask learning models using classical loss
processing, and their structure is shown in Figure 5. The third type of model is a multitask
learning model with the addition of a multitask loss processing layer, whose structure is
shown in Figure 3. The information of all the models involved in this paper is shown in
Table 2.
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Figure 4. Structure of single-task learning model using classical loss processing.

Figure 5. Structure of multitask learning model using classical loss processing.

Table 2. Summary of model information.

Model No. Classify Parameters Output Type Loss Handling Method

¬ I H2OC/SH/WV/P Single MSE
 II H2OC/SH/WV/P Multi MSE
® II T/RHO/SH/H2OC/RH/P Multi MSE
¯ II T/RHO/SH/H2OC/RH/P Multi MAE
° III T/RHO/SH/H2OC/RH/P Multi GAUSS
± III T/RHO/SH/H2OC/RH/P Multi LAPLACE

3. Results and Discussion
3.1. Evaluation Indicators

At present, the metrics for evaluating model performance mainly contain MSE, RMSE,
MAPE, and prediction accuracy (ACC). Among the evaluation metrics, MAPE and ACC
are more dependent on the initial values, and the initial parameter values greatly influence
the accuracy of the generated results. The MSE metric calculates the mean value of the
sum of squares of the errors of the calculated results and the real data corresponding to the
sample points, and a smaller value indicates a better fit. MSE is considered to reconstruct
the error distribution more reliably when there are more samples available [31]. In terms of
statistical testing methods, when the multiple regression model is evaluated on the same
dataset, since it has exactly the same number of samples and target values, the MSE can be
used as an accurate representation of the goodness of fit.

Therefore, in this paper, the mean-squared error (MSE) was used as an evaluation
metric for the performance of network models to measure the performance of different
network models, and the expression is shown in Equation (11). It is important to note that
the MSE in multitask learning is derived by simply summing the MSEs of multiple subtasks.
When comparing the performance of the multitask model with that of the single-task model,
the MSE values of the multitask model need to be discounted by the number of subtasks.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

With the end of Moore’s Law, the computational cost of AI is growing greatly, and
the computational efficiency of models is a common concern. Computational volume
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cannot be used to evaluate the efficiency of a model alone, but must also be combined with
hardware characteristics (arithmetic power and bandwidth) and the amount of visits to
the inventory for a comprehensive evaluation. The nature of the model may change on
different platforms, and it is difficult to give a general conclusion. Therefore, in this paper,
we used the predicted execution time of the model on the same computing platform to
easily characterize the efficiency of the model.

This paper uses a deep learning development platform based on TensorFlow and
Keras, one of the most powerful and easy-to-use python libraries running on open-source
machine libraries such as TensorFlow, Theano, or Cognitive Toolkit (CNTK). In this paper,
we used TensorFlow as the computational context and the platform versions used are
shown in Table 3. The computational efficiency of all models is fairly compared under this
computing platform.

Table 3. Software and versions used in this paper.

Platform Windows 10 GPU TensorFlow Cuda Cudnn Keras

Version 1909 Nvidia Titan XP 2.3.0 10.1 7.6 2.3.1

3.2. Analysis and Discussion

Each of the six models was trained with 100 epochs, and the loss variation of each
model during the training process is shown in Figure 6. From the figure, we can see that the
loss of the models with MSE and MAE as the loss function gradually converges to 0 as the
number of training times increases, and the loss of the models with custom loss processing
layers converges to some stable negative value. The loss is the minimum of the function
after the abstraction of the real problem into a class of convex optimization problems. The
abstraction process of the problem is meaningful, while the loss value is not. Therefore,
both cases indicate that the model is valid and computationally convergent.

(a) Model ¬ (b) Model  (c) Model ®

(d) Model ¯ (e) Model ° (f) Model ±

Figure 6. Variation of loss during model training. The loss of all models converges to a certain stable
value, which means that all models have reached the optimal performance state under the current
network architecture.

The required prediction time and MSE values for each model are given in Figure 7.
The prediction time is defined as a characterization of the model efficiency; 1/MSE is
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defined as a characterization of the model performance, and the energy efficiency ratio is
defined as the ratio of model performance to prediction efficiency. Analyzing the data of
Model ¬ , we can see that although the prediction time of the multitask model increase
by 16.31%, compared with the single-task model, the prediction performance also increases
by 20.86%; in other words, the multitask model can effectively solve the weather parameter
dependence problem and has a higher energy efficiency ratio than the single-task model.
Analyzing the data of Model ®∼±, Model ± shows a 5.2%, 1.20%, and 2.25% reduction
in prediction time, but a 14.22%, 6.6%, and 6.07% performance improvement, respectively,
over the baseline Model ®¯°. The Laplace loss function-based model shows the highest
energy efficiency ratio among the multitask learning models in this experiment. It should
be noted that the multitask model based on Laplace loss function achieved lower MSE
values than all benchmark models in the experiments, which indicates that the Laplace
loss function is more applicable in the field of meteorological data prediction than the
traditional MSE, MAE, and Gauss loss function proposed in the CV field.

(a) Prediction time (b) MSE values

Figure 7. Model energy efficiency data.

