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Abstract: Satellite remote sensing for air quality assessment provides information over a large spatial
coverage and time period that shows the trends and effects of anthropogenic activities. Using data
collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite from the
years 2010 to 2020, the spatiotemporal variations to aerosol optical depth (AOD) in Koronadal City
and Quezon City were studied. Validation showed a strong relationship between the MODIS AOD
values and the Aerosol Robotic Network (AERONET) AOD values (R2 = 0.83) and a low root mean
square error (RMSE) of 0.26. Annual variation in the AOD of the two study areas showed a peak AOD
value in 2015 due to an immense biomass burning in Indonesia and a low AOD value in 2020 due to
the COVID-19 lockdown. Koronadal City experienced a high AOD value during the fall season due
to aerosols from biomass burning in Indonesia that were carried by the southwest monsoon. Quezon
City experienced a high AOD value during spring from increased local sources, as well as long-range
transport pollutants from East Asia that were carried by northeasterly winds. Overall, this study
provides an understanding of the spatiotemporal variations in aerosols in the Philippines, which
could be used in environmental management, air quality regulations, and health assessment studies.
This shows the urgency of monitoring and mitigating poor air quality in the Philippines.

Keywords: aerosol optical depth; air quality; MODIS; transboundary

1. Introduction

Air pollution, including atmospheric aerosols, is the effect of not only local emissions
but also foreign emissions from surrounding areas. The amount of air pollution transported
depends on the country’s topography and weather. Because of its growing industry, the
anthropogenic emissions in Asia are greater than those in Europe and America. Residents
of Asia are nine times more exposed to air pollution than their European and American
counterparts. The primary source of these pollutants is emissions from the fuel combustion
of motor vehicles [1]. Air pollution is currently considered as the largest environmental
risk factor [2].

Atmospheric aerosols refer to suspended particles with a diameter of less than 10 µm.
Aerosols can be in the form of natural sources, such as dust, sea salts, and volcanic ash,
or can be from anthropogenic sources, such as the combustion of fossil fuels and biomass
burning. Aerosol particles can affect the estimation of global and regional climate change
as well as cloud formation [3–5] through their interaction with incoming solar radiation [6].
Some aerosols may pose risks to health and increase the likelihood of developing certain
diseases, including pulmonary diseases, neonatal diseases, diabetes, and cerebrovascular
diseases [7,8]. It is important to study the characteristics of atmospheric aerosols, as well as
their spatial and temporal variations, so as to evaluate their roles in atmospheric dynamics
and as health risks.

Aerosols can be evaluated using different parameters: the aerosol optical depth (AOD),
single scatter albedo (SSA), Ångström exponent (AE), and the complex refractive index. The
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AOD value represents the geographical distribution of aerosols or the column-integrated
mass distribution. The AE is an optical property of an aerosol that measures the wavelength
dependence in aerosol absorption, as well as a qualitative indicator of the size distribution
of the aerosol [5,9]. There are several networks providing ground-based measurements of
aerosol properties, such as the Aerosol Robotic Network (AERONET) [10], SKYNET [11],
and Sun-Sky Radiometer Observation Network (SONET) [12]. However, there are still
regions and areas with few studies and little to no monitoring [13,14]. Furthermore, the
data measured at each site can only account for a small area. Therefore, the high demand
for information about aerosol properties on a wide scale cannot be met at present.

In the last few years, the process of remote aerosol retrieval from satellite sensors
has progressed. One of these advancements is the derivation of aerosol products from
the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA’s (National
Aeronautics and Space Administration) Terra and Aqua satellites. Studies of and improve-
ments to MODIS show that retrievals fall within the acceptable accuracy values [15]. There
have been studies about aerosol trends in the Philippines [16–21]. Studies by [19,22] show
that the Philippines, a maritime country, has the highest AOD concentration during October.
This is due to the strong land and sea breeze created by warmer land surface tempera-
tures. Long-range transport of anthropogenic emissions from East Asia and Indonesia also
contributes to the elevated concentrations of aerosols [23–25].

This study aims to examine the annual and seasonal spatiotemporal variations in
AOD values in the Philippines from 2010 to 2020, based on MODIS data at a spatial
resolution of 10-by-10 array of 1 km pixels, and the V6.1 algorithm developed by NASA.
The MODIS AOD values were validated with the ground monitoring network AERONET
AOD using the CIMEL CE-318 photometer at the Manila Observatory and Notre Dame of
Marbel University.

2. Related Literature

The Moderate Resolution Imaging Spectrometer (MODIS) is an instrument onboard
NASA’s Earth Observing System (EOS) satellites Terra, launched in December 1999, and
Aqua, launched in May 2002. The Terra and Aqua satellites detect a wide spectral range of
electromagnetic energy. The MODIS can acquire high radiometric-sensitive images (12 bit)
in 36 spectral bands between 0.62 and 14.385 µm with a scanning width of 2330 km. The
spatial resolutions of the sensor are 250 m, 500 m, and 1 km in several bands and can sweep
the entire Earth surface every 1 to 2 days [26]. While Terra has a morning orbit, with an
equator crossing time of 10:30 a.m., Aqua’s is in the afternoon, with an equator crossing
time of 1:30 p.m. [27]. MODIS can evaluate the AOD values over land and ocean using the
Dark Target (DT) and Deep Blue (DB) algorithms. The DT algorithm measures the AOD in
dark vegetative surfaces [15,28–31] and over the ocean [15,32,33], while the DB algorithm
measures the AOD in desert and vegetated surfaces [34,35]. Recent developments to the
DB algorithm allow it to include other land areas [36–38].

As for ground monitoring networks, the Aerosol Robotic Network (AERONET) is a
network of ground-based sun photometers that measure atmospheric aerosol properties.
The AERONET employs a CIMEL Electronique 318A spectral radiometer that measures the
sun and sky radiances obtained at a number of fixed wavelengths within the visible and
near-infrared (VNIR) spectrum [10]. AERONET datasets are available in three quality levels:
Level 1.0 (unscreened), Level 1.5 (cloud screened and quality controlled), and Level 2.0
(quality assured) [39]. The AERONET AOD uncertainty is 0.01 for larger wavelengths
and 0.02 for shorter wavelengths [9]. Currently, there are approximately 400 stations in
50 countries, with 3 in the Philippines, namely, Manila Observatory in Quezon City, El Nido
Airport in El Nido, and Notre Dame of Marbel University in Koronadal City. However, El
Nido Airport stopped reporting ground measurements after 2013.
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3. Materials and Methods
3.1. Study Area

The study area included two locations in the Philippines: Quezon City (latitude:
14.6◦ N; longitude 121.1◦ E; elevation: 63.0 m) and Koronadal City (latitude: 6.5◦ N; longi-
tude: 124.8◦ E; elevation: 70.0 m). El Nido was not included because the ground station’s
limited data are not sufficient for the decade-long study. Figure 1 shows the location of the
study areas, along with the corresponding AERONET ground monitoring stations.

Figure 1. Satellite overpass points for MODIS data: Quezon City and Koronadal City.

The Philippines is a tropical country and belongs to the Western North Pacific (WNP)
boreal summer monsoon region. The wet season is experienced from May to October,
while the dry season is experienced the rest of the year. Quezon City (QC) is located
in the northeast part of Metropolitan Manila, on Luzon Island. It has a total area of
151.06 km2 [40] and a population of 2,960,048 [41]. The city is situated on the Guadalupe
Plateau and is largely rolling, with alternating ridges and lowlands. The lower part of the
city has low-grade terrain, while the northern half is undulating and culminates at the
Novaliches Reservoir [42]. Koronadal City (KC), on the other hand, is located on Mindanao
Island and has a total land area of 277.0 km2. KC is surrounded by the mountain ranges of
Roxas and Quezon. In general, the city has gently sloping terrain and 50% of the total land
area is predominantly flat [43]. The latest Philippine Statistics Authority (PSA) census puts
the total population of the city at 195,398 [41]. QC has an urbanization level of 100%, while
KC has an urbanization level of 75.8% [44].

3.2. Dataset

The MODIS AOD data that were downloaded from the Terra satellite are reported
in Level 2 (L2) granule-based and Level 3 (L3) global-gridded products. Daily MODIS
AOD Level 2 products (MOD04_L2) at 10 km swaths from 2010 to 2020 were used for
the analysis of AOD trends. In this study, the Deep Blue algorithm was utilized. The DB
algorithm retrieves AOD data at 550 nm over global land in cloud-free and snow/ice-free
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scenes. Quality flags are also produced with each retrieval to ensure quality of retrieved
AOD product.

To validate MODIS AOD data, this study used AERONET AOD data at Level 2.0,
which are quality assured, meaning that they are cloud-screened and quality-controlled [10].
The study used the data from the two AERONET stations in the Philippines. These are
located within the study areas, namely, Manila Observatory in QC and Notre Dame of
Marbel University in KC.