To accurately evaluate the performance of the multitask model on each subtask,
the MSE values of Model ®∼± on different subtasks and the performance of different
loss functions on different subtasks are given in this paper, as shown in Tables 4 and 5.
Table 5 shows the performance differences exhibited by the multitask model on different
subtasks when different loss functions are used, calculated as X/Y = (X − Y)/Y ∗ 100.
Analyzing the performance of each model in terms of subtasks, the largest performance gap
is reflected in the prediction task of meteorological parameter P. The performance of Model
± is 55.10%, 27.83%, and 16.35% higher than that of Model ®, ¯, and °, respectively. The
above results show that the proposed multitask learning model can better solve the most
difficult problem of predicting weakly correlated meteorological parameters in complex
correlation meteorological parameter prediction tasks. Model ± outperforms Models ®

and ¯ using the classical loss function in all subtasks and performs significantly better than
Model ° on four subtasks, reflecting the superior performance of the loss function based
on the homoskedastic uncertainty and Laplace loss distribution assumption proposed in
this paper in the multiparameter meteorological data prediction task.
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Table 4. MSE values for subtasks in the multitasking model.

Label Model ® Model ¯ Model ° Model ±

T 2.47× 10−5 2.25× 10−5 2.40× 10−5 2.12× 10−5

RHO 5.48× 10−4 5.67× 10−4 5.87× 10−4 5.38× 10−4

SH 4.40× 10−6 3.19× 10−6 2.95× 10−6 2.88× 10−6

H2OC 1.23× 10−5 8.78× 10−6 8.06× 10−6 8.27× 10−6

RH 3.14× 10−4 2.52× 10−4 2.34× 10−4 2.38× 10−4

P 8.18× 10−5 5.09× 10−5 4.39× 10−5 3.67× 10−5

SUM 9.85× 10−4 9.05× 10−4 9.00× 10−4 8.45× 10−4

Table 5. Performance comparison of different loss functions on different subtasks.

Label Laplace/Gauss Laplace/Mse Laplace/Mae Gauss/Mse Gauss/Mae Mae/Mse

T 11.85 14.29 5.92 2.77 −6.72 8.89
RHO 8.40 1.91 5.14 −7.09 −3.56 −3.41
SH 2.07 34.46 9.55 33.08 7.64 27.54

H2OC −2.69 32.82 5.75 34.58 8.22 28.71
RH −1.96 24.07 5.61 25.53 7.42 19.55
P 16.35 55.10 27.83 46.33 13.72 37.79

Gauss [19]: multitask loss function proposed by Kendall et al. MAE [32]: Manhattan distance; represents the sum
of absolute values of residuals. MSE [33]: Euclidean distance, used to calculate the similarity between data points.

The trained model was used to perform a multi-parameter meteorological data pre-
diction task to obtain meteorological data for the next 24 h. A comparison of the results of
Model ¯ and Model ± can visually demonstrate the performance improvement brought
by the homoscedasticity uncertainty weighted loss method for multitask learning. The
comparison of the results of Model ° and Model ± allows a more intuitive analysis of the
performance of the Laplace loss distribution assumption and the Gaussian loss distribution
assumption in a multitask-learning-based meteorological parameter prediction task. There-
fore, this paper focuses on the comparative analysis of the prediction effects of Model ¯,
Model °, and Model ± for different meteorological parameters. The prediction results are
shown in Figure 8.

By analyzing Figure 8, it can be seen that the performance of Model ¯ ° ± in the pre-
diction tasks of six meteorological parameters matches exactly with the model performance
characterization based on MSE values in Table 5, which proves the reliability of choosing
MSE as the model performance evaluation index. The best performance was achieved by
Model ± based on homoscedastic uncertainty and the Laplace distribution assumption
in the prediction tasks of four meteorological parameters, T, RHO, SH, and P; the predic-
tion results of Model ± in the two prediction tasks of H2OC and RH were slightly worse
than those of Model ° based on the Gaussian distribution assumption, indicating that the
Laplace loss distribution assumption is more suitable than the Gaussian loss distribution
assumption in multitask learning for solving multitask regression problems with outliers
such as meteorological data prediction. Model ± performs better than Model ¯ in the
prediction task for all parameters, which fully illustrates the importance of loss weighting
in multitask learning. Model ° shows better performance than Model ¯ in the prediction
of four meteorological parameters, SH, H2OC, RH, and P. This indicates that the loss
treatment method has more influence on the model performance than the loss distribution
assumption when using multitask learning for meteorological parameter prediction.
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(a) Temperature (b) Atmospheric Density

(c) Specific Humidity (d) Water Vapor Content

(e) Relative Humidity (f) Barometric Pressure

Figure 8. Prediction results of Model ¯ ° ± for meteorological parameters. The black curve is the
observed value, and the red, green, and blue lines represent the predicted value when the multitask
model uses different loss functions. Among all the results, the model based on Laplace multitask loss
function achieved the best prediction results.

4. Conclusions

In this paper, we designed a network structure based on multitask learning and an
asymmetric sharing mechanism for simultaneous multi-parameter meteorological data
prediction. It was demonstrated experimentally that the multitask model based on the
asymmetric sharing mechanism in the field of multi-parameter meteorological data predic-



Atmosphere 2022, 13, 989 15 of 16

tion can effectively solve the problem of meteorological parameter correlation dependence
in single-task learning and has a higher energy efficiency ratio in the field of complex corre-
lated meteorological parameter prediction. In this paper, a principled loss function was
derived based on the assumption of homoscedasticity uncertainty and the Laplace distribu-
tion, which can automatically learn the relative weights during the training process and has
better performance and robustness than the existing loss functions. Experimental results
showed that appropriate weighting of loss terms can improve model performance and
enhance multitask learning, and processing loss terms based on the Laplace distribution
assumption and homoscedasticity uncertainty is an effective loss term weighting method.
For the field of meteorological data prediction, the loss functions derived based on the
above loss term weighting methods can improve the performance of regression tasks such
as meteorological parameter prediction. The modeling approach to improve the weighted
loss based on the assumption of homoscedasticity uncertainty and Laplace loss distribution
has better performance and robustness, which can improve the characterization ability of
multitask models and the performance of each subtask.
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