3.3. Pre-Processing

The MODIS Terra reports AOD values at 550 nm; therefore, the following sub-dataset
was extracted and then projected into 10 km grids:

Deep_Blue_Aerosol_Optical_Depth_550_Land.
The collected AERONET AOD data included the following: the acquisition time, AOD

value at 500 nm, and Ångström exponent at 440 nm to 670 nm. Since the MODIS and
AERONET AOD values are reported in different wavelengths, interpolation for AERONET
at 550 nm was calculated using Equation (1):

τ1

τ2
=

(
λ1

λ2

)−α

(1)

where λ1 and λ2 are the wavelengths of the MODIS and AERONET, respectively; τ1 is
the calculated AOD value for AERONET at 550 nm; τ2 is the collected AERONET AOD
value at 500 nm; and α is the Ångström exponent for 440 nm to 670 nm from AERONET [9].
AERONET AOD measurements within ± 30 min of MODIS overpass time were considered.

3.4. Statistical Analysis

To extract the MODIS AOD values, a 3-by-3 pixel array centered at the study area
ground site was set up. A condition requiring a minimum of 6 valid pixels was imposed on
the extracted MODIS AOD data to minimize possible gaps. The mean of the pixel values
was then compared with the corresponding AERONET AOD.

The data were analyzed using the following criteria: the arithmetic mean (x), standard
deviation (σ), coefficient of determination (R2), and root mean square error (RMSE).

x =
1
n

n

∑
t=1

xt (2)

σ =

√
1
n

n

∑
t=1

(xt − x)2 (3)

R2 =
[∑n

t=1(xt − x)(yt − y)]2

∑n
t=1 (xt − x)2 ∑n

t=1 (yt − y)2 (4)

RMSE =

√
∑n

t=1 (xt − yt)
2

n
(5)

where x and y are the arithmetic means of the MODIS and AERONET AOD, and xt and yt
are the AOD values at time t, with n number of samples.

An error of estimation was also presented using the following equation [45]:

EE = ±(0.05 + 20% × AOD) (6)

3.5. Air Mass Back-Trajectory

Analysis of the wind back-trajectories was undertaken using the Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) model [46]. Meteorological conditions were
determined using the NCEP/NCAR Reanalysis meteorological datasets [47]. Trajectories
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were calculated based on three altitude endpoints: 100 m, 500 m, and 1000 m. One trajectory
was simulated every 6 h. Backward trajectory times for 72 h windows were plotted. Each
measured airmass was associated with its corresponding 72 h end observation location.

4. Results and Discussion
4.1. Satellite Data Validation

Validation of MODIS data was undertaken by comparing the MODIS AOD values
to the AERONET AOD values. There were a total of 213 MODIS AOD datapoints with
corresponding AERONET AOD values. For QC, there were no available data for the years
2016, 2017, 2019, and 2020, while for KC there were no available data for 2018. This is
because either their acquisition time were not within the ± 30 min AERONET measurement
time, their locations are not within the 3-by-3 pixel array, or they had fewer than six valid
pixels. Table 1 shows the summary of the number of annual data from the MODIS AOD
matched with the AERONET data used for the analysis for each study area. High cloud
cover and particularly optically thin cirrus pose challenges in AOD retrieval and quality for
both ground-based and satellite data measurements [48,49]. Coverage limitations due to
the contamination of clouds and site limitations are the primary cause of low data volumes
in Southeast Asia, including the Philippines.

Table 1. Number of yearly MODIS AOD data with corresponding AERONET AOD data used in the
analysis in each study area.

Years KC QC

2010 16 15
2011 25 4
2012 19 6
2013 23 5
2014 13 16
2015 50 1
2016 6 0
2017 3 0
2018 0 1
2019 4 0
2020 6 0
Total 165 48

The scatterplot shown in Figure 2 depicts the correlation of MODIS AOD data and
AERONET AOD data from 2010 to 2020. The results show that the R2 value for the data
was relatively high (0.83). Based on the equation of the scatterplot, the coefficient is less
than 1 (0.73). This means that the MODIS AOD values were less than the AERONET AOD
values. This is in contrast to previous studies showing that the MODIS AOD overestimates
AERONET AOD values [50–52]. This could be due to the standard deviation of the MODIS
AOD values (0.16). The results also show that the satellite data had an arithmetic mean of
0.33 and a low RMSE (0.26).

4.2. Annual Variation

Figure 3a,b show the boxplots for the combined annual and seasonal trends in satellite
AOD data. The hollow circles in the graph represent outliers in the data. For the Philippines,
the months June, July, and August (JJA); September, October, and November (SON);
December, January, and February (DJF); and March, April, and May (MAM) are referred
to as summer, fall, winter, and spring, respectively. As shown in Figure 3a, the year 2014
recorded the highest satellite AOD value, as evidenced by an outlier; however, overall,
2015 had the highest mean for the AOD values. There was a general upward trend of AOD
values from 2010 to 2015, but it suddenly declined in 2016.
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Figure 2. Scatterplot of MODIS AOD versus AERONET AOD from 2010 to 2020. A total of
213 samples were used in the analysis. Computed R2 is 0.83 and RMSE is 0.26.

Figure 3. Boxplots of combined mean MODIS AOD values in the two study areas, Koronadal City
and Quezon City: (a) annual and (b) seasonal.

Figure 4 shows the spatial distribution of the mean annual AOD value for the Philip-
pines. The figure suggests a high AOD concentration in the East Asian and Indonesian
areas, whereas the Pacific has relatively low AOD values. Eastern China showed con-
tinuously high AOD readings within the study years. High mean AOD values in China
were due to continuous economic growth and energy consumption [53,54]. Meanwhile,
the high AOD values for Indonesia were due to biomass burning. In 2015, Indonesia
experienced extensive biomass burning due to El Niño-induced droughts [55,56]. Another
major biomass burning event occurred in 2019, resulting in high AOD levels in Indonesia
and nearby countries [57,58]. These haze events occur typically from July to October,
during the country’s dry season [57,59]. These high AOD levels also affect the Philippines.
Low AOD values were recorded for 2020 due to the effects of the COVID-19 pandemic
and lockdown. This is because strict lockdown protocols in the Philippines restricted the
economic production, consumption activities, and transportation of the primary sources of
atmospheric aerosols [60–62].

Figure 5 shows the boxplot for the annual concentrations for 11 years at the two
sites. The mean and standard deviation are presented in Table 2. KC had the highest
AOD concentration in 2014 (x = 0.39, σ = 0.28), while QC had the highest concentration in
2010 (x = 0.39). Overall, QC showed the highest concentration within the study period,
with a total x of 0.35, compared to KC value of x = 0.32. To test the significance of the
difference in concentration values from the two sites, hypothesis testing was performed
using an independent t-test. The calculated p-value was 0.38 (p-value ≤ 0.05 means
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significant). This means that the variation in concentration values between the two sites is
not significant, which could be attributed to the sources and quantities of aerosols received
by the two study areas. QC is a highly urbanized city, where pollution is primarily caused
by anthropogenic activities, but it is also affected by long-range aerosols from East Asia [23].
KC, on the other hand, is a city with a large percentage of its total land area covered by
vegetation. Agriculture occupies 55% of the total area, open grasslands occupy 3%, and
forest occupies 28% of total land area [63]. While KC also experiences biomass burning
from local sources, the bulk of air pollution originates from maritime continent countries
in Southeast Asia [19,22,64]. The amount of data could also affect the calculated average
AOD values of both sites, since some years are missing data values.

Figure 4. Spatial distribution of mean annual MODIS AOD values from 2010 to 2020 in the Philippines.
Note that “I” corresponds to Quezon City and “#” corresponds to Koronadal City.

Table 2. Statistics of monthly MODIS AOD values at the two study areas from 2010 to 2020. Note
that “−“ signifies unavailability of data.

Year KC QC

2010
x 0.20 0.39
σ 0.09 0.20

2011
x 0.31 0.34
σ 0.11 0.14

2012
x 0.38 0.31
σ 0.15 0.14

2013
x 0.32 0.33
σ 0.14 0.14
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Table 2. Cont.

Year KC QC

2014
x 0.39 0.32
σ 0.28 0.14

2015
x 0.36 0.42
σ 0.16 −

2016
x 0.17 −
σ 0.07 −

2017
x 0.21 −
σ 0.08 −

2018
x − 0.29
σ − −

2019
x 0.29 −
σ 0.06 −

2020
x 0.25 −
σ 0.12 −

Figure 5. Boxplots of annual concentrations of evaluated MODIS AOD data from 2010 to 2020 in
Quezon City and Koronadal City; median is shown by the middle line of the box, inter-quantile range
is shown by the box, and whiskers represent the ± 2.7 + inter-quantile range.

4.3. Seasonal Variation

The boxplot of the seasonal variation between the two sites is shown in Figure 6, and
the seasonal spatial distribution of AOD values is shown in Figure 7. For the seasonal
variation in Figure 6, QC recorded the lowest mean AOD value (0.27) in fall, when the
monsoon transition occurs, and the highest (0.40) in spring, as seen in Table 3. A wind
back-trajectory analysis (Figure 8) of the northern part of the Philippines during this
season showed that air volume comes from the Pacific Ocean by easterly winds, where no
known large pollutant emitters are present. During spring, large concentrations of local
sources, such as biomass burning and long-range transport pollutants from East Asia, are
carried by strong daytime monsoon winds [22]. For KC, the highest AOD values occurred
during fall. A wind back-trajectory analysis (Figure 9) during this season showed that the
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movement of air came from southwest and west of the site. During this time, Indonesia
experiences a dry season that encourages biomass burning events that are made severe by
high temperatures [64]. This increase in AOD values during fall in KC was a result of forest
fires from Indonesia and Indochina [19,65].

Figure 6. Boxplots of seasonal concentrations of evaluated MODIS AOD values from 2010 to 2020
in Quezon City and Koronadal City; median is shown by the middle line of the box, inter-quantile
range is shown by the box, and whiskers represent the ± 2.7 + inter-quantile range.

Figure 7. Spatial distribution of mean seasonal MODIS AOD values from 2010 to 2020 in the
Philippines. Note that “I” corresponds to Quezon City and “#” corresponds to Koronadal City.
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Table 3. Statistics of seasonal MODIS AOD values at the two study areas from 2010 to 2020.

Season KC QC

Summer
x 0.31 0.35
σ 0.10 0.12

Fall
x 0.38 0.27
σ 0.21 0.14

Winter
x 0.25 0.32
σ 0.11 0.13

Spring x 0.36 0.40
σ 0.15 0.19

Figure 8. Cluster analysis of 72 h HYSPLIT-NCEP/NCAR wind back-trajectories arriving every 6 h
for each season in Quezon City.
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Figure 9. Cluster analysis of 72 h HYSPLIT-NCEP/NCAR wind back-trajectories arriving every 6 h
for each season in Koronadal City.

5. Conclusions

This study examined the MODIS AOD trends over Koronadal City and Quezon City
from 2010 to 2020. For a decade-long study, the number of data studied is a limitation.
This is associated with the limited amount of quality assured and cloud-free data available
from the ground-based network and satellite. Nevertheless, the results still show a trend in
annual and seasonal AOD values congruent with previous studies.

The results show that the x and R2 are 0.33 and 0.83, respectively, for the whole study
period. The MODIS generally underestimates AERONET AOD values in the Philippines
but has a low RMSE value of 0.26. Annual variation in AOD values in the Philippines
showed an increase from 2010 to 2015. The mean AOD value in 2015 was recorded as the
highest due to extensive biomass burning in Indonesia. Spatial analysis showed that, due
to COVID-19 lockdown, the mean AOD value in the Philippines remained relatively low
in 2020. Seasonally, KC had a higher AOD concentration during the fall season due to
long-range transport pollutants from Indonesia caused by biomass burnings. A wind back-
trajectory showed that the high AOD concentration during fall is because aerosols were
carried by the southwest monsoon from Indonesia. QC, on the other hand, experienced
higher AOD concentrations during spring from increased local anthropogenic activities, as
well as long-range transport pollutants from East Asia carried by daytime monsoon winds.
These results suggest that subtropical and monsoon climates, as well as the long-range
transportation of aerosols, have significant effects on the air quality in the Philippines.
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The findings of this study describe and evaluate the atmospheric aerosol trends in the
Philippines for the past decade. For an archipelagic country, where some places are remote
and inaccessible, using satellite data is highly advantageous because it provides extensive
spatial coverage as well as real-time sets of data. This makes it easier to study air quality
trends and their effects on health, the environment, and the climate. The authors suggest
using other retrieval MODIS AOD algorithms to assess which is the most appropriate for
use in different areas within the Philippines. Future studies should also use other satellite
sources, such as the Modern-Era Retrospective analysis for Research and Applications
(MERRA-2), Visible Infrared Imaging Radiometer Suite (VIIRS), and Himawari-8 satellite,
to assess variations in the AOD in different regions in the Philippines, especially in highly
urbanized regions. More in-depth studies could be used by the government to enact and
initiate interventions in proper urban planning and agricultural practices, as well as health
risk assessments to improve air quality in the Philippines.
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